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Abstract: Crossed-grating phase-shifting profilometry (CGPSP) has great utility in three-dimensional
shape measurement due to its ability to acquire horizontal and vertical phase maps in a single
measurement. However, CGPSP is extremely sensitive to the non-linearity effect of a digital fringe
projection system, which is not studied in depth yet. In this paper, a mathematical model is estab-
lished to analyze the phase error caused by the non-linearity effect. Subsequently, two methods used
to eliminate the non-linearity error are discussed in detail. To be specific, a double five-step algo-
rithm based on the mathematical model is proposed to passively suppress the second non-linearity.
Furthermore, a precoding gamma correction method based on probability distribution function is
introduced to actively attenuate the non-linearity of the captured crossed fringe. The comparison
results show that the active gamma correction method requires less fringe patterns and can more
effectively reduce the non-linearity error compared with the passive method. Finally, employing
CGPSP with gamma correction, a faster and reliable inverse pattern projection is realized with less
fringe patterns.

Keywords: phase shifting profilometry; crossed grating projection; nonlinearity phase error analysis;
phase error correction; inverse pattern projection

1. Introduction

Phase shifting profilometry (PSP), with non-contact, full-field, high-resolution and
high-precision advantages, is a popular three-dimensional (3D) shape measurement tech-
nique based on fringe projection [1–3]. PSP has found extensive applications in several
fields such as industrial surface inspection, reverse engineering, and biomedical engi-
neering [4–6]. In PSP, the height information of a tested object is encoded within the
phase of the projected fringe patterns. The phase retrieved from the captured deformed
fringe patterns by phase shifting algorithm is wrapped within the range from −π to π [7].
A phase unwrapping algorithm must be conducted to obtain a continuous phase map.
Conventional phase unwrapping algorithms can be divided into two principal categories:
spatial phase unwrapping [8–10] and temporal phase unwrapping [11–13]. Spatial phase
unwrapping implemented on a single wrapped phase map is normally dependent on the
unwrapping path. Due to the phase continuity assumption, it cannot handle surfaces with
large discontinuities or separations. Temporal phase unwrapping can solve the phase
ambiguity problem by using multi-wrapped phase maps, in which phase unwrapping is
performed at each pixel independently.

In some applications of PSP, such as phase measurement deflectometry [14], inverse
pattern projection (IPP) [15] and calibration of structured light measurement systems [16],
it is desired that both horizontal and vertical phase maps of the tested object are recovered.
Traditionally, in single carrier-frequency grating phase shifting profilometry (SGPSP),
horizontal and vertical sinusoidal fringe patterns are separately projected on the tested
object, and the deformed fringe patterns are recorded to recover the two orthogonal phases.
To improve the measurement efficiency, Liu et al. [17] employed crossed-grating phase-
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shifting profilometry (CGPSP) to obtain the two orthogonal phases. Theoretically, in CGPSP,
only five fringe patterns are required to obtain the two orthogonal phases.

However, CGPSP is extremely susceptible to the non-linear response of the digital
fringe projection system. The non-linearity effect of the industrial camera can be neglected
compared with that of the digital projector [1]. Therefore, the non-linearity effect of the
projector, as the main error resource of the system [18,19], has been studied by many
researchers. Some phase correction methods used in sinusoidal grating phase shifting
profilometry and binary grating phase shifting profilometry (BGPSP) have been proposed.
They are roughly divided into two categories: active correction and passive correction [20].
In the first category, the ideal sinusoidal fringe patterns are desired to be projected on
the object. One solution is to find the most proper gamma value, which is pre-encoded
in the projected fringe patterns to guarantee the captured fringes perfectly. For instance,
Hoang et al. [21] used the least-square approach to calculate the system gamma value
from the difference between the real phase value of the three-step phase-shifting algorithm
and the true phase value obtained by a large-step phase-shifting method. Employing
the statistical analysis, Guo et al. [22] calculated the gamma value from the normalized
cumulative histogram of the captured fringe patterns with different backgrounds and
modulations. Yu et al. [23] calculated the gamma value based on probability distribution
function (PDF) of the retrieved wrapped phase. Another way to generate ideal fringes
is the defocusing technique which acts as a low-pass filter. For instance, Baker et al. [24]
derived the mathematical model of the defocusing technique. Lei et al. [25] generated ideal
sinusoidal fringe patterns by defocusing binary fringe patterns. In the second category,
the non-linearity error is passively corrected by a post-processing instead of projecting
pro-encoded fringes. Pan et al. [19] proposed a simple iterative algorithm to reduce the
phase error owing to non-sinusoidal waveforms. Zhang [7,26] established a look-up-table
between the phase error and the corresponding phase value to compensate the phase
error directly. Huang et al. [27] proposed a double three-step algorithm to obtain two
distorted phases with opposite distortion direction and identical distortion amplitude,
and averaged them to eliminate the distortion. The similar model based on the Hilbert
transform was also proposed to eliminate the phase error [28]. Zheng et al. applied the
above two methods to the phase error correction of BGPSP with projector defocusing [29].
In addition, a large-step phase-shifting method can be used to eliminate the non-linearity
error [30]. However, methods with less fringe patterns and higher accuracy are the common
goal. In CGPSP, fewer fringe patterns are required to obtain two orthogonal phases, but an
elemental theoretical analysis of the non-linearity error and practical methods to eliminate
the error are still not extensively studied.

To improve the accuracy and flexibility of CGPSP, a mathematical model to analyze
the non-linearity error and practical methods to eliminate the phase error are studied in
detail in this paper. Based on a polynomial model of the non-linear effect, the mathematical
model is derived. To eliminate the non-linearity error, we study passive and active non-
linear phase error correction methods, including a passive double five-step algorithm and
an active gamma correction method based on PDF. The phase correction performance of
the two methods is compared. Finally, a faster IPP is realized by employing CGPSP with
gamma correction.

The rest of the paper is organized as follows: Section 2 introduces the principle of CG-
PSP, the principle of IPP based on CGPSP and the phase error analysis of CGPSP. Section 3
illustrates the principle of the double five-step algorithm and the gamma correction method
based on PDF. Section 4 presents some experimental results. Section 5 concludes the paper.

2. Principle
2.1. Principle of Crossed-Grating Phase-Shifting Profilometry

The schematic of geometric optical path for the CGPSP measurement setup is shown
in Figure 1, where C and P are the camera photocenter and the projector photocenter
respectively, O is the intersection point of the optical axis of projector and camera, and θ
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is the angle between the baseline CP and the horizontal axis Xw. In order to generate the
fringe deformation in both the horizontal and vertical directions, the baseline CP should
have components in the horizontal and vertical directions (for example, θ is 45 degrees).
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Figure 1. Schematic of geometric optical path for crossed-grating phase-shifting profilometry (CGPSP)
measurement setup.

In the ideal measurement system, the deformed fringe patterns captured by the camera
can be described as:

In(x, y) = A(x, y) + B1(x, y) cos[ϕx(x, y) + δn] + B2(x, y) cos
[
ϕy(x, y) + kδn

]
, (1)

where n = 1, 2, . . . , N and N is the total number of phase shifts, (x, y) is the coordinate of an
arbitrary point in the image, A(x, y) is the background intensity, B1(x, y) and ϕx(x, y) are the
intensity modulation and the desired phase in the horizontal direction, respectively, B2(x,
y) and ϕy(x, y) are the intensity modulation and the desired phase in the vertical direction
respectively, δn = 2πn/N is the phase-shifting amount, k is an integer within the range of
[2, N/2)∪(N/2, N − 2] and controls the phase-shifting amount in the vertical direction.
Because there are five unknown variables in Equation (1), at least five images should be
used to extract the phase information. For convenience, (x, y) is omitted in some complex
expressions hereafter.

The measured phases in the horizontal and vertical direction can be extracted by the
least-squares algorithm:

ϕxw = −arctan


N
∑

n=1
In sin(δn)

N
∑

n=1
In cos(δn)

, ϕyw = −arctan


N
∑

n=1
In sin(kδn)

N
∑

n=1
In cos(kδn)

. (2)

The phases ϕxw and ϕyw are wrapped within the range of [−π, π). To recover unam-
biguous phases even in the presence of large discontinuities or isolated objects, simple
and robust three-frequency temporal phase unwrapping (3FTPU) is carried out. For the
horizontal phase unwrapping, the 3FTPU algorithm can be simply described as:

ϕxu1 = ϕxw1

ϕxul = ϕxwl + 2π · Round
[
( fl/1)ϕxu1−ϕxwl

2π

]
ϕxuh = ϕxwh + 2π · Round

[
( fh/ fl)ϕxul−ϕxwh

2π

] , (3)
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where 1, fl and fh (commonly fh = fl2) are the carrier frequencies of three sets of crossed
fringes, and subscripts l and h denote ‘low frequency’ and ‘high frequency’, respectively.
ϕxw1, ϕxwl and ϕxwh denote the unwrapped phases of the single-, low- and high-frequency
fringes, respectively. Round[·] is the operation to obtain the closest integer value.

In 3FTPU based on CGPSP, three set of fringes with frequencies of 1, fl and fh in
the horizontal and vertical directions are required. Theoretically, two orthogonal phase
maps can be extracted from 15 captured fringe patterns. As a comparison, in traditional
3FTPU based on SGPSP [12], 18 fringe patterns are required, employing the three-step
phase-shifting method. Twenty-four fringe patterns are required, employing the four-step
phase-shifting method. Therefore, CGPSP normally requires fewer fringes to obtain two
orthogonal phase maps compared with SGPSP.

2.2. Principle of Crossed-Grating Phase-Shifting Profilometry

IPP has been widely used in many fields such as industrial surface detection [31], and
augmented reality [32]. In traditional IPP, horizontal and vertical phase-shifting fringe
patterns are separately projected to obtain horizontal and vertical absolute phases which
are used to establish the geometric mapping relationship between the projector pixel
and the camera pixel. If the CGPSP method is used, the mapping relationship can be
established with fewer fringes. Taking the generation of an inverse straight fringe pattern
as an example, the flow chart as shown in Figure 2 illustrates the whole process of IPP
based on CGPSP. For simplicity, the first frames of three sets of captured crossed fringe
patterns are shown in Figure 2. Firstly, the horizontal and vertical absolute phases of a
target object are recovered by CGPSP based on 3FTPU. With the two phases, the geometric
mapping relationship between the projector pixel (l, m) and the camera pixel (x, y) can
be established:

l(x, y) =
px · ϕx(x, y)

2π
, m(x, y) =

py · ϕy(x, y)
2π

, (4)

where ϕx(x, y) and ϕy(x, y) denote the horizontal and vertical phases respectively, px and py
are the crossed fringe pitches in the horizontal and vertical directions respectively. The high
accuracy of the two orthogonal phases guarantees the precision of the geometric mapping
relationship in Equation (4). Based on the geometric mapping relationship and an expected
pattern (straight fringe), a projected inverse pattern (deformed fringe) is generated. In
the same projector-camera measurement system, after projecting the inverse pattern on
the object, a non-distorted fringe pattern on the surface of the object can be collected by
the camera.
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2.3. Phase Error Analysis for Crossed-Grating Phase-Shifting Profilometry

In practice, considering the non-linearity effect of the measurement system, the actual
captured fringe patterns In

′ can be theoretically described as the gamma power of the ideal
captured fringe patterns In [33].

I′n = Iγ
n , (5)

where γ is the gamma value of the system and can be a non-integer value. To facilitate
the analysis of the non-linear error, Equation (5) can be approximated by a polynomial
function [34]:

I′n = ε0 + ε1 In + ε2(In)
2 + ε3(In)

3 + . . . , (6)

where ε0, ε1, ε2, ε3 are coefficients. Substituting Equation (1) into Equation (6), the actual
captured crossed fringe patterns can be calculated as

I′n = a0 +
∞
∑

i=1
ai cos[i(ϕx + δn)] +

∞
∑

i=1
bi cos

[
i
(

ϕy + kδn
)]
+

∞
∑

i=2

i−1
∑

j=1
eij cos[j(ϕx + δn)] cos

[
(i− j)

(
ϕy + kδn

)]
,

(7)

where a0 is the background intensity, ai, bj and eij denote the amplitudes of horizontal
and vertical harmonic components and crosstalk components, respectively. It is clear that
the phase error will be introduced by horizontal and vertical high-order harmonics and
crosstalk components. It has been verified that the harmonic amplitude decreases rapidly
with the increasing of its frequency in SGPSP [19]. Non-linear system response makes the
harmonic amplitude distribution of the captured sinusoidal fringe follow the conclusion
regardless of the carrier frequency in the horizontal direction or vertical direction. Therefore,
the conclusion is also valid in CGPSP. A simulation is added to confirm the conclusion in
CGPSP more clearly. The spectra of the simulated crossed fringe with different gamma
values 1.4, 2.4, and 3.4, as shown in Figure 3a–c respectively, illustrate the conclusion.
As a comparison, the frequency spectra of a simulated vertical sinusoidal fringe and
a simulated horizontal sinusoidal fringe distorted by gamma value 2.4 are shown in
Figure 3d,e, respectively. Compared with the single carrier-frequency fringes, the crossed
fringe has more complex spectra distribution.
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When the parameter k is set to two in Equation (1), a full-cycle phase shifting within
4π is performed in the vertical direction. Setting k to 2 and substituting Equation (7) into
Equation (2), we derive two wrapped phase expressions which are related to the total
number of phase shifts N (N ≥ 5).

1. When N is an odd number, the wrapped phases ϕxw
′ and ϕyw

′ are derived as:

ϕ′xw = arctan

 a1 sin ϕx−
∞
∑

m=1
amN−1 sin[(mN−1)ϕx ]+

∞
∑

m=1
amN+1 sin[(mN+1)ϕx ]−

∞
∑

m=1
b (2m−1)N−1

2
sin
[
(2m−1)N−1

2 ϕy

]
a1 cos ϕx+

∞
∑

m=1
amN−1 cos[(mN−1)ϕx ]+

∞
∑

m=1
amN+1 cos[(mN+1)ϕx ]+

∞
∑

m=1
b (2m−1)N−1

2
cos
[
(2m−1)N−1

2 ϕy

]
+

∞
∑

m=1
b (2m−1)N+1

2
sin
[
(2m−1)N+1

2 ϕy

]
− e21

2 sin(ϕx−ϕy)+F(ϕx ,ϕy)

+
∞
∑

m=1
b (2m−1)N+1

2
cos
[
(2m−1)N+1

2 ϕy

]
+

e21
2 cos(ϕx−ϕy)+G(ϕx ,ϕy)

,

(8)

ϕ′yw = arctan

 b1 sin ϕy−
∞
∑

m=1
bmN−1 sin[(mN−1)ϕy]+

∞
∑

m=1
bmN+1 sin[(mN+1)ϕy]+a2 sin(2ϕx)−

∞
∑

m=1
amN−2 sin[(mN−2)ϕx ]

b1 cos ϕy+
∞
∑

m=1
bmN−1 cos[(mN−1)ϕy]+

∞
∑

m=1
bmN+1 cos[(mN+1)ϕy]+a2 cos(2ϕx)+

∞
∑

m=1
amN−2 cos[(mN−2)ϕx ]

+
∞
∑

m=1
amN+2 sin[(mN+2)ϕx ]+H(ϕx ,ϕy)

+
∞
∑

m=1
amN+2 cos[(mN+2)ϕx ]+I(ϕx ,ϕy)

,

(9)

where m is a positive integer for describing the harmonic order. The functions F(ϕx, ϕy)
and G(ϕx, ϕy) in Equation (8), and H(ϕx, ϕy) and I(ϕx, ϕy) in Equation (9) are regarded
as the high-order crossed phase error. They are the summation of periodic sinusoidal
and cosinusoidal harmonic functions with variables ϕx and ϕy, but their mathematical
expressions are too complex to be written as explicit functions. Their magnitudes decrease
with the increasing of the total number of phase shifts N. Seen from Equations (8) and
(9), both ϕxw

′ and ϕyw
′ include periodic phase error caused by the horizontal and vertical

high-order harmonics and the crosstalk components. Equation (8) shows that the horizontal
phase error is introduced by the mN ± 1th horizontal harmonics, the [(2m − 1)N − 1]/2th
vertical harmonics and the crossed phases −[e21sin(ϕx − ϕy)]/2 + F(ϕx, ϕy) and [e21cos(ϕx
− ϕy)]/2 + G(ϕx, ϕy). Equation (9) shows that the vertical phase error is induced by the
2nd and mN ± 2th horizontal harmonics, the mN ± 1th vertical harmonics and the crossed
phases H(ϕx, ϕy) and I(ϕx, ϕy). For instance, when N = 5 and m = 1, 2, ϕxw

′ includes the
horizontal phase error introduced by the horizontal harmonics 4, 6, 9, 11, vertical harmonics
2, 3, 7, 8, and the crossed phases −[e21sin(ϕx − ϕy)]/2 + F(ϕx, ϕy)|N=5 and [e21cos(ϕx −
ϕy)]/2 + G(ϕx, ϕy)|N=5. ϕyw

′ includes the vertical phase error introduced by the horizontal
harmonics 2, 3, 7, 8, 12, the vertical harmonics 4, 6, 9, 11, and the crossed phases H(ϕx,
ϕy)|N=5 and I(ϕx, ϕy)|N=5.

2. When N is an even number, ϕxw
′ and ϕyw

′ are derived as:

ϕ′xw = arctan


a1 sin ϕx −

∞
∑

m=1
amN−1 sin[(mN − 1)ϕx ] +

∞
∑

m=1
amN+1 sin[(mN + 1)ϕx ]− e21

2 sin
(

ϕx − ϕy
)
+ J
(

ϕx , ϕy
)

a1 cos ϕx +
∞
∑

m=1
amN−1 cos[(mN − 1)ϕx ] +

∞
∑

m=1
amN+1 cos[(mN + 1)ϕx ] +

e21
2 cos

(
ϕx − ϕy

)
+ K

(
ϕx , ϕy

)
, (10)

ϕ′yw = arctan

 b1 sin ϕy−
∞
∑

m=1
b mN

2 −1
sin[(mN

2 −1)ϕy]+
∞
∑

m=1
b mN

2 +1
sin[(mN

2 +1)ϕy]+a2 sin(2ϕx)−
∞
∑

m=1
amN−2 sin[(mN−2)ϕx ]

b1 cos ϕy+
∞
∑

m=1
b mN

2 −1
cos[(mN

2 −1)ϕy]+
∞
∑

m=1
b mN

2 +1
cos[(mN

2 +1)ϕy]+a2 cos(2ϕx)+
∞
∑

m=1
amN−2 cos[(mN−2)ϕx ]

+
∞
∑

m=1
amN+2 sin[(mN+2)ϕx ]+L(ϕx ,ϕy)

+
∞
∑

m=1
amN+2 cos[(mN+2)ϕx ]+M(ϕx ,ϕy)

,

(11)

The four functions J(ϕx, ϕy), K(ϕx, ϕy), L(ϕx, ϕy) and M(ϕx, ϕy) are also composed
of the summation of periodic sinusoidal and cosinusoidal harmonic functions with vari-
ables ϕx and ϕy. Their magnitudes decrease with the increasing of the total number of
phase shifts N. Seen from Equations (10) and (11), the phase expressions are different
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with those in the odd condition. However, periodic phase error caused by horizontal
and vertical high-order harmonics and crosstalk components still exists in the calculated
phases. Equations (10) and (11) reveal that the horizontal phase error is induced by the
mN ± 1th horizontal harmonics and the crossed phases −[e21sin(ϕx − ϕy)]/2 + J(ϕx, ϕy)
and [e21cos(ϕx − ϕy)]/2 + K(ϕx, ϕy), and the vertical phase error is induced by the 2nd
and mN ± 2th horizontal harmonics, the mN/2 ± 1th vertical harmonics and the crossed
phases L(ϕx, ϕy) and M(ϕx, ϕy).

For clarity, a summary is given as follows:

• There is always the crossed-phase component ϕx − ϕy in the horizontal distorted
phase;

• There is always the phase error induced by the 2nd horizontal harmonic in the vertical
distorted phase;

• The crossed phase component ϕx − ϕy and the 2nd horizontal harmonic in
Equations (8)–(11) make the large-step phase-shifting method invalid to eliminate the
non-linear error in CGPSP.

When parameter k is set to other integer within the range of [2, N/2)∪(N/2, N − 2],
similar phase distribution can be derived, which can be summarized as below:

• When N ≥ 2k + 1, there is always the crossed phase component (k − 1)ϕx − ϕy in the
horizontal distorted phase;

• When N ≥ 2k + 1, there is always the phase error induced by the kth horizontal
harmonic in the vertical distorted phase.

3. Phase Error Correction for Crossed-Grating Phase-Shifting Profilometry

The above analysis results show that the non-linearity effect in CGPSP is quite serious
and complicated. Therefore, it is necessary to remove the non-linear error for the further
application of CGPSP. In this section, a double five-step algorithm is presented to passively
eliminate the second non-linearity. In addition, an attractive gamma correction method
based on PDF [23] is discussed in detail as well.

3.1. Double Five-Step Algorithm

Referring to the double three-step algorithm [27], the double five-step algorithm is
proposed to eliminate the second non-linearity effect in CGPSP which is the main compo-
nent of the non-linearity effect normally. Considering the non-linearity up to the second
order and setting N to 5, Equations (8) and (9) can be simplified and the corresponding
unwrapped phases can be expressed as:

ϕ′xu = U
{

arctan
[

a1 sin ϕx−b2 sin 2ϕy−
e21
2 sin(ϕx−ϕy)

a1 cos ϕx+b2 cos 2ϕy+
e21
2 cos(ϕx−ϕy)

]}
ϕ′yu = U

{
arctan

[
b1 sin ϕy+a2 sin 2ϕx−

e21
2 sin(ϕx+ϕy)

b1 cos ϕy+a2 cos 2ϕx+
e21
2 cos(ϕx+ϕy)

]} , (12)

where U{·} is the operation to unwrap the wrapped phase. The phase error in the two
directions can be derived as follows:

∆ϕ′xu = ϕ′xu − ϕx = U
{

arctan
[
−b2 sin(2ϕy+ϕx)−

e21
2 sin(2ϕx−ϕy)

a1+b2 cos(2ϕy+ϕx)+
e21
2 cos(2ϕx−ϕy)

]}
∆ϕ′yu = ϕ′yu − ϕy = U

{
arctan

[
a2 sin(2ϕx−ϕy)−

e21
2 sin(2ϕy+ϕx)

b1+a2 cos(2ϕx−ϕy)+
e21
2 cos(2ϕy+ϕx)

]} , (13)
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where ϕx and ϕy are the ideal phases. In practice, a1 is much larger than b2 and e21/2, and
b1 is much larger than a2 and e21/2. Equation (13) can be simplified as:

∆ϕ′xu ≈ U
{

arctan
[
−b2 sin(2ϕy+ϕx)−

e21
2 sin(2ϕx−ϕy)

a1

]}
∆ϕ′yu ≈ U

{
arctan

[
a2 sin(2ϕx−ϕy)−

e21
2 sin(2ϕy+ϕx)

b1

]} . (14)

If an extra phase offset of π is introduced into the ideal fringes, two extra mea-
sured phases ϕxu

′′ and ϕyu
′′ can be obtained and the corresponding phase errors can be

derived as: 
∆ϕ

′′
xu ≈ −U

{
arctan

[
−b2 sin(2ϕy+ϕx)−

e21
2 sin(2ϕx−ϕy)

a1

]}
∆ϕ

′′
yu ≈ −U

{
arctan

[
a2 sin(2ϕx−ϕy)−

e21
2 sin(2ϕy+ϕx)

b1

]} . (15)

It is obvious that ∆ϕxu
′ = −∆ϕxu

′′ and ∆ϕyu
′ = −∆ϕyu

′′. Therefore, the second non-
linearity can be eliminated by averaging the two sets of measured phases:

ϕx =
ϕ′xu + ϕ

′′
xu − π

2
, ϕy =

ϕ′yu + ϕ
′′
yu − π

2
. (16)

To clearly explain the process of retrieving the absolute phases of 3FTPU based on
double five-step algorithm, Figure 4 shows the flowchart of calculating the horizontal
absolute phase, in which 1, fl and fh are the carrier frequencies of three sets of crossed
fringes, respectively. Subscripts w and u denote ‘wrapped phase’ and ‘unwrapped phase’,
respectively. SPU denote the spatial phase unwrapping operation. Three steps are used to
describe the procedure of calculating the horizontal phase:

• Step 1: Two unwrapped phases ϕxw1
′ and ϕxw1” with non-linearity error are obtained

from the single-frequency crossed fringes with and without the initial phase offset of
π, respectively. Then, an unwrapped phase ϕx1 eliminated the second non-linearity
error obtained by the double five-step algorithm.

• Step 2: Two wrapped phases ϕxwl
′ and ϕxwl” are firstly obtained from the low-

frequency (fl) crossed fringes with and without the initial phase offset of π, respec-
tively. Then, combining the unwrapped phase ϕx1 obtained in Step 1, the two wrapped
phases are unwrapped to obtain ϕxul

′ and ϕxul”, respectively. Finally, an unwrapped
phase ϕxl without the second non-linearity error can be obtained by the double five-
step algorithm.

• Step 3: Similarly, two wrapped phases ϕxwh
′ and ϕxwh” respectively obtained from

high-frequency (fh) crossed fringes with and without the initial phase offset of π are
unwrapped to obtain ϕxuh

′ and ϕxuh”, employing the unwrapped phase ϕxl obtained
in Step 2. The final corrected phase ϕxh can be obtained by the double five-step
algorithm.

A similar procedure can be performed to obtain the vertical phase from the crossed
fringes.

A simulation is conducted to investigate the performance of the double five-step
algorithm. The size of the simulated fringe patterns is 512 × 512 pixels. Three sets of
fringes with the number of fringe periods of 1, 8 and 64 are used in 3FTPU. The gamma
value of the system is set as 2.4, which leads to obvious 2nd and 3rd non-linearity. The
simulated phase error of the double five-step algorithm, the five-step CGPSP method and
the traditional five-step SGPSP method are compared. The 400th row of the horizontal
phase errors and the 114th column of the vertical phase errors are shown in Figure 5a,c,
respectively. For clarity, Figure 5b,d show the zoomed results of area A in Figure 5a and
area B in Figure 5c, respectively. The STD values of the phase errors and the number of
fringe patterns are given in Table 1. As shown in Figure 5a,c, abnormal phase jump errors
emerge in five-step CGPSP because the non-linearity errors in the wrapped phases lead
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to fringe order errors in phase unwrapping. The double five-step algorithm effectively
improves the phase accuracy by eliminating the second non-linearity. The five-step SGPSP
performs better than the double five-step algorithm because it eliminates the second and
third non-linearity. Anyway, the double five-step CGPSP provides a convenient way to
eliminate second non-linearity in the measurement system where the physical crossed
grating is designed to produce the structured fringe. If only the second non-linearity is
included in the crossed fringe patterns, the accuracy of five-step CGPSP is as same as that
of five-step SGPSP.
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Table 1. Quantitative comparison of three methods when gamma value is 2.4.

Method STD of the Horizontal
Phase Errors (rad)

STD of the Vertical
Phase Errors (rad)

Five-step CGPSP 19.557 19.557
Double five-step algorithm 0.046 0.046

Five-step SGPSP 0.002 0.002

3.2. Gamma Correction Method Based on Probability Distribution Function

The non-linearity error in CGPSP is so complicated that it is difficult to passively
eliminate all the high-order harmonics and the crosstalk components. An active correction
method, the gamma correction method based on PDF [23], is used to eliminate the phase
error in CGPSP.

Theoretically, if an appropriate value γp which nearly equals 1/γ is found to prepro-
cess the projected fringes, the non-linearity of the system can be eliminated. The captured
crossed fringes can be rewritten as:

I′n = I
γ/γp
n . (17)

The gamma correction method based on PDF [23] can be used to calculate the pre-
encoded value γp. In practice, considering the defocusing effect of the digital projector
with a large aperture, Equation (17) is rewritten as [23]:

I′n = C1 I
γa/γp+γb
n + C2, (18)

where C1, C2, γa and γb are system parameters. By projecting two sets of vertical sinusoidal
fringe patterns with different pre-encoded gamma values, γa and γb can be calculated
based on the PDF method. Then, setting γa/γp + γb = 1, the desired pre-encoded value γp
can be obtained.

Theoretically, the pre-encoded value γp reflects the non-linearity of the system and can
be calculated from either the captured horizontal or vertical sinusoidal fringe patterns. For
instance, using the experimental setup as shown in Figure 6 and projecting the horizontal
and vertical sinusoidal fringe patterns, we calculated two sets of pre-encoded values in
different measurement conditions (e.g., the projector and camera were adjusted slightly).
The results, as shown in Table 2, indicate that the two pre-encoded values in each case are
close, which coincides with the theoretical analysis.
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Table 2. Pre-encoded values calculated from horizontal and vertical sinusoidal fringes.

Case
Pre-Encoded Values γp

Horizontal Sinusoidal Fringe Vertical Sinusoidal Fringe

1 1.701 1.698
2 1.697 1.689
3 1.680 1.673

4. Experiments and Discussion

The experimental setup is shown in Figure 6, including a DLP projector with the
resolution of 1280 × 800 (GVD PDC03), a CCD camera with the resolution of 1280 × 1024
(IDS UI-124xSE-M), a plate white board and some tested objects. To generate fringe
deformation in both horizontal and vertical directions, the baseline of the projector and the
camera has components in the horizontal and vertical direction of the board. The 3FTPU
algorithm is used in the experiment; 1, 8 and 64 are selected as the number of fringe period
of the single-frequency, low-frequency and high-frequency crossed fringes, respectively.

4.1. Phase Calculation of Crossed-Grating Phase-Shifting Profilometry

First, the accuracy of the double five-step algorithm and the gamma correction method
were compared by measuring the flat white board. Traditional 16-step SGPSP were used to
obtain the ideal horizontal and vertical phases of the white board. The phase error was
obtained by subtracting the measured phase from the ideal phase in each direction. The
fringe patterns and their spectra are shown in Figure 7. Figure 7a shows a captured crossed
fringe pattern. Figure 7b shows a captured crossed fringe pattern with an initial phase
offset of π. Figure 7c is a captured crossed fringe with gamma correction and Figure 7d is a
vertical sinusoidal fringe. Figure 7e–h show the corresponding frequency spectra of the
above four fringe patterns. There are obvious second harmonic and crosstalk components
in Figure 7e,f, while these harmonics are eliminated by the gamma correction method, as
shown in Figure 7g. The captured vertical sinusoidal fringe pattern only contains obvious
second harmonic besides the direct component and the fundamental component, as shown
in Figure 7h.
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Taking the horizontal phase as example, Figure 8a–d show the phase error maps
obtained by five-step CGPSP, the double-five algorithm, five-step CGPSP with gamma
correction and five-step SGPSP, respectively. For clarity, a section of the 300th row of the
horizontal phase errors and a section of the 456th column of the vertical phase errors are
shown in Figure 8e,f, respectively. Apparently, there are serious phase jump errors caused
by the fringe order errors in five-step CGPSP. The double five-step algorithm apparently
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reduces the non-linearity error. The phase error of the gamma correction method is less
than that of the double five-step algorithm, and the phase error of the five-step SGPSP
is smallest. The quantitative comparison results are listed in Table 3. The results of the
double five-step algorithm and the five-step SGPSP method coincide with their simulation
results. The gamma correction method performs better than the double five-step algorithm.
In addition, the error of the gamma correction method is bigger than that of the five-step
SGPSP method, because there are more low-intensity areas in the crossed fringe pattern
compared with the single carrier-frequency fringe, which decreases the signal-to-noise
ratio. However, the error is acceptable and fewer fringe patterns are required in the gamma
correction method.
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Table 3. Quantitative comparison of measurement results by four methods.

Method
STD of the
Horizontal

Phase Errors (rad)

STD of the Vertical
Phase Errors (rad)

Number of Fringe
Patterns

Five-step CGPSP 12.974 11.711 15
Double five-step

algorithm 0.035 0.037 30

Gamma correction 0.026 0.029 15
Five-step SGPSP 0.012 0.015 30

In the second experiment, a couple of isolated surfaces were measured. The results are
shown in Figure 9, where the first, second and third rows correspond to the measurement
results of five-step CGPSP, the double five-step algorithm and five-step CGPSP with
gamma correction, respectively. The captured high-frequency crossed fringe patterns, the
horizontal and vertical phases of the three methods are shown in the first, second and third
columns of Figure 9, respectively. The phases retrieved by five-step CGPSP are distorted
seriously by the non-linearity effect, as shown in Figure 9b,c. The double five-step CGPSP
effectively attenuates the non-linearity error, but there is still the residue phase error in
the surfaces as shown in Figure 9e,f. Because the method only eliminates the second
non-linearity. Figure 9h,i show that the gamma correction method almost removes the
non-linearity error.
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Figure 9. Measurement results of three methods: (a–c) results of the five-step CGPSP; (d–f) results of
the double five-step algorithm; (g–i) results of the five-step CGPSP with gamma correction. (Unit of
phase: radians).

The experiments indicate that CGPSP with gamma correction can more effectively
eliminate the non-linearity error and requires less fringes compared with the double five-
step algorithm. However, the double five-step algorithm can provide convenience to
eliminate the non-linear error in the case of using the physical grating to generate the
crossed fringe pattern.

4.2. Inverse Pattern Projection Based on CGPSP

The five-step CGPSP method with gamma correction is applied in the IPP technique.
A gourd model shown in Figure 10a was measured. Three captured crossed fringe patterns
with the number of fringe periods of 1, 8 and 64 are shown in Figure 10a–c, respectively. We
defined an expected straight fringe pattern and a character pattern which could be ‘seen’
by the CCD camera, as shown in Figure 10d,g. Two corresponding inverse patterns were
generated by the IPP technique, as shown in Figure 10e,h. The resulting images captured by
the CCD camera are shown in Figure 10f,i. The results verify that the geometric mapping
relationship between the projector pixel and the camera pixel are correctly established by
IPP based on CGPSP with fewer fringes.

An application of IPP based on CGPSP with gamma correction was carried out to
show the encoded two-dimensional (2D) pattern on the 3D object, as an augmented reality
display. A 3LCD projector (Epson CB-X29) was used to project the crossed fringe patterns
and the inverse patterns. The height distribution of the gourd model was firstly obtained
employing the phase-to-height mapping technique [35]. Then, with the height information
and the geometric mapping relationship established in advance, a contour-line inverse
pattern and a color-coding inverse pattern were generated. Finally, the inverse patterns
were projected on the gourd model. The resulting images captured by a camera are shown
in Figure 11a,b, respectively. Another two inverse patterns of the designed color images
were also generated and projected on the object. The captured images are shown in
Figure 11c,d. These encoded 2D patterns fit well on the 3D model, which enhances our
visual experience.
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Figure 10. Measurement results of IPP based on CGPSP: (a–c) deformed crossed fringes with the
number of fringe period of 1, 8, 64; (d) defined straight fringe pattern; (e) projected inverse fringe
pattern; (f) captured pattern after projecting (e); (g) defined character pattern; (h) projected inverse
character pattern; (i) captured pattern after projecting (g).
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Figure 11. Three-dimensional display results of four encoding methods. (a) 3D display of the contour
encoding. (b) 3D display of the color encoding. (c,d) 3D display of the designed color pattern
encoding.

5. Conclusions

In this paper, research to improve the accuracy and flexibility of CGPSP has been
conducted. A mathematical model was firstly derived to analyze the non-linearity error in
the measured phases obtained by the CGPSP method. Then, the double five-step algorithm
and the gamma correction method based on PDF were introduced to eliminate the non-
linearity error. The double five-step algorithm proposed on the basis of the mathematical
model can passively eliminate the second non-linearity error, while the gamma correction
method can actively remove the high-order harmonics more effectively and requires fewer
projected patterns. Therefore, CGPSP with the gamma correction method is recommended
in practical applications. Finally, we applied the CGPSP method with gamma correction
to the IPP technique, and the augmented reality display was realized. The experiment
results demonstrate the CGPSP method with gamma correction is reliable and practical.
The quantitative analysis of the geometric mapping accuracy between the projector pixel
and camera pixel is not the main work of this manuscript. In the future work, we will
research this problem.
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