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Abstract: The aim of this work is to solve the case study singular model involving the Neumann–
Robin, Dirichlet, and Neumann boundary conditions using a novel computing framework that
is based on the artificial neural network (ANN), global search genetic algorithm (GA), and local
search sequential quadratic programming method (SQPM), i.e., ANN-GA-SQPM. The inspiration to
present this numerical framework comes through the objective of introducing a reliable structure
that associates the operative ANNs features using the optimization procedures of soft computing to
deal with such stimulating systems. Four different problems that are based on the singular equations
involving Neumann–Robin, Dirichlet, and Neumann boundary conditions have been occupied to
scrutinize the robustness, stability, and proficiency of the designed ANN-GA-SQPM. The proposed
results through ANN-GA-SQPM have been compared with the exact results to check the efficiency
of the scheme through the statistical performances for taking fifty independent trials. Moreover,
the study of the neuron analysis based on three and 15 neurons is also performed to check the
authenticity of the proposed ANN-GA-SQPM.

Keywords: singular; Neumann–Robin; Dirichlet; sequential quadratic; genetic algorithm;
neuron analysis

1. Introduction

The singular nonlinear models that are governed with the Emden–Fowler types of
equations are considered to be a hot topic for the researchers due to their massive appli-
cations in population evolution, relativistic or fluid mechanics, chemical reactor systems,
and pattern structure [1–5]. The EF is one of the popular models due to the singular point
its the origin. Some well-known applications of the singular models are the electromagnetic
structure, oscillating magnetic fields, stellar structure, catalytic diffusion reactions, continu-
ous isotropic media, isothermal gas spheres, and classical mechanics [6–12]. The typical
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form of the EF model, which is basically a second order singular differential equation,
is given as [13–16]:

d2z
dΩ2 +

χ
Ω

dz
dΩ + h(Ω)g(z) = u(Ω),

z(0) = a, dz(0)
dΩ = 0.

(1)

The model (1) takes the form of Lane–Emden equation for h(Ω)= 1, given as:

d2z
dΩ2 +

χ
Ω

dz
dΩ + g(z) = u(Ω),

z(0) = a, dz(0)
dΩ = 0.

(2)

where χ represents the shape factor, u(Ω) is the forcing function, h(Ω) and g(z) are the
functions of Ω and z, respectively. The purpose of this research work is to solve the singular
equations involving Neumann–Robin, Dirichlet, and Neumann boundary conditions using
a novel computing framework that is based on the artificial neural network (ANN), global
search genetic algorithm (GA), and local search sequential quadratic programming method
(SQPM), i.e., ANN-GA-SQPM. The general form of the singular models, along with the
Neumann–Robin, Dirichlet, and Neumann boundary conditions, is written as [17]:

d2z
dΩ2 +

χ
Ω

dz
dΩ + g(z) = u(Ω),

z(0) = A1, z(1) = B1,
dz(0)
dΩ = A2, dz(1)

dΩ = B2,
dz(0)
dΩ = 0, A3z(1) + B3

dz(1)
dΩ = C1

(3)

where A1, B1, A2, B2, A3, B3, and C1 are the real constants. For the numerical outcomes
of the singular system, a variety of applications have been investigated in the refer-
ences [18–20]. All of these stated approaches have their separate perks and importance,
as well as confines and disadvantages. Alongside these conventional schemes, the stochas-
tic design of the computational numerical heuristic or swarming techniques appears to
be capable and proficient in integrating the singular systems by operating the universal
approximation capability of ANNs along with local/global techniques. The nonlinear
prey-predator system [21], nonlinear singular Thomas–Fermi system [22], SITR nonlinear
based COVID model [23,24], periodic singular differential system [25,26], dengue fever
model [27], multi-singular systems [28], HIV infection model [29], nonlinear singular func-
tional differential model [30,31], heat conduction system in human head [32], and mosquito
dispersal model [33] are some recent submissions of the stochastic solvers. When con-
sidering these influences, the authors are inspired to present the solution of the singular
models involving the Neumann–Robin, Dirichlet, and Neumann boundary conditions
using the ANN-GA-SQPM. Some novel characteristics of the ANN-GA-SQPM are briefly
provided as:

• A pioneering framework using the integrated computational ANN-GA-SQPM is pro-
vided to solve the singular model involving the Neumann–Robin, Dirichlet,
and Neumann boundary conditions.

• The performance of the computational ANN-GA-SQPM is observed using a small and
large number of neurons.

• The matching of the results that were obtained by the proposed computational ANN-
GA-SQPM with the exact solutions authenticate the value in terms of convergence
and precision.

• The absolute error (AE) is found in good measure for each problem of the singular model.
• The verification of the ANN-GA-SQPM is authorized from the statistical exploration

on multiple executions for 10 neurons based on the performance of Variance Account
For (VAF), Nash Sutcliffe Efficiency (NSE), and Theil’s Inequality Coefficient (TIC).

• Besides the equitable precise solutions of the system, the easy understanding, smooth
operations, robustness, and comprehensive stability are other valued merits.
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2. Methodology: ANN-GA-SQPM

The design structure is presented in two phases to solve the singular model. An error
function is introduced and the hybridization procedures of GA-SQPM is provided.

2.1. ANNs Modeling

In order to solve the singular models involving the Neumann–Robin, Dirichlet,
and Neumann boundary conditions that accumulated with feed-forward ANNs, ẑ(Ω)
is the continuous mapping form of the solution together with the log-sigmoid function
Q(Ω) = 1/(1 + exp(−Ω)) given as:

ẑ(Ω) =
k
∑

i=1
riQ(wiχ + si) =

k
∑

i=1
ri

(
1 + e−(wiχ+si)

)−1
,

dẑ
dχ =

k
∑

i=1
ri

d
dχ Q(wiχ + si) =

k
∑

i=1
riwie−(wiχ+si)

(
1 + e−(wiχ+si)

)−2
,

d2 ẑ
dχ2 =

k
∑

i=1
ri

d2

dχ2 Q(wiχ + si) =
k
∑

i=1
riw2

i

(
2e−2(wiχ+si)(

1+e−(wiχ+si)
)3 − e−(wiχ+si)(

1+e−(wiχ+si)
)2

)
,

(4)

where r = [r1, r2, r3, . . . rk], w = [w1, w2, w3, . . . , wk], and s = [s1, s2, s3, . . . , sk] are the
unknown weights. An error function for solving the singular model (3) is given as:

ξFit = ξFit−1 + ξFit−2, (5)

where the construction of the error functions ξFit−1 and ξFit−2 is on the basis of the sin-
gular model and the Neumann–Robin, Dirichlet, and Neumann boundary conditions,
respectively, given as:

ξFit−1 =
1
N

N

∑
k=1

(
d2ẑk

dΩ2
k
+

χ

Ωk

dẑk
dΩk

+ g(ẑk)− uk

)
, 0 ≤ Ωk ≤ 1, (6)

ξFit−2 =
1
2
(ẑ0 − A1)

2 +
1
2
(ẑN − B1)

2, (7)

ξFit−3 =
1
2
(
ẑ′0 − A2

)2
+

1
2
(
ẑ′N − B2

)2, (8)

ξFit−4 =
1
2
(
ẑ′0
)2

+
1
2
(

A3ẑN − B3ẑ′N − C1
)2, (9)

where Nh = 1, ẑk = z(χk), g(ẑk) = g(χk), uk = u(χk) and zk = kh.

2.2. Optimization Process: GA-SQPM

The optimization performance of the ANNs is accomplished through the hybridization
procedures of GA-SQPM.

GAs are applied to solve both constrained/unconstrained optimization models based
on the natural selection process. GAs are implemented frequently to transform the popu-
lation of individual solutions that solve an assortment of systems using the optimization
procedures, where the fundamental optimization schemes fail, e.g., non-differentiable
systems, stochastic models, and highly nonlinear systems. GA is applied in various fields
of technologies, applied sciences, and engineering that work through its reproduction oper-
ators. In recent years, GA and PSO based heuristic optimization solvers have been applied
in transportation planning and logistics management [34], microgrid energy management
systems [35], optimization of multimodal functions [36], mobile position estimation prob-
lem [37], the vehicle routing problem in cloud implementation [38], satellite formation
reconfiguration [39], and the optimization of multi-objective energy models [40].

SQPM is considered to be very important in the process of optimization. SQPM
is known as a local search scheme and it has been implemented to solve constrained/
unconstrained models. In recent years, SQPM has been implemented in the sizing and
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location of DGs [41], optimal gait based on bipedal robots through nonlinear system of
predictive control [42], optimal organization of directional overcurrent communication
incorporating spread generation [43], second order prediction differential system [44],
central air-conditioning optimization [45], and flight vehicle management [46].

One can use the process of hybridization with the local search scheme to help overcome
the sluggishness and laziness associated with controlling the global scheme. Table 1
presents the pseudocode of the GA-SQPM.

Table 1. Pseudocode of the process of optimization using the ANN-GA-SQPM.

Start of GA

Inputs:
The chromosome with the same entries of the system are signified as:
W = [r, w, s]
Population: The chromosomes set is designated as:
r = [r1, r2, r3, . . . rk], w = [w1, w2, w3, . . . , wk] and s = [s1, s2, s3, . . . , sk]

P = [W1, W2, , . . . , Wk]
t

Output: The best weights of GA are WBest-GA
Initialization
Create W that is a WBest-GA of real numbers to signify a chromosome. Initialize the W with real
entries. Adjust the ‘Generation’ & ‘declarations’ values of ‘gaoptimset’ & GA routines
Fitness formulation
Accomplish the ξFit in P to show all W for Equations (5)–(8)
Termination
Stop the process to accomplish
• ξFit= 10 −18, TolFun = 10−21, Generations = 100, ,
• TolCon = 10−22, Population Size = 270, StallGenLimit = 120
Go to [storage], when stopping standards obtains.
Ranking
Rank W of P for brilliance of ξFit
Storage
Save WBest-GA, iterations, ξFit and time for the current trials of GAs
End of GA
GA-SQPM Start
Inputs
WBest-GA is the start point
Output
WGA-SQPM represents the best values
Initialize
Adjust WGA-SQPM represents an initial input
Termination
Stop the procedure, when
ξFit= 10−18′ , generations = 1000, TolFun = 10−21,
TolX=10−19′ , TolCon =10−18′ , MaxEvalsFun= 229,000
While [Terminate]
Fitness Calculations
Calculate ξFit of the present W using Equations (5–8).
Amendments
Invoke ‘fmincon’ for the SQPM. Adjust W for each generation of SQPM. Calculate
Calculate ξFit of updated W using Equations (5–8)
Accumulate
Store WGA-SQPM, time, ξFit and number of generations for the current trials of SQPM.
End of GA-SQPM Procedure

3. Results and Discussion

The current section provides details of the nonlinear singular differential model
based on the Neumann–Robin, Dirichlet, and Neumann boundary conditions using the
designed framework of ANN-GA-SQPM. Two problems based on nonlinear singular sys-
tems with the Dirichlet boundary condition while one problem each for Neumann–Robin
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and Neumann boundary conditions, respectively, are implemented in order to evaluate
the performance of the designed ANN-GA-SQPM. The details of the results compari-
son, AE, performance measures, and weight plots, along with statistical observations,
are also presented.

Problem 1: Consider the following singular Lane–Emden nonlinear model along with
Dirichlet boundary conditions, which are written as:

d2z
dΩ2 +

0.5
Ω

dz
dΩ + e2z = 0.5ez,

z(0) = log(2), z(1) = 0.
(10)

The exact solution for the above equation is ln
(

2
1+Ω2

)
. The error function is given as:

ξFit =
1
N

N

∑
k=1

(
d2ẑk

dΩ2
k
+

0.5
Ωk

dẑk
dΩk

+ e2ẑk − 0.5eẑk

)
+

1
2

(
(ẑ0 − log(2))2 + (ẑN)

2
)

(11)

Optimization is performed through the hybridization of GA-SQPM to calculate the
numerical representations of problem 1. The numerical outcomes are derived in Tables 2–5
for small and large neurons three, 10, and 15, respectively, using a 0.05 step size with input
[0,1]. One can observe that the proposed and exact solutions for three, 10, and 15 neurons
consistently overlap the exact solutions. It is also noticed that, by taking a small number of
neurons, the performance of ANN-GA-SQPM is reasonably good, but greater accuracy is
observed for larger, 15 neuron-based networks. However, the complexity cost increases by
increasing the number of variables/neurons in the networks.

Table 2. Results comparison of Problem 1 based on ANN-GA-SQPM for three, 10, and 15 neurons, or nine, 30, and 45
variables with reference solutions.

Ω
Exact Approximate Results ẑ(Ω)

ẑ(Ω) 9 Variables 30 Variables 45 Variables
0 0.69314718056 0.68224453346 0.69315090195 0.69314891025

0.05 0.69065030036 0.67524281241 0.69064571170 0.69064852047
0.1 0.68319684971 0.66423337183 0.68320463422 0.68319977498
0.15 0.67089657163 0.64935335193 0.67091717339 0.67090442363
0.2 0.65392646741 0.63075628397 0.65395396612 0.65393705056
0.25 0.63252255874 0.60861130029 0.63255161225 0.63253391938
0.3 0.60696948432 0.58310217609 0.60699764007 0.60698071676
0.35 0.57758883993 0.55442621042 0.57761623704 0.57759992784
0.4 0.54472717544 0.52279295679 0.54475520147 0.54473850462
0.45 0.50874445756 0.48842281690 0.50877439795 0.50875637605
0.5 0.47000362925 0.45154551423 0.47003584924 0.47001621283
0.55 0.42886168591 0.41239846634 0.42889548155 0.42887471647
0.6 0.38566248081 0.37122507743 0.38569646043 0.38567556481
0.65 0.34073129354 0.32827297406 0.34076400945 0.34074402602
0.7 0.29437106060 0.28379220851 0.29440158495 0.29438315629
0.75 0.24686007793 0.23803345472 0.24688828252 0.24687142635
0.8 0.19845093872 0.19124622183 0.19847736564 0.19846157782
0.85 0.14937045665 0.14367710991 0.14939582945 0.14938048998
0.9 0.09982033528 0.09556813137 0.09984493662 0.09982983598
0.95 0.04997836981 0.04715511977 0.05000168636 0.04998732054

1 0 0.00133375423 0.00002119692 0.00000831368
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Table 3. Results comparison of Problem 2 using ANN-GA-SQPM based on three, 10, and 15 neurons or nine, 30, and 45
variables neurons with the reference solutions.

Ω
Exact Approximate Results ẑ(Ω)

ẑ(Ω) 9 Variables 30 Variables 45 Variables

0 −1.38629436112 −1.38629436112 −1.38619926024 −1.38630126484

0.05 −1.38629592362 −1.38629592362 −1.38611885693 −1.38631522992

0.1 −1.38631936081 −1.38631936081 −1.38617352354 −1.38633499755

0.15 −1.38642091561 −1.38642091561 −1.38633380823 −1.38642949431

0.2 −1.38669428114 −1.38669428114 −1.38665342802 −1.38669799402

0.25 −1.38727044709 −1.38727044709 −1.38725068090 −1.38727265740

0.3 −1.38831731357 −1.38831731357 −1.38829571544 −1.38832031881

0.35 −1.39003890406 −1.39003890406 −1.39000152175 −1.39004329283

0.4 −1.39267396808 −1.39267396808 −1.39261717627 −1.39267897863

0.45 −1.39649373274 −1.39649373274 −1.39642230631 −1.39649806188

0.5 −1.40179854766 −1.40179854766 −1.40172202250 −1.40180115494

0.55 −1.40891317854 −1.40891317854 −1.40884175300 −1.40891377590

0.6 −1.41818054998 −1.41818054998 −1.41812154180 −1.41817964531

0.65 −1.42995382621 −1.42995382621 −1.42990946826 −1.42995237211

0.7 −1.44458685387 −1.44458685387 −1.44455392788 −1.44458570299

0.75 −1.46242316947 −1.46242316947 −1.46239459698 −1.46242261605

0.8 −1.48378398240 −1.48378398240 −1.48375199787 −1.48378364332

0.85 −1.50895575599 −1.50895575599 −1.50891569341 −1.50895489962

0.9 −1.53817818786 −1.53817818786 −1.53813127387 −1.53817637114

0.95 −1.57163349586 −1.57163349586 −1.57158645455 −1.57163106694

1 −1.60943791243 −1.60943791243 −1.60939677357 −1.60943565431

Table 4. Results comparison of Problem 3 using ANN-GA-SQPM based on three, 10, and 15 neurons or nine, 30, and 45
variables with the reference solutions.

Ω
Exact Approximate Results ẑ(Ω)

ẑ(Ω) 9 Variables 30 Variables 45 Variables

0 −1.38629436112 −1.48446054700 −1.38630356972 −1.38631710010

0.05 −1.38691916589 −1.48757921354 −1.38692665406 −1.38694119063

0.1 −1.38879124132 −1.49113183052 −1.38879709413 −1.38881050847

0.15 −1.39190359988 −1.49517102282 −1.39190920225 −1.39191976243

0.2 −1.39624469197 −1.49975342347 −1.39625061225 −1.39625835324

0.25 −1.40179854766 −1.50493923270 −1.40180467700 −1.40181070914

0.3 −1.40854497005 −1.51079149158 −1.40855102806 −1.40855665180

0.35 −1.41645977545 −1.51737500782 −1.41646560212 −1.41647178419

0.4 −1.42551507427 −1.52475487352 −1.42552068561 −1.42552789275

0.45 −1.43567958630 −1.53299452399 −1.43568510504 −1.43569335640

0.5 −1.44691898294 −1.54215330699 −1.44692454151 −1.44693355582

0.55 −1.45919624910 −1.55228356454 −1.45920191864 −1.45921127714
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Table 4. Cont.

Ω
Exact Approximate Results ẑ(Ω)

ẑ(Ω) 9 Variables 30 Variables 45 Variables

0.6 −1.47247205736 −1.56342727723 −1.47247782108 −1.47248710477

0.65 −1.48670514705 −1.57561238316 −1.48671091461 −1.48671979939

0.7 −1.50185270175 −1.58884895695 −1.50185835049 −1.50186665735

0.75 −1.51787071891 −1.60312551155 −1.51787614407 −1.51788384920

0.8 −1.53471436624 −1.61840575515 −1.53471952326 −1.53472673514

0.85 −1.55233832039 −1.63462618173 −1.55234324496 −1.55235015636

0.9 −1.57069708412 −1.65169487952 −1.57070187969 −1.57070870155

0.95 −1.58974527909 −1.66949189317 −1.58975006558 −1.58975694855

1 −1.60943791243 −1.68787136420 −1.60944273339 −1.60944968143

Table 5. Results comparison of Problem 4 using ANN-GA-SQPM based on three, 10 and 15 neurons or nine, 30, and 45
variables with the reference solutions.

Ω
Exact Approximate Results ẑ(Ω)

ẑ(Ω) 9 Variables 30 Variables 45 Variables

0 1.00000000000 0.99488248094 1.00000783826 1.00000105336

0.05 0.99958359357 0.99454671429 0.99959083004 0.99958445423

0.1 0.99833748846 0.99326955610 0.99834175320 0.99833784278

0.15 0.99627096277 0.99110494864 0.99627165084 0.99627085144

0.2 0.99339926780 0.98810559022 0.99339689664 0.99339889181

0.25 0.98974331861 0.98432281012 0.98973898250 0.98974290152

0.3 0.98532927816 0.97980646561 0.98532421813 0.98532898386

0.35 0.98018805078 0.97460485937 0.98018334848 0.98018795036

0.4 0.97435470369 0.96876467525 0.97435109794 0.97435478017

0.45 0.96786783699 0.96233093074 0.96786565238 0.96786801419

0.5 0.96076892283 0.95534694435 0.96076809221 0.96076910439

0.55 0.95310163425 0.94785431626 0.95310179112 0.95310174015

0.6 0.94491118252 0.93989292085 0.94491179604 0.94491117389

0.65 0.93624367977 0.93150090948 0.93624420395 0.93624356674

0.7 0.92714554082 0.92271472236 0.92714555080 0.92714537307

0.75 0.91766293548 0.91356910830 0.91766222690 0.91766277924

0.8 0.90784129900 0.90409715099 0.90783993125 0.90784120821

0.85 0.89772490592 0.89433030113 0.89772317564 0.89772489740

0.9 0.88735650942 0.88429841320 0.88735484682 0.88735655314

0.95 0.87677704604 0.87402978614 0.87677583278 0.87677708125

1 0.86602540378 0.86355120724 0.86602471655 0.86602539000

Problem 2: Consider the following singular Lane–Emden nonlinear model along with
the Dirichlet boundary conditions, which are written as:

d2z
dΩ2 +

0.5
Ω

dz
dΩ −Ω2ez(16Ω4ez − 14) = 0,

z(0) = log(0.25), z(1) = log(0.2).
(12)
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The exact solution for the above equation is ln
(

1
4+Ω4

)
. The error function is given as:

ξFit =
1
N

N
∑

k=1

(
d2 ẑk
dΩ2

k
+ 0.5

Ωk

dẑk
dΩk
−Ω2

keẑk (16Ω4
keẑk − 14)

)
+ 1

2

(
(ẑ0 − log(0.25))2 + (ẑN − log(0.2))2

)
,

(13)

Problem 3: Consider the following singular Lane–Emden nonlinear model along with
Neumann boundary conditions is written as:

d2z
dΩ2 +

2
Ω

dz
dΩ − ez(4Ω2ez − 6) = 0,

z′(0) = 0, z′(1) = −0.4.
(14)

The exact solution for the above equation is ln
(

1
4+Ω2

)
. The error function is given as:

ξFit =
1
N

N

∑
k=1

(
d2ẑk

dΩ2
k
+

2
Ωk

dẑk
dΩk

− eẑk (4Ω2
keẑk − 6)

)
+

1
2

((
ẑ′0
)2

+
(
ẑ′N + 0.4

)2
)

, (15)

Problem 4: Consider the following singular Lane–Emden nonlinear model along with
Neumann–Robin boundary conditions used in the modelling of isothermal gas spheres is
given as:

d2z
dΩ2 +

2
Ω

dz
dΩ + z5 = 0,

z′(0) = 0, z(1) =
√

0.75.
(16)

The exact solution the for above equation is
√

3
3+Ω2 . The error function is given as:

ξFit =
1
N

N

∑
k=1

(
d2ẑk

dΩ2
k
+

2
Ωk

dẑk
dΩk

+ z5
k

)2

+
1
2

((
ẑ′0
)2

+
(

ẑN −
√

0.75
)2
)

, (17)

4. Investigation through Multiple Executions of ANN-GA-SQPM

The proposed results through ANN-GA-SQPM for fifty independent trials to accom-
plish the system parameter for the singular models that involve Neumann–Robin, Dirichlet,
and Neumann boundary conditions are given in Equations in set (3). The best weights set
is applied to designate the obtained results of the singular model, being mathematically
given as:

ẑ1(Ω) = −3.7679
1+e−(−3.012Ω−3.285) +

0.0376
1+e−(−0.388Ω−0.334) +

1.1037
1+e−(−0.173Ω−3.2126)+

. . .− 0.6175
1+e−( 0.222Ω+1.136) ,

(18)

ẑ2(Ω) = −2.1015
1+e−(−4.269Ω−13.333) − 5.5141

1+e−(4.496Ω+11.462) +
8.9057

1+e−(−7.248Ω−12.503)+

. . .− 6.4430
1+e−( 0.073Ω+1.069) ,

(19)

ẑ3(Ω) = 5.5275
1+e−(17.177Ω+19.987) − 0.9686

1+e−(0.297Ω+14.586) − 13.6035
1+e−(1.585Ω+18.439)+

. . .− 1.4923
1+e−( 1.740Ω−11.650) ,

(20)

ẑ4(Ω) = 1.4575
1+e−(1.003Ω−10.567) +

0.2586
1+e−(4.234Ω+1.983) − 3.32035

1+e−(1.679Ω−9.102)+

. . .− 3.943
1+e−( 10.219Ω+10.745) ,

(21)

The optimal performance is provided to solve the singular model that involves Dirich-
let and Neumann boundary conditions for fifty runs. Figure 1 plots a set of best weights
using 30 variables.
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Figure 1. Best weights to solve the singular model of Lane–Emden type.

The statistical measures of the ANN-GA-SQPM are accessible for solving the singular
model of Lane Emden type, as defined in Equations in set (3), using 30 numbers of variables
or 10 neurons, which is practicable in terms of complexity and accuracy as compared
to three and 15 neurons. The ANN-GA-SQPM simulations have been accompanied by
50 trials to solve all four problems of those singular models, which involve Neumann–
Robin, Dirichlet, and Neumann boundary conditions. The numerical results are provided
on the basis of statistical performances that are graphically depicted in Figures 2 and 3.

The exact, approximate results with minimum (Min) fitness (FIT) values, i.e., the best
values, approximate outcomes with maximum (Max) FIT values, the worst, along with
mean outcomes, are illustrated in Figure 2a–d for each singular models, which involve
Neumann–Robin, Dirichlet, and Neumann boundary conditions. Nevertheless, the RMSE
values at the same inputs are derived in Figure 2f–h. One can conclude that the proposed
outcomes of the ANN-GA-SQPM attained a sensible precision even in the worst case too,
although there is no perceptible difference in the presentation by deviation of the singular
models that involve Neumann–Robin, Dirichlet and Neumann boundary conditions.
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Figure 2. Comparison of results along with the AE through ANN-GA-SQPM to solve the singular model of Lane–Emden
type. (a–d) for the solution dynamics, while (e–h) for AE.
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Figure 3. Performance measures through ANN-GA-SQPM to solve the singular model of Lane–
Emden type.
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Moreover, the performance operatives for the FIT, RMSE, ENSE, and TIC are also
considered, and their statistical based outcomes are provided in Figure 3a–d for each
problem of the singular model. These consequences authenticate the comparable tendencies
of performance based different measures. For problem 1, the FIT, ENSE, RMSE, and EVAF
best values lie around 10−08 to 10−09, 10−11 to 10−12, 10−05 to 10−06, and 10−10 to 10−11.
The mean values for problem 1 are found around 10−06 to 10−07, 10−08 to 10−09, 10−04

to 10−05, and 10−07 to 10−08. The worst values even lie around 10−04 to 10−05, 10−06 to
10−07, 10−03 to 10−04, and 10−06 to 10−07. For problem 2, the FIT, ENSE, RMSE, and EVAF
best values lie around 10−09 to 10−10, 10−12 to 10−14, 10−05 to 10−07, and 10−11 to 10−13.
The mean values for problem 2 are found around 10−05 to 10−07, 10−09 to 10−10, 10−04 to
10−05, and 10−06 to 10−08. The worst values even lie around 10−04 to 10−05, 10−07 to 10−08,
10−03 to 10−05, and 10−06 to 10−07. For problem 3, the FIT, ENSE, RMSE, and EVAF best
values lie around 10−10 to 10−11, 10−12 to 10−13, 10−06 to 10−08, and 10−12 to 10−14. The
mean values for problem 3 are found around 10−05 to 10−06, 10−08 to 10−10, 10−04 to 10−05,
and 10−06 to 10−07. The worst values even lie around 10−04 to 10−05, 10−06 to 10−08, 10−02

to 10−03, and 10−06 to 10−08. For problem 4, the FIT, ENSE, RMSE, and EVAF best values lie
around 10−10 to 10−11, 10−13 to 10−14, 10−06 to 10−07, and 10−13 to 10−14. The mean values
for problem 4 are found around 10−05 to 10−07, 10−08 to 10−09, 10−06 to 10−07, and 10−07

to 10−08. The worst values even lie around 10−04 to 10−05, 10−06 to 10−08, 10−04 to 10−05,
and 10−05 to 10−07. These optimal close values for each operator enhance the worth of the
propose ANN-GA-SQPM for solving the nonlinear singular Lane–Emden system.

The complexity measures of ANN-GA-SQPM are shown in terms of time, iterations,
and FIT assessed during the optimization procedures of hybrid heuristics GA-SQPM and
standalone GAs to adjust the network’s decision variables. The optimization performance
of GAs is degraded considerably with the increase of generations and rapid convergence
achieved with the SQPM procedure, but at the cost of additional computations. The
outcomes through the complexity indices are provided in Table 6 for each problem of the
singular model of the Lane–Emden type for GA-SQPM. The hybrid heuristics GA-SQPM
take almost 20% more computation time, i.e., 402, 805, 813, and 354 time consumed for
ANN-GA for problems 1, 2, 3, and 4, respectively. Moreover, the computational time
taken by three, 10, and 15 based neuron networks are found around 100 ± 10, 410 ± 300,
and 750 ± 450. One may observe that no perceptible difference is perceived while using
these complexity operatives with a fixed neuron for ANN-GA-SQPM to solve the singular
model of Lane–Emden type that approves the smooth execution of the proposed approach
for different problems.

Table 6. The complexity performance through ANN-GA-SQPM for each example of the singular
model of Lane–Emden type.

Problem
Implementation Time Iterations Count of Function

Min SD Min SD Min SD

1 522.78467 2576.40890 433.30000 110.29834 27589.96000 7079.39701

2 861.83918 5412.52809 472.52000 73.426410 29664.62000 4479.75041

3 881.232020 26.2453000 467.16000 104.07147 30003.56000 6967.51609

4 437.11324 2576.23782 338.94000 147.12974 22032.32000 9767.47337

5. Performance Operators

In this section, the performances that are based on RMSE, ENSE, and EVAF are
provided. The mathematical measures of these operators are given as:

RMSE =

[√
1
n

n

∑
m=1

(
Ψm − Ψ̂m

)2
]

. (22)
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 VAF =

(
1− var(Zi(T)−Ẑi(T))

var(Zi(T))

)
× 100,

EVAF = |VAF− 100|,
(23)

NSE =

1−

n
∑

m=1

(
Ψm − Ψ̂m

)2

n
∑

m=1

(
Ψm −Ψm

)2 , Ψm =
1
n

n

∑
m=1

Ψm, (24)

ENSE= 1−NSE (25)

6. Conclusions

The present study is aims to design an alternate, stable, and accurate stochastic
computing numerical approach to solve the singular model of Lane–Emden type that
involves Neumann–Robin, Dirichlet, and Neumann boundary conditions by manipulating
the ANN, local search SQPM, and GA based global search. The proposed structure of ANN-
GA-SQPM is examined for different neurons/variables in the system and the presentation
is acquired reasonably for all neurons based on the networks of ANN. The most reliable and
accurate solutions are attained for large neurons, but the complexity increased. Statistics
results through different performances for the convergence, precision, and complexity
authenticate the value of the proposed ANN-GA-SQPM to solve the singular model of the
Lane–Emden type of problem that involves Neumann–Robin, Dirichlet, and Neumann
boundary conditions.

In the future, one may solve the fractional form of the singular models with Neumann–
Robin, Dirichlet, and Neumann boundary conditions using the proposed ANN-GA-SQPM.
Additionally, the memetic computing paradigm of ANN-GA-SQPM can be a good alterna-
tive to be exploited for problems involving the study of sensors [47–51].
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