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Abstract: Abnormal behavioral changes in the regular daily mobility routine of a pregnant dairy cow
can be an indicator or early sign to recognize when a calving event is imminent. Image processing
technology and statistical approaches can be effectively used to achieve a more accurate result in
predicting the time of calving. We hypothesize that data collected using a 360-degree camera to
monitor cows before and during calving can be used to establish the daily activities of individual
pregnant cows and to detect changes in their routine. In this study, we develop an augmented
Markov chain model to predict calving time and better understand associated behavior. The objective
of this study is to determine the feasibility of this calving time prediction system by adapting a
simple Markov model for use on a typical dairy cow dataset. This augmented absorbing Markov
chain model is based on a behavior embedded transient Markov chain model for characterizing
cow behavior patterns during the 48 h before calving and to predict the expected time of calving.
In developing the model, we started with an embedded four-state Markov chain model, and then
augmented that model by adding calving as both a transient state, and an absorbing state. Then,
using this model, we derive (1) the probability of calving at 2 h intervals after a reference point, and
(2) the expected time of calving, using their motions between the different transient states. Finally,
we present some experimental results for the performance of this model on the dairy farm compared
with other machine learning techniques, showing that the proposed method is promising.

Keywords: absorbing Markov chain; cow behavior analysis; prediction of calving time

1. Introduction

Even though calving is a normal physiological process, it is important to manage not
only for the sake of the animals’ welfare, but also for ensuring economic growth in the
dairy industry [1,2]. Accurately predicting calving time helps overcome the difficulties
of parturition, providing human assistance when needed, and reducing calf mortality.
The problem of observing behavioral changes for predicting calving time has been widely
studied [3,4]. Solutions are typically sensor-based systems that require the use of wearable
or non-wearable sensors to monitor daily behavior and provide responses when calving is
imminent. Wearing sensors all the time might cause great discomfort for pregnant cows, as
well as risk damaging the sensors themselves while cows move around in the barn [5].

In this study, we focused on a camera-based system because it can support a smart,
adjustable, time and money saving way to monitor what happens in the calving barn, and
the condition of cows. Best of all, the system allows tracking everything in real time right
on our PC, smartphone, or tablet. However, the system has advantages and disadvantages.
Similarities between the background and the cow’s body color complicates the detection
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of cows, and clearly identifying each individual cow is still limited in using surveillance
cameras over the long-term. For this reason, we will use advanced image processing
technology to solve these problems in the future. Figure 1 illustrates our research work.
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The dairy farming industry has benefited greatly because of advances in Information
and Communications Technology (ICT), as well as in Artificial Intelligence (AI) and the
Internet of Things (IoT). Smart dairy farms are no longer out of our reach. The intelligent
and efficient monitoring of individual cows will be a necessary part of making dairy
farms smart. Among many other issues, caring for pregnant cows is crucial to dairy
farm management, especially when calving occurs. Insufficient monitoring at the time
of parturition can be extremely detrimental [6–8]. It can prolong the process of giving
birth and increase the risk of both stillbirth and calving difficulties, causing impaired
reproductive performance and increased calving-to-conception intervals.

In this research, we concentrated on monitoring daily routines for the purpose of
detecting when behavioral changes increase in frequency, signaling the approach of parturi-
tion, and allowing a prediction of the exact calving time. We describe how we approached
this goal by designing a system that features observations of video data collected using a
360-degree camera on an hourly basis for 72 h before the start of calving. For this reason,
we propose a new method based on image processing techniques and Markov chain model
to predict the time at which cow calving will occur. We also compare our proposed method
with three other machine learning techniques: K-nearest Neighbors (KNN), Naïve Bayes
(NB), and Support Vector Machine (SVM).

Specifically, we analyze the behavior of pregnant cows in maternity barns by em-
bedding this behavior into a Markov chain, thus predicting the time of calving. Model
performance was evaluated on video data, which were collected from 25 dairy cows at
Oita Prefecture in Japan, to verify that our proposed method has potential as a method for
predicting calving time. From these videos taken in the maternity barn, human observers
used a reversible counter system in 5 min increments to record the number of changes in
lying posture, the number of transitions from lying to standing, the number of changes
in standing posture, and the number of transitions from standing to lying. All these
data for statistical analysis of behavior were collected for three days before the predicted
calving date.

Results of this analysis showed that the proposed methodology could be applied
and achieved plausible results. Our analysis indicates that investigating behavioral ac-
tivity peaks in these data will be useful in improving the prediction process. However,
additional avenues should be explored in pursuing research on calving time prediction.
As an alternative, the application of Markov modeling [9] to predict calving time is an
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appealing methodology. The most frequent applications of augmented absorbing Markov
chain modeling are in predicting future stock exchange trends [10], predicting web user
behavior [11], and forecasting educational attainment rates [12]. Our current concern lies
in using an absorbing Markov chain to develop a prediction model from observations of
the behavioral changes of the dairy cows. Specifically, we propose in this paper the use of
such a model to predict when calving will occur. By comparing the results of predicting
calving events using our proposed method with the results with other machine learning
techniques, we see that our proposed method more accurately predicts calving events.

The organization of this paper is as follows. Section 2 follows with a description of
the proposed method for calving time prediction. We show some experimental results and
discussion in Sections 3 and 4. Finally, we conclude our approach in Section 5 with some
suggestions and discussion of possible future research.

2. Materials and Methods
2.1. Data Collection and Preparation

The animal experimentation protocol of ethical statement and approval were granted
for this study, animals were neither enforced nor uncomfortably restricted during the study
period. The video data of monitoring calving process used for analysis in this study were
collected by an installed camera without disturbing natural parturient behavior of animals
and routine management of the farm.

The experimental design is established on a large dairy farm situated in Oita Prefecture,
Japan. Three primiparous and 22 multiparous pregnant dairy cows were housed in roofed
cowsheds. Four or five pregnant cows were together housed in a calving pen. which
was 7 × 7 m2 with sawdust flooring for when calving event was close to occurring. The
cows were fed with Total Mixed Ration (TMR) twice daily for their maintenance and
pregnancy, as calculated based on each cow’s body weight and the expected average milk
yield (35 kg/day) after giving birth. They were also provided ad libitum access to clean
water and mineral supplements.

Experimented cows were continuously monitored using a 360-degree GV-FER5700
camera (Geo Vision Inc., Taiwan, China) (2560 × 2048 pixels, recording at 30 frames per
second), which was set up 3 m above the pregnant cows located in the maternity barns. This
camera can capture images within a 360-degree field of view in the horizontal plane. Using
this camera, the positions and states of cows appear in different parts of the 360-degree
view. All cows are clearly visible from overhead, allowing a determination of the condition
of each cow. The video sequences for pregnant cows are continuously collected until
calving occurs.

In this section, we describe how an augmented Markov chain model can be employed
to predict a calving event. To do so, we firstly prepare the dataset from video sequences
taken during the three days before calving. After collecting the video sequences, the target
cow regions are manually extracted by Visual Geometry Group (VGG) annotator [13] to
remove the background, and to obtain the cow contour regions by using image process-
ing techniques.

We used an approach based on statistical analysis to predict calving time. Cow behav-
ioral activities were recorded by human observers performing a direct visual observation of
each individual cow in the calving barn. The four types of conditions include two postures
and two transitions. They are defined as follows.

1. L (Posture): lying in the calving barn;
2. LS (Transition): rising from a lying state to a standing state;
3. S (Posture): standing on all four legs;
4. SL (Transition): changing from a standing state to a lying state.

Images are labeled to count the number of pairs from one state to another in making
a co-occurrence matrix for the 72 h before calving. Although cows may assume many
other states such as eating and drinking, all other activities are assumed to be subsets
of the above-mentioned activities. Because of this, our video recording only concerns
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a sequence of the four activities for each individual cow, continuously monitored until
calving occurs. Figure 2 illustrates a sample of the four posture conditions. In Figure 3, the
system architecture of our proposed method is represented.
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Generally, absorbing Markov Chain is used to investigate behaviors of any state which
eventually enter an end state or absorbing state. In our case, the absorbing state is the event
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at which calving occurs. In theory of Markov Chain, we can compute the time entering an
absorbing state and the probability of absorbing. So, we thought that it would be tractable
to apply the absorbing Markov Chain Model for the calving time of a pregnant dairy
cow. Although there have been many applications in queuing and dam theory [14], we
have not seen any application of absorbing Markov Chain for the prediction of dairy cow
calving process. So, at this stage we have not made comparison with previous methods in
this aspect.

Moreover, the nature of absorbing state from the absorbing Markov chain is similar
with the nature of calving event in prediction calving time model in dairy cows. From the
concept of absorbing Markov chain theory, the absorbing state is end-state, and the calving
state is also end-state in the prediction of calving time model.

2.2. Creation of Co-Occurrence Matrix and Markov Chain Model

The co-occurrence and probability matrices of the Markov chain model are created
using the state sequence described in Figure 2. In order to do so, we first define the number
of co-occurrences of state pairs. Let c

(
si, sj

)
be the number of pairs of states

(
si, sj

)
for

i, j = 1, 2, 3, 4, 5, and s1 = L, s2 = LS, s3 = S, s4 = SL, s5 = Calve. We can then have the
corresponding co-occurrence matrix C, as shown below.

C =
(
c
(
si, sj

))
=


c(s1, s1) c(s1, s2) c(s1, s3) c(s1, s4) c(s1, s5)
c(s2, s1) c(s2, s2) c(s2, s3) c(s2, s4) c(s2, s5)
c(s3, s1) c(s3, s2) c(s3, s3) c(s3, s4) c(s3, s5)
c(s4, s1) c(s4, s2) c(s4, s3) c(s4, s4) c(s4, s5)
c(s5, s1) c(s5, s2) c(s5, s3) c(s5, s4) c(s5, s5)

.

The above co-occurrence matrix, C can be written as (1):

C =
(
cij
)
, (1)

where, cij= #{(i, j)|i, j ∈ S = {1, 2, 3, 4, 5}}.
We can then deduce the one step transition probabilities, pij by defining (2):

pij = cij/
5

∑
j=1

cij , (2)

which represents the one step transition probability of going from state i to state j in a
Markov Chain. We then have the transition probability matrix, P =

(
pij
)
.

The sum of the row probabilities is equal to one, since each health state is independent
of the others, and an animal must move to one of the five states. The diagonal represents
the probability of staying in the same state. A state k in a Markov chain is defined as
absorbing if pkk = 1, in other words all pkj = 0 for j 6= k. In this study, the absorbing state
is the calving state. When calving occurs, further investigation stops because we have
achieved the objective of predicting the calving time. Thus, five of the states are considered
transient states in the Markov chain, since each one can independently transition to another
state. The four transient states are lying (L), transition from lying to standing (LS), standing
(S), transition from standing to lying (SL). Calving is the absorbing state. Figure 4 describes
this five-state absorbing Markov chain used to predict calving time in dairy cows.
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2.3. Description of Calving Event

As an attractive feature of Markov models, they can describe the course of calving
events over time. This is especially attractive for modeling calving since a cow’s state of
behavior while calving influences the prediction of calving time. The transition probability
matrix P summarizes the probabilities of cow activities and can be used to describe the
probability of calving for an individual cow with a known activity state. The elements of the
probability matrix pij in the ith row and jth column is denoted by pij(t), which represents
the probability of a transition from state i to state j during t periods or t steps, where t
measures in minutes. For an m state Markov model, the probability of the system visiting
state k at time t can be denoted as pk(t). Therefore, for all m states, these probabilities can
be expressed as a row vector, p(t) = [p1(t), p2(t), · · · , pm(t)]. By using total probability,
this equation can be written as (3) or (4):

pk(t) =
m

∑
j=1

pkj pj(t− 1) for k = 1, 2 , · · · , m, (3)

p(t) = p(t− 1)P1 = p(t− 2)P2 = · · · = p(0)Pt, (4)

Transient analysis may cause convergence of the probability distribution vector when
t becomes very large. That is, as the number of steps t increases, the probability vector
approaches a limiting value which is called the stationary distribution of the Markov chain.
This stationary distribution, or as it is also called, steady state distribution, is denoted by
π = [π1, π2, · · · , πm] and satisfies (5).

π = πP, (5)

Our case features five states: L, LS, S, SL, and Calve. Therefore, we get the following
probabilities. pi(t) is the probability that the cow is in one of the states after a period
of t from the start. In these ways, the behavior of dairy cows can be analyzed during
periods when calving is imminent. These results will be described in the next section on
experimental work.

2.4. Calving Time Prediction Procedure

This section presents the method of predicting calving time using the Markov chain
model discussed in the previous section. This involves adding or augmenting the calving
event as an absorbing state in our four-state Markov chain model. Since the problem is to
predict the time of calving, the exercise is completed when the event occurs. Because of this,
the calving state is considered absorbing. This means that any of the other four states can
transition directly to the calving state, but once there, no additional transitions will occur.
The probability of transitioning from absorbing state to absorbing state is one; and the
probability of transitioning from absorbing state to any other state is zero. The four-state
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Markov chain model is transformed as described in (3) into an augmented Markov chain
model of five states by adding an absorbing state (calving state).

Fundamental Matrix Solution: Absorbing Markov Chain

The matrix solution provides an exact solution for the time spent in each state, condi-
tional on the entry state in which an individual enters the model. Such a matrix solution
is only viable in time with homogeneous Markov chains with r absorbing states and m
transient states. The transition probability matrix of a chain that contains an absorbing
state is defined as the separation of a probability transition matrix A using canonical form.

A =

[
Q R
O I

]
, (6)

where, I is an r-by-r identity matrix, O is an r-by-m zero matrix, R is a nonzero m-by-r
matrix and Q is an m-by-m matrix.

In the proposed augmented Markov model, Q is the matrix that contains transition
probabilities between transient states, R is column vector of the calving state probabilities,
O is the row vector of zero matrix, and I in [1] is 1 × 1 matrix. The iterated multiplication
of the augmented matrix A yields as follows.

A2 =

[
Q R
O I

]
×
[

Q R
O I

]
=

[
Q2 QR + R
O I

]
, (7)

A3 =

[
Q2 QR + R
O I

]
×
[

Q R
O I

]
=

[
Q3 Q2R + QR + R
O I

]
, (8)

Hence, by induction, we obtain the following:

At =

[
Qt Qt−1R + Qt−2R + · · ·+ R
O I

]
×
[

Q R
O I

]
=

[
Qt

(
Qt−1 + · · ·+ I

)
+ R

O I

]
. (9)

However, when t tends to infinity the transient state matrix, Qt will tend to O (zero
matrix). We then have from (6) that,

A∞ =

[
O NR
O I

]
, (10)

where, N = I + Q1 + Q2 + Q3 + · · · = (I−Q)−1.
The matrix N = (I−Q)−1 is called the fundamental matrix for the augmented

Markov chain model. Let N(i, j) be the element in row i and column j. Then, we can
interpret the summation of N(i, j) over j as the expected number of periods until absorbing
(calving). Therefore, the expected time until the absorbing (calving state) occurs is shown as
∑
j

∑
i

N(i, j). The probability of absorbing or calving at the expected time is p(0)×N×R.

3. Results

Data were collected on 25 dairy cows; 21 Holstein Black and White cows and 4
Brown Swiss cows were moved into the maternity barns from beginning 3 days before the
expected calving date. We divided the 25 cows into 2 groups based on the primiparous
and multiparous pregnant cows, as shown in Tables 1 and 2. They calved at ages between
21 and 26 months and the calving period was between November and December in 2017.
None of the 25 test cows presented with dystocia, and assistance for newborns calves was
provided, as necessary. All newborn calves were single birth. Behavior analysis data were
not collected after calving. Individual cows were continuously monitored until the calving
event occurred using a 360-degree camera above the pregnant cows in the maternity barns.
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Table 1. Group 1: Primiparous pregnant cows data information.

Cow ID Types of Cows Data Collection Start Date (mm/dd/yy)
and Time (h/m/s)

Calving Date (mm/dd/yy) and Time
(h/m/s)

1 Black and White Holstein 11.26.2017, 17:10:00 11.29.2017, 17:10:00
3 Black and White Holstein 11.26.2017, 19:35:00 11.29.2017, 19:35:00
4 Black and White Holstein 11.30.2017, 15:10:00 12.03.2017, 15:10:00

Table 2. Group 2: Multiparous pregnant cows data information.

Cow ID Types of Cows Data Collection Start Date (mm/dd/yy) and
Time (h/m/s)

Calving Date (mm/dd/yy) and
Time (h/m/s)

2 Brown Swiss 11.30.2017, 21:15:00 12.03.2017, 21:15:00
5 Brown Swiss 12.09.2017, 17:15:00 12.12.2017, 17:15:00
6 Brown Swiss 12.01.2017, 10:25:00 12.04.2017, 10:25:18
7 Brown Swiss 12.03.2017, 02:40:00 12.06.2017, 02:41:22
8 Black and White Holstein 11.29.2017, 00:30:00 12.02.2017, 00:30:00
9 Black and White Holstein 12.04.2017, 10:05:00 12.07.2017, 10:06:35

10 Black and White Holstein 12.04.2017, 10:10:00 12.07.2017, 10:13:00
11 Black and White Holstein 12.04.2017, 16:05:00 12.07.2017, 16:09:40
12 Black and White Holstein 12.04.2017, 14:00:00 12.06.2017, 20:10:00
13 Black and White Holstein 12.11.2017, 06:00:00 12.14.2017, 05:58:50
14 Black and White Holstein 12.06.2017, 10:00:00 12.08.2017, 03:25:00
15 Black and White Holstein 12.12.2017, 04:50:00 12.15.2017, 04:53:09
16 Black and White Holstein 12.07.2017, 17:20:00 12.10.2017, 17:20:00
17 Black and White Holstein 12.13.2017, 21:00:00 12.16.2017, 21:03:29
18 Black and White Holstein 12.16.2017, 21:55:00 12.19.2017, 21:55:00
19 Black and White Holstein 12.14.2017, 17:15:00 12.17.2017, 17:19:00
20 Black and White Holstein 12.17.2017, 06:10:00 12.20.2017, 06:10:00
21 Black and White Holstein 12.14.2017, 16:15:00 12.17.2017, 16:17:12
22 Black and White Holstein 12.17.2017, 09:50:00 12.20.2017, 09:50:00
23 Black and White Holstein 12.15.2017, 00:50:00 12.18.2017, 01:25:21
24 Black and White Holstein 12.17.2017, 12:15:00 12.20.2017, 12:15:00
25 Black and White Holstein 11.29.2017, 00:30:00 12.02.2017, 00:30:00

Specifically, the four relevant activities were lying, transitions from lying to standing,
standing, and transitions from standing to lying. From the collected videos, a sequence
of the four activities is extracted for each cow as shown in the previous section. The
co-occurrence matrix is constructed from the activity sequence for each individual cow.
Sample co-occurrence matrices C are described below for Identity Document 2 (ID 2),
Identity Document 11 (ID 11), and Identity Document (ID 27).

CID2 =


1360 67 0 0 1

0 0 65 4 1
0 0 2686 68 1
66 3 0 0 1
0 0 0 0 1



CID11 =


1324 38 0 0 1

0 0 38 4 1
0 0 2834 38 1
38 5 0 0 1
0 0 0 0 1
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CID27 =


1229 29 0 0 1

0 0 29 2 1
0 0 2972 28 1

28 2 0 0 1
0 0 0 0 1


By row normalization, we obtain the Markov chain probability matrices P for ID 2, ID

11, and ID 27 as follows.

PID2 =


0.952 0.047 0 0 0.001

0 0 0.890 0.096 0.014
0 0 0.976 0.024 0

0.957 0.029 0 0 0.014
0 0 0 0 1



PID11 =


0.971 0.028 0 0 0.001

0 0 0.884 0.093 0.023
0 0 0.986 0.013 0

0.864 0.114 0 0 0.023
0 0 0 0 1



PID27 =


0.976 0.023 0 0 0.001

0 0 0.906 0.063 0.031
0 0 0.990 0.009 0

0.903 0.065 0 0 0.032
0 0 0 0 1


3.1. Calving Event as an Absorbing State of Markov Chain Model Implementation

The transition probability matrix defined as a Markov chain probability matrix is
regular. The calving event is added as an absorbing state of the Markov chain as described
above. The Q matrix for cow ID 2 is as follows.

QID2 =


0.952 0.047 0 0

0 0 0.890 0.096
0 0 0.976 0.024

0.957 0.029 0 0


RID2 =

[
0.001 0.014 0 0.014

]T;
OID2 =

[
0 0 0 0

]
; and IID2 = [1];

NID2 is (IID2 −QID2)
−1 which is given by:

NID2 =


372.492 17.969 657.388 17.487 1065.335
356.900 18.245 667.502 17.756 1060.402
361.332 17.459 679.840 17.977 1076.608
366.725 17.720 648.286 18.245 1050.975


Thus, from the theory developed in our method proposed in Section 3, the sum of all

entries gives the expected time at which the calving event occurs. We obtain the predicted
calving time as, ∑

j
∑
i

N(i, j) = 4253.320 min = 70.889 h from the beginning. The actual

calving time is 72 h from the beginning. Therefore, our proposed method provides an
accurate prediction. The probability of calving is expressed in the previous section. Thus,
the probability of calving is certainly almost 1.

Similarly, we have derived the most useful statistics such as the co-occurrence matrices
and their corresponding probabilities for all cows in this study. By adding the concept of
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an absorbing barrier state (calving), we derived the time for entering the absorbing state,
determining the estimated time that calving occurs.

3.2. Patterns of Activities of Cows before Calving

We also investigated patterns in the four activities of lying, transitions from lying to
standing, standing, and transitions from standing to lying. In order to do so, we raised
powers to the probability matrix P, and look at the probabilities of diagonal elements. In
other words, we researched the behavior of p11 , p22, p33 and p44. We found that those
entries in Pt of cow ID 2 for t = 1, 2, 4, 6, . . . , 24 are represented in Table 3. As shown, the
lying state, and standing state probabilities decrease when the cow approaches the calving
state. However, the transition state probabilities increase. These patterns are shown in
Figures 5–7.

Table 3. State probability patterns of ID2, ID11, and ID 27.

t
ID 2 ID 11 ID 27

p11(L) p22(LS) p33(S) p44(SL) p11(L) p22(LS) p33(S) p44(SL) p11(L) p22(LS) p33(S) p44(SL)

1 0.953 0.001 0.975 0.002 0.973 0.004 0.997 0.005 0.982 0.001 0.983 0.001
2 0.908 0.002 0.951 0.001 0.946 0.005 0.994 0.004 0.964 0 0.967 0.001
4 0.831 0.001 0.908 0.001 0.895 0.003 0.989 0.001 0.929 0.001 0.936 0.001
6 0.764 0.002 0.870 0.002 0.847 0.001 0.984 0.003 0.897 0 0.907 0
8 0.706 0.001 0.838 0.001 0.802 0.002 0.979 0.002 0.867 0.001 0.880 0.001
10 0.656 0.001 0.810 0.002 0.759 0.003 0.974 0.004 0.839 0.002 0.855 0.002
12 0.613 0.001 0.786 0 0.719 0.001 0.969 0.003 0.812 0.002 0.831 0.002
14 0.575 0.002 0.765 0.001 0.681 0.002 0.965 0.001 0.788 0.001 0.809 0.001
16 0.543 0.001 0.746 0.002 0.646 0.004 0.960 0.003 0.765 0.002 0.788 0.001
18 0.515 0.001 0.731 0 0.612 0.002 0.956 0.005 0.743 0 0.769 0.001
20 0.491 0.002 0.717 0.001 0.580 0.002 0.952 0.004 0.723 0.003 0.750 0.002
22 0.470 0.003 0.705 0.003 0.551 0.005 0.948 0.005 0.704 0.002 0.733 0.002
24 0.452 0.011 0.695 0.01 0.522 0.01 0.944 0.009 0.686 0.008 0.718 0.008
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Figure 7. Comparison of (a) lying state and (b) transition state probabilities of ID 27.

4. Discussion
4.1. Discussion on Calving Time Prediction Approaches in the Literature Surveys

Though we conducted a thorough review of the literature, we have not found any
method resembling our approach, and cannot make comparisons with other methods
of Markov chain analysis. However, we did find some appealing approaches in the
literature, such as machine learning [15], online image analysis [16], indications of posture
changes [17], and investigations of farm devices [18]. However, we feel that our approach
is much easier to implement and promises comparatively favorable outcomes.

Monitoring cow behavior to predict calving events is not superficial work. In fact,
no one approach could cover all aspects of monitoring cow behavior. A sizable amount
of research has appeared in the literature involving the development of methods and
models to predict calving time, and results have been quite promising. This section
concerns a brief explanation on the topic of predicting calving time based on cow behavior
monitoring, focusing on the augmented absorbing Markov chain model used to build our
predictive model and analyzing the performance of our proposed method by measuring
some machine learning techniques’ prediction results.

The effort of monitoring the calving process is a matter of assessing whether human
assistance is required in the upcoming hours or overnight, or whether difficulties in giving
birth are likely. Again, such difficulties may adversely affect production, and could even
risk the life of mother and calf. Thus, an accurate and efficient method of predicting
a calving event will continue to play a central role in precision dairy farming. It is no
wonder that much research involving multiple disciplines has focused on predicting calving
times and related research. However, we have yet to see satisfactory accomplishments in
the literature.
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Although a variety of unavoidable stressors continue to affect cows through calving
and dry off (stopping milk production), our increased knowledge of events leading to
calving should have a positive impact on milk production, as well as on cow health and
overall wellbeing. The calving time prediction methods and devices can be divided into
the following three categories based on:

(a). Hormonal changes;
(b). Clinical signs; and
(c). Behavioral changes before calving.

Since the first two categories are beyond the scope of the current focus, we shall review
some research that falls in the third category. The video cameras or accelerometers recording
the behavior of cows can be integrated in systems using image analysis or locomotive
activity to alert the dairy farmer when calving is imminent. The four comparable predictive
models had been established for calving difficulty in dairy heifers and cows using four
machine learning techniques: multinomial regression, decision trees, random forests, and
neural networks [19]. Among many other findings, is the use of calibration evaluation
techniques that have not been frequently used in agricultural or animal health applications.
Apart from these models, our discussion below will extend to some other research on
calving time prediction.

Some of them utilize physical measures, such as body temperature [20,21], the blood
levels of progesterone, and the relaxation of pelvic ligaments [22,23]. Recently, a combina-
tion of data from sensors detecting cumulative activity, rumination activity, feeding activity,
and body temperature achieved a more accurate calving time prediction system than those
based exclusively on the date of insemination [24]. However, some obstacles remain to
accurately predicting the starting time of calving.

Overall, systems based on behavioral analysis seem to have the most potential, be-
cause significant changes in behavior occur on the day of calving. Analyses of behavior
changes normally begin several days before delivery and last until calving time. From
the literature review, the most important facts and figures are as follows: searching for
isolation, moving the tail, walking aimlessly, turning the head towards the abdomen, re-
ducing rumination time, reducing the time spent lying, sniffing the ground, and frequently
changing posture [25,26]. The most distinctive trends that precede calving were also noted
in Santegoeds’ work [27]. In summary, these trends include the following: (1) the number
of steps taken increases very slightly but significantly 10 days before calving, and more
significantly over the 2 last days; (2) the time spent lying decreases slightly but significantly
10 days before calving, more significantly 3 days to 12 h before calving, and increases
thereafter until after calving.

Moreover, the standing pattern is almost perfectly opposite to the lying pattern. This
difference is due to an increase in time spent walking around, which interrupts periods of
standing, rather than periods of lying. Walking time rises notably from two days before
calving. The number of times standing up radically increases in the last6 h. Therefore,
several researchers believed that close observation of cattle in the last gestation period
is essential to detect the onset of calving and to reduce neonatal losses [28]. The calving
time prediction is performed by using time series analysis of data on posture changes
collected from video sequences recorded in the maternity barn [29–31]. He determined the
number of transitions every hour before actual calving events using this time series analysis
and could thereby predict the time of calving. Similarly, video cameras or accelerometers
recording cow behavior should be integrated in systems using image analysis [32–34].

4.2. Discussion on Proposed Method

We have tested the proposed calving time prediction model using video data for
pregnant dairy cows. The results are shown in Table 4. This table provides both predicted
times and the actual calving times and also shows the results of using our method on data
collected over a period of just 48 h. The majority of these predictions were accurate within
a range of3 h. These results show great promise for practical applications in managing
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precision dairy farms. The results also reveal that prediction times and actual times were
almost the same. These results indicate that only two days of data are needed for accurately
predicting calving time. The average value of mean absolute error (MAE) for these calving
time predictions is 1.101 using data collected over 72 h, and 1.229 using data collected over
48 h. We also compared our proposed method with some machine learning techniques
such as K-nearest neighbors (KNN), Naïve Bayes (NB) and Support Vector Machine (SVM)
by blindly testing on five cows, as shown in Table 5 and Figure 8. For the machine learning
techniques, the four types of conditions comprise two postures (L, S) and two transitions
(LS, SL), which are defined as four predictors. Calving and not-calving states are considered
the two responses. For each cow, the calving state is defined as the response in the last 3 h
before calving. During the other 69 h, the response is the not-calving state. According to
the predicted calving time results of Table 4, our proposed method can accurately estimate
every calving event of each cow between 69 and 73 h before the event.

Table 4. Experimental results of cows predicted calving time based on 72 h data and 48 h data before
calving event occurs.

Cow ID Predicted Calving Time on 72 h Predicted Calving Time on 48 h

1 70.723 70.843
2 68.942 70.852
3 69.874 70.321
4 73.765 71.728
5 68.128 70.721
6 71.568 70.716
7 71.993 71.059
8 71.298 70.597
9 70.734 70.511

10 72.338 70.495
11 69.541 69.756
12 72.013 70.919
13 71.310 70.961
14 71.297 71.069
15 70.229 71.772
16 71.969 71.807
17 72.420 70.381
18 72.455 71.723
19 71.346 71.561
20 70.435 70.311
21 73.081 70.307
22 71.274 70.159
23 72.592 70.465
24 72.405 69.730
25 70.889 70.510

Table 5. Performance analysis of our proposed method by comparing with other methods.

Methods Precision F1 Score Specificity Sensitivity Accuracy (%)

Proposed Method 1 1 1 1 100
K-nearest Neighbors (KNN) 0.890 0.846 0.811 0.811 96.100

Naïve Bayes (NB) 0.965 0.965 0.965 0.965 98.333
Support Vector Machine (SVM) 0.767 0.843 0.990 0.990 96.389

From Figure 8 of the confusion matrices, the total number of observations is 360 in the
testing dataset for 5 cows. In this dataset, the 2 classes are calving and not-calving, with a
total of 15 calving responses and 345 not-calving responses. The best accuracy obtained
using our proposed method is 100%.
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5. Conclusions

We have developed a five-state absorbing Markov chain model to predict calving
events. Although a large number of Markov chain model applications have involved
research fields such as engineering, medicine and agriculture, including livestock man-
agement and animal science, we have not seen a Markov chain application that predicts
calving time. Our intention was to explore and examine how Markov Models could be
applied to reproduction management for dairy cows by using them to predict calving time.
In this study, we only considered four types of cow behavior. Additional activities such
as head movements, rumination, and raising the tail should be considered in the future.
In future research, we plan to analyze some of the above-mentioned activities using the
proposed Markov model. In this paper we discuss a trial-and-error method of determining
parameters for the absorbing state. However, the Monte Carlo Simulation method is also
attractive as a way of determining these parameters. Much remains to be done in calving
time prediction research. In the future, we will combine this stochastic model with image
processing techniques to detect cows, automatically recognize their behavior, and build a
better model for automatically predicting calving time.
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