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Abstract: In this paper we propose an efficient closed form solution to the absolute orientation
problem for cameras with an unknown focal length, from two 2D–3D point correspondences and
the camera position. The problem can be decomposed into two simple sub-problems and can be
solved with angle constraints. A polynomial equation of one variable is solved to determine the focal
length, and then a geometric approach is used to determine the absolute orientation. The geometric
derivations are easy to understand and significantly improve performance. Rewriting the camera
model with the known camera position leads to a simpler and more efficient closed form solution,
and this gives a single solution, without the multi-solution phenomena of perspective-three-point
(P3P) solvers. Experimental results demonstrated that our proposed method has a better performance
in terms of numerical stability, noise sensitivity, and computational speed, with synthetic data and
real images.

Keywords: absolute orientation; camera position; angle constraint; single solution; unknown focal
length; perspective-three-point

1. Introduction

Many methods have been proposed to estimate absolute camera pose, i.e., the position
and orientation, such as the perspective-n-point (PnP) solver [1–9], which uses n known
2D–3D point correspondences. Pose estimation is one of the key steps in computer vi-
sion [2,10,11], photogrammetry [3,11,12], augmented reality (AR) [4,13–15], structure from
motion (SfM) [4,14,16], multi-view 3D reconstruction [17,18], and simultaneous localiza-
tion and mapping (SLAM) [4,8,13,19]. The absolute pose of a fully uncalibrated camera
pose contains six unknown parameters, and each 2D–3D point correspondence gives two
constraints [20], which means that the P3P is the minimal subset to determine the camera
pose if the position and orientation are both unknown [10,21–24]. Many P3P solvers have
been proposed, and all the solvers have up to four possible solutions [12,25,26]. In gen-
eral, disambiguating the multi-solution phenomena can be done by using a fourth point.
We can see that, although the P3P needs minimal 2D–3D point correspondences, all P3P
solvers have some disadvantages: a fully calibrated camera is needed and multi-solution
phenomena exists. These disadvantages thus prevent their application when the intrinsic
camera parameters change online or are unknown. Hence, for pose estimation, many
methods have been proposed to work with a partially calibrated camera and more 2D–3D
point correspondences [27]. Some methods, namely the PnPf solvers, work well with cases
of unknown focal length [28–30]. Four or more 2D–3D point correspondences are needs
for all PnPf solvers. The P4Pf is the minimal subset, and different methods have been
proposed to focus on the planar case [31], the non-planar case [27], or both [32]. Compared
to the P3P solvers, only one more parameter, i.e., focal length, must be obtained, and
they are iterative algorithms or need to solve quadratic or quadric polynomial equations
of several variables. Hence, some methods have been proposed to work with unknown
focal length and unknown radial distortion (namely, the PnPfr solvers [33,34]), while some
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work with unknown focal length and unknown aspect ratio [35], or unknown focal length
and unknown principal point [27]. When n ≥ 6, the pose estimation can be linearly esti-
mated, known as direct linear transform (DLT) [18,32], and all the parameters of a fully
uncalibrated camera can be obtained.

Note that more parameters can be estimated with more 3D control points. However,
in some cases, not enough 3D control points can be obtained because accurate 3D control
points are expensive to acquire and maintain. This requires us to use as few points as
possible to estimate the pose with a partially calibrated camera, and there are two ways
to reduce the number of the 3D control points in existing PnP solvers. The first way is to
use some prior knowledge of the intrinsic camera parameters. For most modern digital
cameras, the aspect ratio of the pixels, the skew, and the principal point are known and do
not change [32,33]; hence, these parameters can be assumed as prior knowledge, which
means we can use fewer 3D control points to estimate the remaining unknown parameters.
With this assumption, only the focal length is unknown of the intrinsic camera parameters,
and it will be shown that, in our experiments and practical application, this assumption
works well, even though it is not always strictly met.

In addition, since modern digital cameras can be equipped with various positioning
and orientation sensors, the second method is to measure some pose parameters in advance,
as prior knowledge. Some methods focus on the pose problem with the known vertical
direction. This can be obtained directly using orientation sensors, such as gyroscopes,
accelerometers, or inertial measurement units (IMUs) [3,20,36–41]. The vertical direction
can give knowledge of the orientation of roll and pitch, which means only four pose
parameters are left to be estimated [13,15,17,42–45]. These methods can use two 3D points
for pose problem and give two solutions. Some methods solve the pose problem with three
2D–3D point correspondences and the vertical direction. In this case, six parameters (one
orientation parameter, three position parameters, radial distortion, and focal length) can be
determined with a single solution.

In this paper, the idea is also to measure some pose parameters in advance, as prior
knowledge, but not the orientation parameters. Pose parameters include the orientation
and position. However, to the best of our knowledge, almost all recent research has focused
on the known orientation parameters, and very few works focused on the known position
parameters. Moreover, in some cases, the camera position and 3D control point positions
can be obtained accurately as prior knowledge using a positioning device (e.g., RTK, total
station). In a missile testing range, for example, altitude measurement based on fixed
cameras is an important test. These cameras are fixed and for absolute pose problem, some
3D control points in the world frame must be exactly known. Hence, in this paper, we
focus on the known position parameters [46] to solve the pose problem, and we give an
efficient closed form solution to the absolute orientation problem with unknown focal
length from two 2D–3D point correspondences. Since each point correspondence can give
us two constraints [3], this is the minimum number of point correspondences needed to
estimate the absolute orientation and focal length in this case. Here, the problem can be
decomposed into two sub-problems and can be solved with angle constraints. Rewriting
the camera model with the known camera position leads to a simpler and more efficient
method for pose estimation, and it gives a single solution, without the multi-solution
phenomena of existing P3P solvers.

The rest of this paper is organized as follows. In Section 2, we propose our method to
efficiently estimate the focal length and the absolute orientation. In Section 3, we present a
thorough analysis of our proposed method with synthetic data and real images, compared
to some other existing PnP solvers. In Section 4, we present the discussion. In Section 5, we
present the conclusions.

2. Materials and Methods

In this paper, we propose an efficient closed form solution to the absolute orientation
problem for cameras with unknown focal length from two 2D–3D point correspondences
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and the camera position. The standard pinhole camera model [18] is used, as shown in
Figure 1. In our problem, we assume that the skew is zero, the aspect ratio of the pixels
is one, and the principal point is the center of the image, which is true for most modern
digital cameras and can yield good results, even when they are not exactly satisfied; as will
be shown in the experiments [3,33]. In this paper, the camera position Oc(XOc, YOc, ZOc)
is known, which can be obtained by positioning sensors [45,47] or measured by the total
station [48].

Figure 1. Standard pinhole camera model with two 3D control points. Here C is the principal point.

In Figure 1, 3D points Pi(Xwi, Ywi, Zwi), i = 1, 2 in the world frame O_ZYZ_w are
projected onto 2D image points pi(ui, vi) on the camera image plane. This can be written as

λi

 ui
vi
1

 = M


Xwi
Ywi
Zwi
1

 (1)

In this equation, M is a 3 × 4 camera projection matrix and λi is an unknown scale
factor. From the standard pinhole camera model, M can be written as

M = K[R|t] (2)

Here, K is a 3 × 3 camera calibration matrix that contains the focal length information.
R and t, which contain all the pose information, are respectively a 3 × 3 rotation matrix and
a 3 × 1 translation vector from the world frame to the camera frame. Our problem is to esti-
mate R, t, and the focal length f from two 2D–3D point correspondences. Next, we propose
our method to estimate the focal length and absolute orientation with angle constraints.

2.1. Closed Form Solution to the Focal Length

In this paper, we assume

K =

 f 0 0
0 f 0
0 0 1

 (3)

Then we can obtain the vector
→

Oc pi in the camera frame

→
Oc pi = [ui, vi, f ] (4)

From Figure 1, the angle constraint now can be used to estimate the focal length, as
illustrated in Figure 2.
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Figure 2. Angle constraint for the focal length estimation.

With the positions of 3D point P1, P2 and the camera position Oc in the world frame,

we can obtain the vector
→

OcPi →
OcPi = Pi −Oc (5)

Then, ∠P1OcP2 can be computed as α

α= arccos

→
OcP1·

→
OcP2∥∥∥∥ →

OcP1

∥∥∥∥·∥∥∥∥ →
OcP2

∥∥∥∥ (6)

In the camera frame, from Equation (4) ∠p1Oc p2 can be computed and from Figure 2,
we can see ∠p1Oc p2 = ∠P1OcP2, which leads to the equation

cos α =

→
Oc p1·

→
Oc p2∥∥∥∥ →

Oc p1

∥∥∥∥·∥∥∥∥ →
Oc p2

∥∥∥∥ =
u1u2 + v1v2 + f 2√

u2
1 + v2

1 + f 2·
√

u2
2 + v2

2 + f 2
(7)

We let f 2 = a, u1u2 + v1v2 = b, u2
1 + v2

1 = c and u2
2 + v2

2 = d. From Equation (7), a
quadratic equation with one variable, i.e., a, can be given(

1− cos2 α
)

a2 +
(

2b− c· cos2 α− d· cos2 α
)

a + b2 − cd· cos2 α = 0 (8)

Two possible solutions to a can be obtained. Then up to four possible solutions to the
focal length can be given from Equation (8). Note that a > 0, f > 0, and cos α > 0, then a
single closed form solution can be given.

2.2. Pose Estimation with Angle Constraint

In this paper, we first place the camera with an original known pose in the world
frame, which means the transformation between the camera frame and the world frame
is known. Then the pose estimation is obtained through rotating the camera and world
frame to make the camera position Oc, 2D image point pi and 3D point Pi collinear. The
process is illustrated in Figure 3.

In the original state, the camera pose is known in the original world frame O_ZYZ_w;
however, the 2D image point pi and 3D point Pi have no correspondence, as shown in
Figure 3 (left). The main work is to rotate the original camera frame O_ZYZ_c and world
frame O_ZYZ_w to make the camera position Oc, 2D image point pi, and 3D point Pi
collinear in the final state, as shown in Figure 3 (right).
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Figure 3. Rotating for pose estimation.

Now we formulate the absolute orientation estimation problem as follows:
(1) Finish the 2D–3D point correspondence between point p1 and point P1. In the

original camera frame O_ZYZ_c, the Xc-axis and Zc-axis are parallel with the X-axis and
Y-axis of the original world frame O_ZYZ_w in the same direction, and the Yc-axis is
parallel with the Z-axis in the opposite direction. Then the position of point P1 in the
camera frame O_ZYZ_c, which is named Pc

1 , can be obtained using the formula

Pc
1 = Rox·[P1 −Oc] (9)

Here,

Rox =

 1 0 0
0 cos 90◦ − sin 90◦

0 sin 90◦ cos 90◦

 =

 1 0 0
0 0 −1
0 1 0

 (10)

The position of point p1 in the camera frame O_ZYZ_c, meanwhile, which is named
pc

1, can be obtained using the formula

pc
1 =

[
u1 v1 f

]T (11)

In the camera frame, we rotate the camera around the Yc-axis to make the projections

of
→

OcPc
1 and

→
Oc pc

1 onto the plane Yc = 0 collinear. The rotation angle AYc can be obtained
using the formula

AYc = arccos


→

OcPc
1 ·
→

Oc pc
1∥∥∥∥ →

OcPc
1

∥∥∥∥∥∥∥∥ →
Oc pc

1

∥∥∥∥


Yc=0

(12)

After the first rotation, a new camera frame O_ZYZ_c1 is obtained and in this frame,
the position of point P1, named Pc1

1 , can be written as

Pc1
1 = RcYc ·P

c
1 (13)

Here,

RcYc =

 cos AYc 0 − sin AYc

0 1 0
sin AYc 0 cos AYc

 (14)

The position of point p1 in the new camera frame, named pc1
1 , is unchanged, which

means pc1
1 = pc

1.

Next, we rotate the camera around the Xc1-axis to make
→

OcP1 and
→

Oc p1 collinear. Now
we obtain another camera frame O_ZYZ_c2, as shown in Figure 4.
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Figure 4. Camera frame O_ZYZ_c2. Now the 2D–3D point correspondence between point p1 and
point P1 is finished.

The rotation angle AXc1 can be obtained using the formula

AXc1 = arccos


→

OcPc1
1 ·

→
Oc pc1

1∥∥∥∥ →
OcPc1

1

∥∥∥∥∥∥∥∥ →
Oc pc1

1

∥∥∥∥


Xc1=0

(15)

The 2D–3D point correspondence between point p1 and point P1 is completed as
shown in Figure 4.

(2) Finish the 2D–3D point correspondence between point p2 and point P2. When
the point correspondence between point p2 and point P2 is finished and the point corre-
spondence between point p1 and point P1 is unchanged, the camera absolute orientation
is obtained.

Now the position of point p2 in the original world frame O_ZYZ_w, named pw
2 , can be

computed with

pw
2 =

(
RcXc1 ·RcYc ·Rox

)−1·

 u2
v2
f

+ Oc (16)

In this equation,

RcXc1 =

 1 0 0
0 cos AXc1 − sin AXc1

0 sin AXc1 cos AXc1

 (17)

To maintain the point correspondence between point p1 and point P1, we rotate the
original world frame around the line OcP1. We thus define a new world frame, O_ZYZ_w1,
whose origin Ow1 is camera position Oc, and

→
Ow1Xw1 =

→
Ow1P1∥∥∥∥ →CP1

∥∥∥∥
→

Ow1Zw1 =
→

Ow1P1×
→

Ow1P2∥∥∥∥ →
Ow1P1×

→
Ow1P2

∥∥∥∥
→

Ow1Yw1 =
→

Ow1Zw1 ×
→

Ow1Xw1

(18)

The new world frame O_ZYZ_w1 is illustrated in Figure 5.
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Figure 5. New world frame O_ZYZ_w1. The Xw1-axis is collinear with the line OcP1.

In the new world frame O_ZYZ_w1 the positions of point P2 and p2 can be given with

Pw1
2 = Rw1(P2 −Oc)

pw1
2 = Rw1(pw

2 −Oc)
(19)

Here,

Rw1 =
[ →

Ow1Xw1
→

Ow1Yw1
→

Ow1Zw1

]T
(20)

We rotate the world frame O_ZYZ_w1, point P1, and P2 around the Xw1-axis. With
this rotation the relative pose between the world frame and point Pi is unchanged, while
the relative pose between the world frame and the camera frame is changed.

To make
→

OcP2 and
→

Oc p2 collinear, we rotate the world frame O_ZYZ_w1 around the
Xw1-axis with an angle

Axw1 = arccos


→

Ow1Pw1
2 ·

→
Ow1 pw1

2∥∥∥∥ →
Ow1Pw1

2

∥∥∥∥∥∥∥∥ →
Ow1 pw1

2

∥∥∥∥
 (21)

After this rotation, another world frame O_ZYZ_w2 is obtained and the rotation matrix
between the world frame O_ZYZ_w1 and the world frame O_ZYZ_w2 is written as

Rw2 =

 1 0 0
0 cos Axw1 − sin Axw1
0 sin Axw1 cos Axw1

 (22)

In addition, the original world frame O_ZYZ_w is changed to a new world frame
O_ZYZ_w3. Finally, the two 2D–3D point correspondences are finished as shown in Figure 6.

Figure 6. Two 2D–3D point correspondences in the final state. Now the absolute pose estimation
is finished.
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(3) Estimate the absolute orientation. Several frames are involved in our proposed
method, and now the transformations between each are known, except for the transforma-
tion between the world frame O_ZYZ_w3 and the camera frame O_ZYZ_c2, which is the
very pose information that needs to be estimated in this paper. The transformations are
shown in Figure 7.

Figure 7. Transformations of all the frames. The transformation (yellow) between the world frame O_ZYZ_w3 and the
camera frame O_ZYZ_c2 is unknown and needs to be estimated, while the other transformations have been computed.

Based on Figure 7, we can finally transform point Pw3
i in the world frame O_ZYZ_w3

into point Pc2
i in the camera frame O_ZYZ_c2 using

Pc2
i = Rw3_c2·Pw3

i + Tw3_c2

Rw3_c2 = RcXc1 ·RcYc ·Rox·R−1
w1 ·R

−1
w2 ·Rw1

Tw3_c2 = −Rw3_c2·Oc

(23)

The absolute orientation estimation with unknown focal length is finished.

3. Experiments and Results

We first tested the robustness to camera position noise of our proposed method with
synthetic data.

Then we thoroughly tested our proposed method with synthetic data, including
numerical stability, noise sensitivity, and computational speed, compared to other existing
PnP solvers: the GP4Pf [28] and Kneip’s method [10]. The two existing PnP solvers both
give up to four possible solutions, while we used one more point to give a single solution.

Lastly, our proposed method was tested with real images to show its performance in a
practical application.

3.1. Synthetic Data

In this paper, the synthetic data consisted of three thousand 2D–3D point correspon-
dences. Here, these 3D points were randomly distributed in a box of [−20, 20] × [−20, 20]
× [180, 220] in the world frame. Then they were projected onto 2D points in the image
plane using a virtual perspective camera, whose position was fixed at Oc = [1, 1, 1]T and
the angles in degree of the orientation were kept at [roll, pitch, yaw] = [5, 5, 5]. For the
intrinsic parameters of the virtual perspective camera, the focal length was set to 50 mm
and the image resolution was set to 1280 × 800 pixels.

For each trail, two 2D–3D point correspondences were randomly selected from the
synthetic data for our proposed method, while three 2D–3D point correspondences were
randomly selected from the synthetic data for Kneip’s method, and four 2D–3D point
correspondences were randomly selected from the synthetic data for the GP4Pf. Moreover,
one further 2D–3D point correspondence was selected for Kneip’s method and GP4Pf to
disambiguate the multi-solution phenomena.
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3.1.1. Robustness to Camera Position Noise

Our proposed method uses the camera position as the prior knowledge, which is
different from the existing methods. Therefore, the camera position is important, and it
is necessary to analyze the effect of error in the camera position on the estimation of the
absolute orientation and the focal length.

The camera position is usually obtained by RTK or total station. In general, the
measuring precision of RTK is better than 3 cm and the measuring precision of total station
is better than 0.5 cm. Therefore, zero-mean Gaussian noise was added to the camera
position and the noise deviation level varied from 0 to 3 cm. Next, 50,000 independent
trails with two 2D–3D point correspondences of synthetic data were performed at each
noise level. Then the average error of the absolute orientation and focal length were
reported, as shown in Figure 8.

Figure 8. Robustness to camera position noise for orientation (left) and focal length (right).

From Figure 8, we can see the orientation error and focal length error increase with
the increase of camera position error. However, the max errors in orientation and focal
length when the camera position error is 3 cm were both low, which means our proposed
method has good robustness to camera position noise and still yields good results, even
though camera position error existed.

3.1.2. Numerical Stability

In this section, 50,000 trails were performed independently and there was no noise
added to the 2D–3D point correspondences. The log10 value of the relative error between
the ground truth and the focal length, estimated using our proposed method and GP4Pf,
respectively, is shown in Figure 9 (left). The log10 value of the error in orientation between
the ground truth and the estimated value using our proposed method and Kneip’s method,
respectively, is shown in Figure 9 (right).

From Figure 9 (left), the distribution of the log10 value of the relative focal length error
can be observed. Clearly, our proposed method has much higher numerical stability than
the GP4Pf.

From Figure 9 (right), the distribution of log10 value of error in orientation can be
observed. Obviously, our proposed method has much higher numerical stability than
Kneip’s method.
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Figure 9. Relative error in focal length (left) and error in orientation (right) for our proposed method (blue) and the other
methods (yellow).

3.1.3. Noise Sensitivity

Zero-mean Gaussian noise was added to the 2D image points and the noise deviation
level varied from 0 to 2 pixels. Then, 50,000 independent trails were performed at each
noise level. The average error of the rotation, translation, focal length, and reprojection
error were reported, as shown in Figure 10.

Figure 10. Average error of rotation (top left), translation (top right), focal length (bottom left) and
reprojection (bottom right) for our proposed method (blue), Kneip’s method (black), and GP4Pf (red).

From Figure 10, in terms of the rotation and translation error, our proposed method
performed much better than Kneip’s method, while it was slightly better in terms of repro-
jection error. In terms of the relative focal length error, our proposed method performed
much better than the GP4Pf. Moreover, as the noise increases, the performance superiority
of our proposed method over the other methods became more obvious.
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3.1.4. Computational Time

In this section, to analyze the computational time, 50,000 trails were executed inde-
pendently on a 3.3 GHz 4-core laptop, and there was no noise added to the 2D–3D point
correspondences. In each trial, note that one more point was needed to disambiguate
multi-solution phenomena for Kneip’s method and the GP4Pf. The average computational
time is reported in Table 1.

Table 1. Computational time.

Method Proposed Method Kneip’s Method GP4Pf

Computational time 0.543 ms 0.556 ms 2.683 ms

We note that our proposed method performed much faster than the GP4Pf, while it
was slightly faster than Kneip’s method.

3.2. Real Images

When we generated the synthetic data, the focal length and absolute orientation
of the virtual perspective camera were ground truth. Therefore, we could make direct
comparisons, leading to direct results. However, in the real-image experiments, we fixed
a high-speed camera with a zoom lens on a tripod, and set the focal length to roughly
50 mm. This meant that the ground truth of the focal length and absolute orientation could
not be directly and accurately measured by direct physical measurement. Although many
methods have been proposed to estimate the focal length and absolute orientation, these
are just measured values, not the ground truth.

Although the focal length and absolute orientation cannot be directly and accurately
measured by direct physical measurement, the spatial position of the points can be directly
and accurately measured by direct physical measurement (total station). The world frame
can be established by total station in the lab, and the measurement accuracy of total station
is generally better than 0.5 cm. Therefore, in this paper we took the spatial position of a
point measured by total station as the ground truth, to test the performance of our proposed
method. Certainly, the point position is not estimated directly by our proposed method,
but the purpose of the focal length and absolute orientation estimation in our method is
3D measurement, such as point position and 3D reconstruction. The absolute position of a
point is generally measured by binocular vision, based on two cameras, after intrinsic and
extrinsic camera parameter estimation, including the focal length and camera pose. When
the intrinsic and extrinsic camera parameters are known, the least square method can be
used to estimate the point position, and then the relative position error can be given, which
is very simple. We can see that the key step of the point position estimation is the intrinsic
and extrinsic camera parameter estimation, i.e., the focal length and absolute orientation in
this paper. Therefore, the accuracy of the absolute orientation and focal length estimation
directly affects the relative position error of points, and in turn, the relative position error
can reflect the accuracy of the absolute orientation and focal length estimation with our
proposed method. Moreover, the relative position error can be measured in our lab, since
the ground truth of a point position can be given by the total station, and the measured
value can be given using binocular vision with our proposed method.

In addition, the ground truth of a point position is known, and then we can obtain the
reprojection, based on the standard pinhole camera model [18], with the focal length and
absolute orientation measured by our proposed method. The reprojection is the measured
value of the imaging position and the ground truth can be obtained by corner detection
from the real images. Therefore, the reprojection error is affected by the focal length and
absolute orientation estimation, and in turn, the reprojection error can reflect the accuracy
of the focal length and absolute orientation estimation with our proposed method.

Therefore, indirect analysis and comparison, for testing the performance of our method
with real images, are practicable. Moreover, in this paper we use relative position and
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reprojection error to reflect the error of the focal length and absolute orientation estimation
when the focal length and absolute orientation cannot be directly and accurately measured
using direct physical measurement in the lab. The experiments and results with real images
are as follows.

In this section, real images were captured using two cameras, and then we tested our
proposed method with them. Some control points were placed in these two camera fields
of view, as shown in Figure 11.

Figure 11. Real images form two cameras. Some control points were placed and measured using a total station.

These control points and the camera positions were measured as the ground truth
using a total station (NTS-330R, measuring precision better than 0.5 cm). Since we did not
know the ground truth of the camera pose in the real scenarios, the accuracy of the focal
length and absolute orientation was not compared directly. In this paper, the accuracy of
the absolute pose and focal length estimation is, thus, demonstrated by measuring the
relative position and reprojection error of these known control points.

Then two 2D–3D point correspondences for our proposed method, three 2D–3D point
correspondences for Kneip’s method, and four 2D–3D point correspondences for the GP4Pf
were selected from these known control points to estimate the camera pose and focal
length. Finally, we measured the relative position and reprojection of the rest of the control
points using binocular vision and reported the average relative positional error between
the ground truth and the measured values; the average reprojection error between the
position in the real image and the measured value in Table 2.

Table 2. Relative position error and reprojection error for real images.

Method Proposed Method Kneip’s Method GP4Pf

Relative position error/% 0.39 0.47 1.37

Reprojection error/pixel 0.36 0.56 0.78

From Table 2, according to the relative position error and reprojection error, we can
observe that our proposed method performed better than Kneip’s method and GP4Pf,
which shows our proposed method can work well in real scenarios.

At the beginning of Section 2, we assumed that the skew was zero, the aspect ratio of
the pixels was one, and the principal point was the center of the image for our proposed
method. Since we do not know the ground truth of the skew and the aspect ratio in real
scenarios, the error of these assumptions cannot be directly discussed. However, the rela-
tive position and reprojection error in real images can indirectly show that our method can
obtain good results under these assumptions. Actually, the relative position error directly
reflects the total error introduced by our algorithm model and these assumptions. The
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relative position error was 0.39%, which is low and can meet the actual application require-
ments. We can see the relative positional error includes the error of these assumptions
and, therefore, the error of these assumptions was less than 0.39%, which shows that these
assumptions can yield good results in a real scenario experiment, even though they are not
strictly true.

4. Discussion

Orientation and focal length estimation is one of the key steps in computer vision,
photogrammetry, SLAM, and SfM. In this paper we propose an efficient closed form
solution to the absolute orientation problem with unknown focal length and two 2D–3D
point correspondences. The problem can be decomposed into two sub-problems and
can be solved with angle constraints. A quadratic equation of one variable is solved to
determine the focal length, and then a geometric approach is used to determine the absolute
orientation, which is different from the existing orientation estimation solvers.

4.1. Differences and Advantages

In this paper, our core contribution is to use fewer 3D control points, for both absolute
orientation and focal length estimation. With the development of measurement technology
and the reduction in cost, more and more devices are being used to obtain partial pose
parameters as prior knowledge, which is the reason why we performed our work with a
known camera position. Our proposed method only needs two 3D control points and can
estimate both pose and focal length. In contrast, the existing P3P solvers need three 3D
points and can only estimate camera pose.

Our proposed method uses partial pose parameters and, hence, can use fewer 3D
control points. These partial pose parameters, i.e., camera position, are measured with high
precision using RTK or total station (e.g., NTS-330R in Section 3), which is a reason why
our proposed method performs better in terms of numerical stability and noise sensitivity.

The P3P solvers in previous studies used an iterative algorithm or needed to solve
systems of quadratic or quartic polynomial equations; however, our proposed method
only uses a geometric approach with angle constraints. This is another reason why our
proposed method performs better in terms of numerical stability, noise sensitivity, and
computational speed. In addition, the existing P3P solvers all have up to four possible
solutions and need an extra point to give a single solution, which is also a main reason
why our proposed method has a faster computational speed.

Our proposed method uses the camera position as the prior knowledge, which is
different from the existing methods. Therefore, the camera position is important and we
have analyzed the effect of error in the camera position on the estimation of the absolute
orientation and of the focal length, as shown in Section 3.1.1. In geometric derivation,
the camera position error contributes error to the angle in Equation (6) when we estimate
the focal length. However, the camera position error is low, because of high-accuracy
measurement using RTK or total station, which means that the error of angle in Equation (6)
is very low. This is the reason why our proposed method still yields good results even
though camera positional error exists.

As shown in Section 3, because of the lower noise sensitivity in rotation and translation
error, our proposed method gives better result in terms of the reprojection error. It should
be noted that the Harris algorithm [49] was used for feature point extraction in real images,
and its precision is below 0.2 pixels. Hence the reprojection error in real images matches
that in the synthetic data of a 0.2 pixel noise. In addition, an ideal focal length was used
for the synthetic data and a focal length directly written on the lens, which has a small
error, was used for real images. This is a reason why the reprojection error with synthetic
data was slightly smaller than that in the real images. Finally, the higher precision in focal
length and absolute orientation estimation led our proposed method to have results, in
terms of the relative position error in binocular vision.
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In brief, our proposed method has the following advantages: (1) Only two 3D points
are needed to estimate the absolute orientation and focal length; (2) It gives a single solution
and has no multi-solution phenomenon; (3) It performs better, in terms of numerical
stability, noise sensitivity, computational speed, and robustness to camera position noise;
and (4) It obtains better results, both with synthetic data and real images.

4.2. Future Work

Our proposed method has to use a positioning device (e.g., RTK, total station) to
obtain the camera position and, as described in Section 1, some existing methods use
the known vertical direction to obtain some orientation information using IMUs. Those
methods can all use fewer 3D points to estimate camera pose than the existing P3P solvers.
This may inspire us to use both camera position and vertical direction for pose and partial
intrinsic parameter estimation in the future. This idea may lead to a faster and more
efficient method.

Another work that will be completed in the future is to use a camera with a positioning
device in practice, such as SfM and 3D reconstruction with the RANSAC algorithm [50].
The superior computational efficiency of our proposed method is particularly suitable as a
RANSAC outlier rejection step.

5. Conclusions

We have proposed an efficient closed-form solution to the absolute orientation problem
for a camera with unknown focal length from two 2D–3D point correspondences and the
camera position. In the original state, the camera frame and the two 2D image points are
known, and the world frame and the two 3D control points are also known. However, the
2D–3D point correspondences are unknown in the original state. Our main process is to
rotate the original camera frame and world frame to make the camera position, 2D image
point, and 3D control point collinear, and then obtain two 2D–3D point correspondences
geometrically in the final state. Finally, the absolute orientation can be estimated based on
the known camera frame, the known world frame in the original state, and the rotation
angles. Before this, the focal length is estimated using angle constraint.

By decomposing the problem into two sub-problems and solving them with angle
constraints, only two 2D–3D point correspondences are needed to estimate the focal
length and absolute orientation, and a single solution can be given with our method. The
geometric derivations are easy to understand and significantly improve the performance.
Experimental results show that our proposed method works well with synthetic data and
real scenarios. It is particularly suitable for estimating the focal length and orientation of a
zooming digital camera with fixed position or with a positioning device mounted on it.
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