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Abstract: The annotation of sensor data with semantic metadata is essential to the goals of automa-
tion and interoperability in the context of Industry 4.0. In this contribution, we outline a semantic
description of quality of data in sensor networks in terms of indicators, metrics and interpretations.
The concepts thus defined are consolidated into an ontology that describes quality of data metain-
formation in heterogeneous sensor networks and methods for the determination of corresponding
quality of data dimensions are outlined. By incorporating support for sensor calibration models
and measurement uncertainty via a previously derived ontology, a conformity with metrological
requirements for sensor data is ensured. A quality description for a calibrated sensor generated using
the resulting ontology is presented in the JSON-LD format using the battery level and calibration
data as quality indicators. Finally, the general applicability of the model is demonstrated using a
series of competency questions.
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1. Introduction

The increasing automation of manufacturing and the concurrent use of interconnected
cyber-physical systems, large-scale heterogeneous sensor networks as well as machine
learning methods are key aspects of the Industrial Internet of Things, or IIoT, paradigm [1].
They pose a unique set of challenges which are exemplified by the Industry 4.0 goals
of interoperability and decentralization [2]. As one of the primary interfaces between
the physical and digital worlds, sensors play a central role in IoT by providing data
typically in the form of numerical values corresponding to a given physical quantity;
in other words, a measurement. A key concept in IoT is the combination of multiple
interconnected measuring instruments to create a sensor network that functions as a
distributed measuring system. Sensor networks are of particular importance in industrial
environments and, in general, can be either homogeneous or heterogeneous in nature,
i.e., with constituent sensors that measure, respectively, the same or different physical
quantity/-ies. In the context of these endeavors, the automated transmission, analysis and
processing of sensor data are key components at every level in IIoT-systems. Consequently,
a deeper understanding of the quality of data (QoD) in conjunction with the means to make
such information available to all data users involved—be they applications, human actors
or even other sensors—is of utmost importance.

One example of a fundamental quantity that can be considered as a quality met-
ric ascribed to a sensor is the measurement uncertainty—“a parameter associated with
the result of a measurement that characterizes the dispersion of the values that could
reasonably be attributed to the measurand” [3] (p. 14), i.e. the physical quantity being
measured. The measurement uncertainty is determined by means of a calibration such that
each measurement result is related to the SI-unit reference through an unbroken chain of
calibrations, resulting in a form of quality assurance referred to as metrological traceability.
The incorporation of metrological information such as the measurement uncertainty in
IoT, although in its relative infancy, is an active area of research [4]. The term calibration
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in a metrological sense is defined according to the International Vocabulary of Metrology
(VIM, fr: Vocabulaire International de Métrologie) [5] as “an operation that, under specified
conditions, in a first step, establishes a relation between the quantity values with measure-
ment uncertainties provided by measurement standards and corresponding indications
with associated measurement uncertainties and, in a second step, uses this information to
establish a relation for obtaining a measurement result from an indication”. In addition to
the uncertainty, other data relating to the calibration (such as an identifier for the sensor,
the units and the name of the laboratory) can be stored in a digital calibration certificate
(DCC, [6]) for use in digital infrastructures.

Calibrations are typically carried out in strictly controlled laboratory environments.
Sensors, on the other hand, are deployed in diverse environments and operating conditions
that may influence the QoD in various ways. For instance, in the case of wireless sensor
networks, unstable connections, congestion, environmental interference, and malicious
attacks can result in missing data [7]. In battery powered sensors, there is necessarily a
trade-off between power consumption and performance [8]. As a result, an exhausted or
damaged battery can also be detrimental to the quality of measurements produced by a
sensor. Another common issue is drift [9], where sensor readings gradually stray from the
true value with time due to the degradation of the electronics. Other anomalies common to
sensor readings are spikes—sharp changes between successive measurements deviating
from normal sensor behavior—, freezing or constant values [10] and stuck-at-zero errors
resulting from a dead sensor. These problems are exacerbated in typical IoT settings,
since deploying a large number of high-cost sensors that individually conform to desired
accuracy criteria is not feasible in many applications, particularly in those that require large
and dense sensor networks [11]. As sensors in an IoT network typically have small batteries
and limited working memory, correcting faults by re-transmitting missing data over the
network would consume excessive amounts of power and computational resources while
increasing inaccuracies due to the delays introduced [7].

A more general description of the quality of data in sensor networks thus requires the
consideration of the aforementioned issues in addition to the measurement uncertainty. In
order to generate such QoD knowledge, sensors should ideally be able to communicate
information about themselves and their environment. The deployment of sensors endowed
with a level of “smartness” [12,13] is a key to enabling the communication of useful metain-
formation in IoT environments. Such smart sensors are capable of a certain amount of
pre-processing and possess a degree of awareness regarding their surroundings and hence
the ability to communicate metainformation about themselves and their measurement tasks
in addition to the actual measured values. Effectively communicating such self-information
in an independent manner enables reliable data analysis and error-handling [14] and thus
helps to improve interoperability in IoT systems. The notion of metrological traceability
was extended to networks of smart sensors in IoT in [8].

The goal of the present work is to formulate and justify a consistent, reusable, and
modular description of quality of data in sensor networks, which we define as the “fitness
for use” [15] of given data with respect to a specified purpose. We achieve this goal
by first outlining a semantic description of QoD in sensor networks with an emphasis
placed on generality and flexibility. We do so by first presenting a general data model for
data quality in sensor networks. We then use this knowledge to construct an ontology
by extending the semantic description and by merging concepts from relevant external
ontologies to include the necessary relationships between classes and thus simultaneously
fulfill the IIoT requirements of machine readability and interpretability. In Section 2 we
discuss the details of QoD in sensor networks and construct a basic scheme for its semantic
representation. In particular, the QoD description is separated hierarchically into indicators,
metrics, and interpretations, with illustrative examples provided for each category. The
semantic representation thus developed is extended in Section 3 in order to construct a
formal, machine-readable, and machine-interpretable description of QoD in the form of
an ontology which takes into account the relationships between the concepts previously
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defined and integrates entities from established ontologies. Finally, in Section 4, the model
is evaluated by formulating a QoD description for a real-world use case. In particular,
a potential representation of QoD in sensor networks using the JSON-LD data format is
presented along with a series of competency questions that demonstrate the applicability
of the ontology.

2. Semantic Description of QoD in Sensor Networks

The automatic processing and interpretation of raw data corresponding to sensor
measurements is generally not practicable. This is due to the fact that for a naive receiver
of sensor data (for example, an edge device like a router) with no knowledge of the
attributes of the sensor, raw sensor data by itself is merely a stream of numbers. However,
by augmenting the measurement values with meaningful metadata, devices in a sensor
network that process data from a given sensor would be able to automatically interpret
its raw data. Such information ascribes “meaning” to raw data and is referred to as
semantic metadata. The rules and models necessary to enable a formal representation and
interpretation of such metadata, in conjunction with the means to exchange and process
them, are provided by semantic technologies. The semantic web community [16–18]
has been active in the development and support of technology standards, methods and
tools to enable sensors to automatically provide information about themselves and their
environment. Quality of data (QoD), or data quality, is an example of such metainformation
and, in the present context, is defined as the “fitness for use” [15] of sensor data for
a given purpose. For sensors to be able to automatically communicate and interpret
metainformation relating to data quality, a systematic description of the involved concepts
is necessary.

By requiring the intended use of data to be central to the definition of QoD, an empha-
sis is placed on its inherent subjectivity. The assessment criteria of QoD are dependent both
on the history or provenance of the data and on the context in which it is being used [19].
Typically, the quality of a single sensor’s measurements can be assessed on the basis of a
set of indicators that includes, but is not limited to, accuracy, completeness and timeliness.
The aforementioned indicators can be directly quantified by means of an appropriate
metric. For instance, the completeness of a series of sensor readings within a particular
time window can be computed as the ratio of the number of non-missing readings to the
total number of readings [20]. Other indicators are similarly provided with a means to
quantify the QoD. The resulting “score” allows the user of the data to make judgments
regarding its fitness. The proposed data model for QoD consists of four main components:

• an abstract measuring “System”;
• a QoD indicator corresponding to a particular sensor or data property;
• a metric describing an assessment procedure for the indicator;
• an interpretation of the metric.

By generalizing the objects under consideration to abstract measuring systems, an
assessment of QoD is made possible both for physical sensors as well as for aggregates
of multiple sensors and soft or model-based sensors [21]. Soft sensors are inferential
estimators that provide “sensor-like” data based on a mathematical model applied to
observations from single or multiple hardware sensors. The models may be derived using
knowledge of the physical principles involved or through the use of machine learning
methods [22]. The quality of data of such a virtual object in a sensor network is dependent
on the QoD of the constituent sensors. Furthermore, each abstract “system” is associated
with at least one QoD indicator which is in turn assessed using an appropriate metric. The
metric is then provided with an interpretation allowing an automatic processing of the
QoD information. The resulting scheme for representing QoD in sensor networks is shown
along with illustrative examples for its different components in Figure 1.
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System

Indicators

1. Battery level
2. Sampling rate
3. Calibration data
4. Operating conditions
5. Accuracy
6. Timeliness
7. Completeness
8. Consistency

Indicator Metric

Metrics

1. Battery percentage
2. Battery lifetime
3. Measurement

uncertainty
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5. Sampling rate

deviation

Systems

1. Single sensor
2. Aggregate result of

multiple sensors
3. Model-based or soft

sensor

Interpretation

Interpretations
1. Battery low/sufficient
2. Value out of range, e.g.,

negative mass.
3. Calibration out of date 

Figure 1. Overview of the basic scheme for representing QoD in sensor networks. Each abstract “system” has at least one
QoD indicator which is in turn assessed using a particular metric. The metric is then associated with an interpretation that
allows automatic processing of the QoD information. Illustrative examples have been provided in the boxes below each
component of the scheme.

2.1. QoD Indicators

A description of QoD for a given system would require us to assign one or more
indicators (also referred to dimensions [23]) to it. In addition to data completeness, indi-
cators like accuracy, timeliness, or consistency, as computed from its measurements in a
given time window, can be used to describe the QoD of a sensor. Furthermore, numerically
quantifiable properties such as sensor battery level and energy consumption, sampling
rate and network bandwidth have non-trivial effects on the QoD that are impractical to
compute in IoT setups given the limited processing power of the involved components.
The communication of the data transfer rate is important, particularly in the case of sensors
that are able to vary their data volume on demand. Including such quantities as QoD
indicators would therefore be advantageous at the point of data acquisition. In order to
ensure the traceability of the QoD metrics and indicators, the sensor ID should also be
included as part of the QoD assessment. Although indicators such as calibration data
and environmental conditions can be defined for physical sensors, this cannot be done
meaningfully in the case of soft sensors. It is, however, possible to add the mathematical
details of the used model or the train/test accuracy (in the case of ML-based sensors) to the
QoD description. Some attributes that can serve as QoD indicators for sensors are [24]:

• Accuracy: The degree of “closeness” of the data with respect to the correct measure-
ment of the physical phenomenon being observed. The accuracy of a new sensor in a
network can be assessed by comparing it, for example, with a reference sensor or with
an aggregate value from multiple sensors observing the same physical quantity.

• Completeness: A measure of the number of missing or null values. A high percentage
of missing values from a sensor could stem from hardware or network issues and is
bound to influence the usability of the data.

• Timeliness: A quality dimension expressing the currency or recentness of the data.
Certain users or time-critical applications can use this indicator to assess the time
delay between the measurement and the acquisition of data.

• Consistency: The degree to which data adheres to pre-defined criteria. For sensor
data, the operating range is a common criterion. Another example would be to check
for the consistency of the data according to its measurement principle, e.g., negative
masses not allowed; cf. Figure 1.

• Battery level: The sensor battery level can be represented either as a percentage or
as the remaining lifetime given the current rate of power consumption. As sensors
tend to provide unstable readings towards the end of their battery lifetime [25], a low
battery level also serves as a predictor for other QoD issues.

• Calibration data: Information such as the results of a calibration in the form of a
measurement uncertainty as well as administrative metadata such as the place and
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date of calibration and the qualification of the person carrying out the calibration are
included in a digital calibration certificate (DCC) [6].

• Operating conditions: Any description of a sensor’s behavior must normally include
the specification of its operating conditions. Sensor calibrations, for instance, are
performed under the specific temperature and humidity conditions experienced
during sensor operation.

• Sampling rate: A sensor’s actual sampling rate can differ greatly from the value
specified on its data sheet. For instance, a smart sensor may lower its own sampling
rate in order to reduce power consumption.

2.2. QoD Metrics

In order to be able to make decisions based on QoD, an indicator first needs to be
associated with a corresponding metric, which serves as a means to assess the quality
“level” of that indicator [26]. In the present work, we define a metric as a mathematical
object that assigns a score to a sensor with respect to a particular QoD indicator. In general,
a given indicator can have more than one metric. For instance, the accuracy indicator can
be associated with a metric defined in terms of a general distance function D(., .), which
takes the sensor reading vn received at time tn and a reference value v′n of the measured
quantity as arguments. The distance function D(vn, v′n) is zero when vn = v′n and positive
otherwise. The resulting score SA, calculated using the metric 1/(1 + D(., .)), is given by

SA =
1

1 + D(vn, v′n)
. (1)

As a result, the computed score SA = 1 when the sensor measurement is exactly equal to
the reference value of the quantity being measured and <1 otherwise. The choice of both
the distance function and the reference sensor depends on the user requirements. Using
the above metric, an application would be able to compare the accuracy of two sensors.

Similarly, a completeness metric can also be defined for a sensor in terms of the number
of missing values in a given time window. For N data points received from a sensor in a
time window [tn, tn+N ] of which nmiss values are missing, the completeness metric results
in a score given by the fraction [26]

Scom = 1− nmiss

N
. (2)

The above completeness metric thus has a maximum score of 1 when there are no missing
values. The metric is thus defined as the fraction of missing values and results in a score
Scom when nmiss out of N values are missing. In contrast to accuracy, a reference sensor is
not needed to compute Equation (2) as each sensor reading is paired with a timestamp.

A possible metric for consistency is to check if the measured value lies within a
particular interval specified in terms of a minimum and maximum value, say xmin and
xmax. An interval can either be closed, open, closed-open or open-closed according to
whether it includes xmin/max. An example of the use of numerical intervals is a consistency
indicator with the operating range as a criterion. Suppose that the measurement range of a
pressure sensor is 0 MPa to 5 MPa, a sensor repeatedly returning values out of this range is
not behaving consistently. A simple metric would be to assign a score of 1 to measured
values between 0 MPa to 5 MPa and 0 otherwise. An example of a more involved metric
that heavily penalizes negative pressures but allows high pressures to a certain extent can
be defined as

Scon = Mcon(p) =


0 if p < 0
1 if 0 ≤ p ≤ 5 MPa
e1−.2p if p > 5 MPa

. (3)
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The above measure returns a value of 0 for negative pressures, 1 for pressures within the
allowed range and exponentially decreasing values above 5 MPa. This ensures that values
are penalized more the further they exceed the upper limit.

A simple metric for timeliness is to compute the difference between the time tA at
which an application receives a data point from a sensor and the timestamp tD of the data
point itself (tA − tD) and to assign a value 1 if it is below a particular threshold Tmax and
zero otherwise. A more involved metric [20] takes into account the response time tR of the
sensor, i. e., the time delay between an observation being made and the sensor reading
being sent out such that the timeliness score is given by

ST = MT(tA − tD) =

{
1− tA−tD−tR

Tmax
if tA − tD ≤ Tmax + tR

0 otherwise
. (4)

The above metric assigns a linearly decreasing timeliness score to values “newer” than
Tmax + tR and 0 to values “older” than Tmax + tR.

In contrast to the above examples, sensor attributes such as battery level, calibration
data and operating conditions are indirect indicators of data quality, i.e., their metrics
cannot be directly computed from the data. Moreover, administrative metadata such
as the date of calibration, the accreditation status of the calibrating laboratory and the
manufacturer ID can play a role in the QoD requirements for the end user even though
their effect cannot be quantified directly. Administrative metadata in the present context
refers to data that is ancillary to the main informational content of a given resource, but is
nonetheless necessary to manage and use it. Providing end users with these values would
enable them to make a suitable, requirements-based assessment of QoD. Quality metrics
that can be defined in terms of calibration data are:

• Measurement uncertainty: The uncertainty on a calibration certificate can be directly
incorporated into a quality description for a sensor. The “score” attributed would be
the numerical value of the uncertainty along with the physical units.

• Recency: The “age” of the calibration or when the sensor was last calibrated. Given
the natural wear of components, sensors which have been recently calibrated are by
and large more trustworthy. The metric in this case would be the difference between
the current timestamp and the timestamp corresponding to the calibration date.

The sensor battery level can be represented either as a percentage or as the remaining
lifetime based on the current rate of power consumption. Specifying the remaining lifetime
as a quality score also necessitates the specification of the time unit. A sensor’s actual sam-
pling rate can differ greatly from the value specified on its data sheet. For instance, a smart
sensor may lower its own sampling rate in order to reduce power consumption. A potential
metric in this case is the deviation from the nominal sampling rate of the sensor. Because
sensor calibrations are performed under strictly controlled environments, a description
of a sensor’s behavior must usually contain the specification of that sensor’s operating
conditions. A potential metric for a sensor specified to operate between temperatures Tmin
and Tmax is 1 when the operating temperature lies between the aforementioned values and
0 when it lies outside. A more involved metric similar to the one defined in Equation (3)
can also be formulated such that large deviations from operating conditions are heavily
penalized. The necessary temperature measurements in this case are ideally available from
a proximate sensor or one on the same platform. Similar metrics can be defined for ambient
pressure and humidity.

2.3. QoD Interpretation

The concepts defined thus far encompass the description of various sensor and net-
work properties that could serve as quality indicators, and metrics that describe mathe-
matical objects and operations needed to assign a score to a given indicator. However, the
results of such operations are by themselves not amenable to automatic processing. In
order for the results of applying QoD metrics to sensor data to be machine interpretable,
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the notion of interpretation itself needs to be defined as a separate concept. In other words,
the result of using a metric to compute a numerical “score” for a particular indicator needs
to be accompanied by a semantic description of the score that appropriately categorizes the
result and allows a receiver to ascertain whether the given data is “good”. Some potential
interpretations corresponding to the results of a QoD assessment are:

• the sufficiency of the battery level with respect to certain requirements;
• the presence of drift beyond a certain threshold in sensor measurements;
• the calibration not being sufficiently up-to-date;
• the sensor operating in unsuitable environmental conditions.

In each of the above examples, at least one reference value representing the data
receiver’s quality requirements is necessary. In the first two cases, this corresponds to a
threshold value below which a battery level is deemed insufficient or critical, or a value
above which a sensor is considered to have an unacceptable level of accuracy. Similarly, the
calibration data of a sensor can be interpreted to be out-of-date based on a given reference
time period. In certain cases, two or more reference values can be defined for a more
detailed quality interpretation. For instance, the battery level can be further classified as
“good”, “sufficient”, or “critical” given two reference values. A QoD interpretation thus
augments the potentially complex result of an assessment using the metrics defined in
Section 2.2 with a simpler characterization.

3. Ontologies in Sensor Networks

The semantic description of QoD established in the preceding section complements
the ongoing work to formally describe semantic connections of concepts used to describe
sensor networks. A common way to model such information in a flexible and machine-
interpretable manner is by means of an ontology [27], i.e., a formal representation of a
domain of knowledge. The main components of an ontological model are the individual
classes belonging to a domain, the attributes or properties of these classes, and the relation-
ships among class members. Ontologies further consist of axioms and class restrictions [28],
which serve as a way to incorporate a priori domain knowledge into the ontology in the
form of statements that are asserted to be true. A key focus of the semantic web commu-
nity is the development of ontologies which formalize the annotation of sensor data with
spatial, temporal, and thematic metadata [29]. Spatial metadata corresponds to the location
information of a sensor and can be indicated either according to an absolute/geographical
frame or a local/relative reference frame. Sensors mounted on a moving object like an
automobile or a wearable device are typical examples of an application of the latter repre-
sentation. Temporal metadata contains information regarding the time instant or interval
when the sensor data was recorded, such as the timestamp indicating when the sensor
measurement was taken. Thematic metadata refers to the description of the real world that
is derived from sensor observations and cannot be covered by the first two metadata types.
This often corresponds to domain-specific concepts such as the description of a machine
component close to failure. Quality of data belongs to this category and can be considered
a form of thematic metadata that is derived from sensor data analysis. By enriching the
concepts developed in Section 2 with semantically expressive descriptions of attributes
and inter-class relationships, a formal ontology for QoD can be developed.

Given their inherent flexibility, ontologies are particularly suited to the description
of sensor networks. They can be merged with each other and constructively extended to
include new or missing knowledge. A merged ontology, scal, which describes thematic
metadata corresponding to sensor calibration information in conjunction with temporal
and spatial metadata, was proposed in [30]. The ontology was later extended [31] to include
the dynamic transfer behavior of sensors in a new ontology referred to as trans. In partic-
ular, tools such as the Semantic Sensor Network (SSN, [32,33]) and Sensor, Observation,
Sampling and Actuation (SOSA, [34]) ontologies were used to model sensors and actuators
along with their observations, the procedures involved, the studied features of interest and
the samples used. The scal ontology established a method for storing sensor metadata in a
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machine-readable and -interpretable format by combining SSN and SOSA along with other
ontologies and data models. By including calibration information in the ontology, essential
metrological requirements were fulfilled. In addition to the SSN and SOSA ontologies, the
sensor’s self-description was achieved by combining

1. the Digital SI (D-SI, [35]) data model to represent the observation values, units and
uncertainties,

2. the Ontology of Units of Measure and Related Concepts (OM, [36]) along with ideas from
the Engineering Mathematics (EngMath, [37]) ontology to represent physical quantities,
their units and kinds and,

3. the Geographic Query Language (GeoSPARQL, [38]) for the geometric and topological
location information.

Unlike SOSA, SSN, OM and GeoSPARQL, the D-SI model is not an ontology and
cannot express the interconnections between concepts such as quantity, unit, or cali-
bration model. It is, however, an indispensable part of the scal ontology as it covers
aspects essential to metrology and traceability to SI units. Additionally, the semantic
structure of the mathematical calibration model was described using MathML [39], while
the temporal data was represented using the XML “dateTime” datatype in the format
“YYYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]”, where Z refers to the time zone. The trans
ontology extended the aforementioned model with concepts from the OntoMathPRO ontol-
ogy [40] in order to model the mathematical details of the dynamic transfer behavior of
sensors. The transfer behavior corresponding to the sensor calibration model is represented
by the abstract TransferModel class and its constituent mathematical elements were mod-
eled using the MathematicalObject class. The numerical values of the corresponding
parameters (e.g., coefficients of a polynomial) were represented using the OM ontology and
MathML as elements of type “measure” from the OM ontology which was extended using
the D-SI model to include measurement uncertainties. The basic structures of the scal
and trans ontologies are illustrated in Figure 2. “Properties” are entities that formalize
relationships in ontologies. The two main kinds of properties are “object” properties that
relate classes to one another, and “datatype” or “data” properties that relate classes to
a “literal” datatype like an integer or a string. An example of an object property in the
trans ontology is isExpressedBy which relates a calibration model to an individual of
the MathematicalObject class. As a result, the parameters of models can be expressed
as literals in the form of MathML, XML or TEX expressions. Typically, object and data
properties are accompanied by restrictions [28]. The main data property in the trans on-
tology derives from the hasNumericalValue property of the OM ontology and places few
restrictions on the target datatype. An element of an ontology is expressed via a prefix or
namespace. For instance, trans:MathematicalObject refers to the MathematicalObject
class in the trans ontology namespace. In the following, we construct an ontology that
ascribes a semantically expressive structure to the QoD concepts discussed in Section 2.
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MathML GeoSPARQL

has calibration model Sensor
Description

made by sensor Observation
Description

OM D-SI

SOSA/SSN

Transfer 
Model

Mathematical
Object

expressed by

has value

OntoMathPRO

Measure

trans Ontology
scal Ontology

Calibration
Model

has transfer behavior

Figure 2. The merging scheme used to generate the trans [31] and scal [30] ontologies from external ontologies and data
models. The “Transfer Model” class is an abstraction corresponding to the dynamic transfer behavior of sensors, which is
expressed by objects belonging to the Mathematical Object class. The Measure class assigns numerical values to the model
parameters.

3.1. The qod Ontology

As in the semantic description of the measurement and transfer behavior of sensors [30,31],
the procedures and concepts necessary to describe data quality in sensor networks cannot
be covered by a single ontological model. On the other hand, the inherent flexibility of
ontologies allows us to combine different ontologies, data schemes and vocabularies to
generate an appropriate description of QoD. Previous research [20] focused on extending
the SSN ontology to model quality-of-sensing (QoS) attributes such as accuracy, timeliness,
and completeness in individual sensors as well as on methods to compute these attributes.
The QUAL-O ontology [41] describes quality assessment in sensor networks and was used
in conjunction with the PROV-O [42] and SSN ontologies to perform a quality assessment
on the observation of a temperature based on a given consistency metric by examining
its provenance. The score corresponding to the consistency metric was calculated by
comparing the measured temperature with average values for the given location and time
of year. An additional namespace int covered the intent, i.e., the reason behind performing
a given quality assessment. In contrast, the focus of the present work is to systematically
describe the QoD itself such that both the QoD assessment and interpretation can be
processed automatically.

In order to ensure that metrological traceability is a core part of our model, the
description of observation values and metrological uncertainty will be carried out using the
D-SI model [35] as before, while the OM ontology [36] will be used to model the physical
quantities being measured. The traceability of the sensor measurements to the International
System of Units (SI) as well as a systematic description of the physical units will thus
be ensured. The SSN and SOSA ontologies will be used to model the sensing devices
themselves. Moreover, the concepts defined in the SSN system capabilities module [43]
will be used to ensure that the applicability of our ontology extends beyond physical
sensors to soft-sensors and sensor aggregates. In order to provide a machine-interpretable
description of the mathematical concepts required to compute a metric, the “Mathematical
Object” class from the trans ontology defined in [31] will be used. The system capabilities
extension of the SSN ontology, denoted by ssn-system, describes physical properties such
as the survival and operating range as well as system properties such as drift, precision,
resolution, and accuracy of a sensor. Through the use of ontologies, the concepts outlined
in Section 2 can be systematically described while taking into account the relationships
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between them. The resulting merged ontology, which we call the qod ontology, is illustrated
in Figure 3.

has indicator
Calibrated

Sensor

SOSA/SSN
(SSN-System)

QoD
IndicatorQoD Metric has metrichas interpretation 

ex
pr

es
se

d 
by

 

trans
Ontology

Interpretation

OM D-SIMathematical
Object

Figure 3. The qod ontology is constructed from a merge of the trans and scal ontologies along with
concepts derived from the System Capabilities submodule of the Semantic Sensor Network (SSN)
ontology. Although not a true ontology, the D-SI model is indispensable as it covers aspects essential
to metrology and SI traceability.

3.1.1. Ontology Structure

An ontology based on the scheme outlined in Figure 1 needs to contain a formal
description of the individual elements as classes as well as the relationships between
them. In the following, we describe various representative classes and relationships of
the merged ontology. Typically, a class or a relationship in an ontology is denoted by a
prefix corresponding to the ontology name, followed by a colon and subsequently by the
class/relationship name itself, i.e., prefix:name. We omit the prefix for entities that only
belong to the new qod ontology and retain it for classes and relationships inherited from
external ontologies. The main classes of the merged ontology derive from the concepts
outlined in Section 3. These are:

• the ssn:System class imported from the SSN ontology representing the sensing system
under investigation,

• the Indicator class that represents the abstract QoD indicator in question,
• the Metric class corresponding to the method used to calculate the QoD score with

respect to a particular indicator and,
• the Interpretation class that describes the interpretation associated with a particular

metric.

Similarly, the main relationships derive from those indicated in Figure 3. The Indicator
class is related to the base system class by a hasIndicator object property. A System is not
constrained to have a quality indicator. However, each Indicator must have at least one
Metric, which in turn must have at least one Interpretation. The corresponding object
properties in this case are hasMetric and hasInterpretation.

As in the case of the trans ontology, the mathematical building blocks needed to
consistently represent the metrics introduced in Section 2.2 are objects from the trans:Math-
ematicalObject class. In general, each metric can be defined by one or more mathematical
objects. The relevant object property in this case is the trans:isExpressedBy. For instance,
in the accuracy metric defined in Equation (1), if the distance D(., .) is the Euclidean norm,
the metric is given by a rational function (trans:RationalFraction) of the difference
between the sensor value and the reference value vn − v′n. Similarly, the consistency metric
defined in Equation (3) is a piecewise continuous function and inherits from the correspond-
ing OntoMathPRO object (mathematics:E1549). The topics covered by the merged ontology
along with a corresponding motivation and illustrative sub-concepts are defined in Table 1.
Each “has” relationship is necessarily accompanied by an “is-of” relationship. For instance,
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an indicator is related to a metric by the hasMetric relationship as well as an inverse
isMetricOf relationship. The main axioms contained in the QoD ontology pertain to cardi-
nality and type restrictions on the object and data properties. For instance, the Indicator
class is asserted to be a subclass of the ssn:SystemProperty class in order to inherit its at-
tributes. Furthermore, each Indicator is required to have at least one quality metric of type
Metric which in turn is required to have at least one Interpretation. The interpretation
is subsequently linked to at least one individual of the MathematicalObject class from the
trans ontology in order to access the contained mathematical details. The aforementioned
entities are connected by the relations described in Table 1. Each relation is accompanied
by an inverse such that, for instance, a Metric is connected to an Interpretation by a
hasInterpretation object property and inversely by an Interprets object property. The
concepts added from external ontologies and data models are similarly listed in Table 2.
The ontology corresponding to a given object is specified using an appropriate prefix (e.g.,
trans, ssn, sosa, om) The parameters corresponding to the individual mathematical ob-
jects are accompanied by the om:hasNumericalValue data property that assigns a content
MathML string containing their numerical representations. Individual mathematical objects
can also be connected to literal string datatypes via the trans:hasLiteralExpression data
property. The sub-properties trans:hasMathMLExpression and trans:hasTeXExpression
relate mathematical objects to MathML and TEXstrings, respectively. qod ontology to lit-
eral datatypes. For example, the trans:hasMathMLExpression property relates MathML
strings that describe the operation performed to compute the score of a metric to an
individual of the Metric class.

Table 1. Overview of new concepts in the qod ontology.

Concept Motivation Illustrative Sub-Concepts

Indicator QoD indicator class Accuracy, BatteryLevel,
CalibrationDate

Metric
QoD metric that assigns a score to a
given sensor for an indicator Battery percentage, recency

Interpretation
Formal interpretation of the result
of calculating a metric

Low/critical/sufficient battery
level, calibration out of date

hasIndicator,
isIndicatorOf

Relationship between a sensor and
indicator

hasMetric,
isMetricOf

Relationship between an indicator
and metric

hasInterpretation,
Interprets

Relationship between a metric and
its interpretation

inputHasUnit
Information regarding the units of
the quantity used to calculate the
metric

inputAccessibleFrom
The data source from which
information necessary to calculate
the metric is accessible
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Table 2. Overview of external concepts the qod ontology.

Concept Motivation Illustrative Sub-Concepts

trans:Mathematical-
Object

Mathematical details of the metric Array, Polynomial, Interval

trans:isExpressedBy
Relationship between an object (e.g.,
a metric) and a mathematical object

trans:hasLiteral-
Expression

Attribute relating a mathematical
object to a literal data type

trans:hasMathMLExpression,
trans:hasTeXExpression

om:hasNumerical-
Value

Attribute assigning numerical
values to mathematical objects, eg.
coefficients of polynomials

ssn:System
A unit of abstraction for pieces of
infrastructure that implement
Procedures.

sosa:Sensor,
scal:CalibratedSensor

sosa:Sensor
Physical sensing device that
observes a particular physical
quantity

Accelerometers, barometers

sosa:Platform
A device or platform that hosts a
sensor Mobile phones

om:Measure
Assigning numerical values and
physical units to model
parameters[36]

Array, MeasureWithUncertainty

dsi:Uncertainty
Assigning uncertainties to model
parameters [35]

StandardUncertainty,
ExpandedUncertainty

4. Evaluation

The ontology merge was carried out using the Protegé [44] desktop tool and con-
flicts such as duplicated entries were manually resolved (The ontology files written in the
RDF Schema are available on Github at https://github.com/PTB-M4D/QoD accessed
on 27 September 2021). Methods for merging ontologies and evaluating the resulting
merge [45] are a viable option, especially for very large ontologies. However, a manual
check for duplicated entries was more feasible in the present case given the relatively
small size of the qod ontology. A more thorough check for consistency was carried out
using the HermiT (v. 1.38) reasoner on Protegé. In the following, we demonstrate the
utility of the qod ontology with respect to providing a machine-interpretable representation
of data quality by constructing a semantic description for a hypothetical use case. For
this purpose we consider the x-axis angular velocity sensor of the MPU9250 inertial mea-
surement unit [46] as an example. The MPU9250 is a system that consists of a three-axis
accelerometer, a three-axis gyroscope, and a three-axis magnetometer. In order to illustrate
the applicability of the qod ontology, the quality indicators of battery level and calibration
data are considered. For the battery level, the percentage value is used as a metric, while
the calibration data is quantified with two metrics, namely the measurement uncertainty
and recency; cf. Section 2.2. The representation of the QoD assessment is achieved using
the JSON-LD data format, with concepts from the proposed ontology mapped onto JSON
objects. Finally, the scope of the ontology is elaborated further by formulating a series of
competency questions.

https://github.com/PTB-M4D/QoD
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4.1. JSON-LD Representation

The qod ontology described in Section 3.1.1 serves as a method to formally understand
quality of data in sensor networks in terms of constituent base classes and the relationships
between them. In order to apply the aforementioned formalism on real-world data, an
appropriate method and format for encoding the entire QoD assessment is necessary.
JSON-LD (JavaScript Object Notation for Linked Data) [47] is a promising format for this
purpose. It is based on JSON [48], an open standard file and data-interchange format that
uses human-readable text to store and transmit data objects. The JSON syntax is built on
two main serializable structures:

• Unordered collections of comma-separated name/value pairs called objects enclosed
in braces { }. Each name is necessarily a string which is followed by a colon and the
value assigned to the name as “name”: value.

• Ordered lists of comma-separated values which are contained within square brackets
[ ]. Allowed values are strings specified in double quotes, numbers, booleans, null, or
objects and arrays themselves. Objects and arrays can thus be nested.

White space characters like spaces, tabs, line breaks and carriage returns are ignored
except within strings. Objects in JSON can be indefinitely nested and such a structure is
conducive to representing a possibly elaborate QoD assessment containing both numerical
scores and meaningful non-numerical metadata.

Linked data [49] in this context refers to structured data which is interlinked with other
data so it becomes more useful through semantic queries. Structured data conforming to
the qod ontology along with Internationalized Resource Identifiers (IRIs, [50]) provided for
the base classes and relationships is an example of linked data. A JSON-LD representation
is designed around a construct called the “context”, which is used to map IRIs to simpler
terms. A context in the JSON-LD syntax that utilizes concepts from the qod ontology is
given by:

1 {
2 "@context": {
3 "ssn": "http://www.w3.org/ns/ssn",
4 "qod": "http://www.example.de/qod",
5 "dsi": "http://www.example.de/dsi",
6 "trans": "http://www.example.de/trans",
7 "om": "http://www.ontology -of -units -of-measure

.org/resource/om-2",
8 "xsd": "http://www.w3.org/2001/XMLSchema",
9 "usecase": "http:// localhost/usecase"

10 "MPU9250": {"@type": "ssn:System",
11 "@id": "usecase:MPU9250"},
12 }
13 }

In the above example the IRI for the SSN (Semantic Sensor Network) ontology is
mapped onto the string “ssn” and that of the qod ontology onto the string “qod”. The data
corresponding to the use case is assumed to be locally stored and is referred to by the string
“usecase”. Moreover, the om ontology (see Figure 2) and the XML schema are included as
“om” and “xsd”. The sensor system under consideration is referred to as “MPU9250” and is
specified to be of the type “ssn:System” and is given an id under the “usecase” namespace.
The context can be included as-is in the JSON-LD file or it can be stored in an external file.
We assume the latter case and subsequently import the context from an external file named
“context.jsonld”. The description for the QoD indicator, metric, and interpretation for the
battery level is given by:
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1 {
2 "@context": "context.jsonld"
3

4 "BatteryIndicator": {"@id": "usecase:battery_indicator
","@type": "qod:BatteryLevelIndicator","qod:
hasMetric": "usecase:battery_metric"},

5

6 "BatteryMetric": {"@id": "usecase:battery_metric", "
@type": "qod:BatteryLevelMetric", "qod:
hasInterpretation": "usecase:battery_interpretation
", "trans:isExpressedBy": "usecase:
battery_math_object", "qod:inputAccessibleFrom": "
usecase:battery_data_source"},

7

8 "BatteryInterpretation": {"@id": "usecase:
battery_interpretation", "@type": "qod:
BatteryLevelInterpretation", "qod:inputHasUnit": "
om:percentage", "qod:SufficientIf": "<apply ><gt/><
ci >output </ci><cn>30 </cn ></apply >", "qod:CriticalIf
": "<apply ><lt/><ci>output </ci ><cn>15 </cn ></apply >"
},

9

10 "BatteryMathObject": {"@id": "usecase:
battery_math_object", "@type": "trans:
MathematicalObject", "trans:hasMathMLExpression":
"<apply ><eq/><ci>output </ci ><apply ><times/>100<ci >
input </ci ></apply ></apply >"}

11

12 "BatteryIndicatorRawDataSource": {"@id": "usecase:
battery_data_source", "@type": "db:rest_api", "db:
getRequest": "http:// localhost/database?system=MPU9
250&data=battery"},

13 }

The first object after including the context file is assigned the id “usecase:battery_indicator”
and is specified to be an object of the “qod:Indicator” class. It is then assigned a metric
associated with the id “usecase:battery_metric”. The battery metric is specified to be of the
type “qod:Metric” and is given an interpretation “battery_interpretation”. Moreover, the
interpretation states that the input has a percentage defined using the qod:inputHasUnit
relation and the om:percentage object from the OM ontology. The mathematical expression
for the battery metric is given by “usecase:battery_math_object” and the raw data corre-
sponding to the battery value is stated to be accessible at “usecase:battery_data_source”.
The interpretation uses the data properties SufficientIf and CriticalIf to classify the
battery level as sufficient if over 30 and critical if below 15 using MathML expressions.
Similarly, the mathematical object is specified to be of type trans:MathematicalObject
with a corresponding MathML expression that corresponds to the conversion of a given
ratio input to a percentage value. Finally, the source of the battery data is available locally
via a REST-API [51] and is named “usecase:battery_data_source”.

A similar description can be formulated if the calibration data is considered a quality
indicator. In this case, the corresponding calibration indicator is specified to have two
metrics: a measurement uncertainty metric and a recency metric (see Section 2.2).
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1 {
2 "@context": "context.jsonld"
3

4 "CalibrationIndicator": {"@id": "usecase:
calibration_indicator", "@type": "qod:
CalibrationData", "qod:hasMetric": ["usecase:
measurement_uncertainty_metric", "usecase:
recency_metric"]},

5

6 "MeasurementUncertaintyMetric": {"@id": "usecase:
measurement_uncertainty_metric", "@type": "qod:
Metric", "qod:hasInterpretation": "usecase:
measurement_uncertainty_interpretation", "trans:
isExpressedBy":"usecase:
measurement_uncertainty_object", "qod:
inputAccessibleFrom": "usecase:
calibration_data_source"},

7

8 "MeasurementUncertaintyInterpretation": {"@id": "
usecase:measurement_uncertainty_interpretation", "
@type": "qod:Interpretation", "qod:inputHasUnit": "
om:radianPerSecond -Time", "qod:GoodIf": "<apply ><
leq/><ci>output </ci ><cn >0.01</cn ></apply >", "qod:
SufficientIf":"<apply ><lt/><cn >.01 </cn ><ci >output </
ci ><cn >.5</cn ></apply >", "qod:CriticalIf": "<apply
><geq/><ci >output </ci><cn >0.5</cn ></apply >"},

9

10 "MeasurementUncertaintyObject": {"@id": "usecase:
measurement_uncertainty_object", "@type": "trans:
MathematicalObject", "trans:hasMathMLExpression":
"<apply ><eq/><ci>output </ci ><ci >input </ci ></apply >"
}

11

12 "CalibrationDataSource": {"@id": "usecase:
calibration_data_source", "@type": "db:rest_api", "
db:getRequest": "http:// localhost/database?system=
MPU9250_xaxis&data=calibration"}

The measurement uncertainty metric is associated with a corresponding interpretation
and is expressed by a measurement uncertainty object accessible from a specified data
source. In contrast to the battery level, the measurement uncertainty interpretation cate-
gorizes the uncertainty as “good” if below 0.01, “sufficient” if between 0.01 and 0.5, and
“critical” otherwise. Furthermore, the interpretation indicates that the input has angular
velocity units (rad·s−1) via the OM ontology. The measurement uncertainty object is also
of type MathematicalObject from the trans ontology and its MathML expression is a
simple equality relation. In other words, the measurement uncertainty value received from
the data source is directly used to interpret the QoD. As in the case of the battery level,
the calibration data is available locally from the same source (e.g., a digital calibration
certificate) via a REST-API and is named “usecase:calibration_data_source”.
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14 "RecencyMetric": {"@id": "usecase:recency_metric", "
@type": "qod:Metric", "qod:hasInterpretation": "
usecase:recency_interpretation", "trans:
isExpressedBy": "usecase:recency_object", "qod:
inputAccessibleFrom": "usecase:
calibration_data_source"},

15

16 "RecencyInterpretation": {"@id": "usecase:
recency_interpretation", "@type": "qod:
Interpretation", "qod:inputHasUnit": "om:day", "qod
:GoodIf": "<apply ><leq/><ci >output </ci><cn>180</cn
></apply >", "qod:SufficientIf":"<apply ><lt/><cn>180
</cn><cn>output </cn ><cn>365 </cn ></apply >", "qod:
CriticalIf": "<apply ><geq/><ci >output </ci><cn >365</
cn ></apply >"},

17

18 "RecencyObject": {"@id": "usecase:recency_object", "
@type": "trans:MathematicalObject", "trans:
hasMathMLExpression": "<apply ><eq/><ci>output </ci><
apply ><minus/><apply >current -date </apply ><ci >input
</ci ></apply ></apply >"}

19 }

In a similar manner, the recency metric is associated with a recency interpretation
and gets its data from the same calibration source as the uncertainty metric. The recency
interpretation classifies the QoD as “good” if the calibration is newer than 180 days,
“sufficient” if between 180 and 365 days, and “critical” if older. The interpretation also
indicates that the input has the time unit om:day from the OM ontology. The recency
object is now specified to be an XML duration object that is calculated by subtracting the
calibration date from the current date. We have thus used the same data properties GoodIf,
SufficientIf and CriticalIf to describe the QoD assessment for two different metrics
for the same indicator.

4.2. Competency Questions

One of the key strengths of ontologies is that they enable automated processes to
reason about rather coarse criteria for data processing and reach decisions without further
human operator input. The qod ontology achieves this by providing a convenient way to
add purpose-subjective interpretations of QoD metrics to an existing measurement system.
A standard method to assess the ability of an ontology to provide answers to such vague
questions is to use competency questions (CQs) [52]. CQs are typically represented as a set
of questions and their respective answers are formulated in natural language such that the
ontology is able to answer each question correctly. CQs also play a fundamental role in
the development of an ontology by enabling the identification of the main elements and
relationships in a domain [53]. In a system with multiple sensors of the type described in
the previous section, the qod ontology is able to answer questions of the following type:

• Which sensors have a critical battery value?
• Which Metric was used to calculate the battery value?
• Which of two given sensors has a lower measurement uncertainty?
• Which sensors have not been calibrated recently?

In Figure 4, potential SPARQL queries corresponding to the first two of the above
system-specific competency questions are shown. The first query returns the available
sensors (MPU9250 and a dummy sensor) in the network with an indicated battery level.
The type of interpretation corresponding to the battery level of the metrics is then queried
and two different interpretations—battery level and remaining lifetime—are returned.
Finally, the battery level of the sensors and the mathematical expression used to convert the
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raw data values to interpretable numbers (percentage and hours remaining in the present
case) are queried and returned. In the inset, the ontology is queried to check which of the
sensors have a critical battery level and the dummy sensor is returned as its remaining
lifetime (0.5 h) is below the critical minimum threshold of 2 h.

Figure 4. SPARQL queries corresponding to the battery level of sensors in the network. In the first query, the available
sensors (MPU9250 and a dummy sensor) in the network with an indicated battery level are returned along with the
corresponding interpretation-types. The battery level of both sensors and the mathematical expression used to convert the
raw data values to interpretable numbers are also queried. Inset: The ontology is queried to find sensors with a critical
battery level and the dummy sensor is returned due to its critical remaining lifetime.

The qod ontology can also answer general queries of the form

• Which types of Indicator are available for a given system
• Which types of Metric are available for a given Indicator?
• What is the MathematicalObject corresponding to the TimelinessMetric?

Example SPARQL queries along with their results corresponding to the first two
questions are shown in Figure 5a,b. The first figure shows that the MPU9250 has two types
of available quality indicators—a battery level and calibration data, while the dummy
sensor is only provided with a battery level indicator. In the second case, we see the result
of a system-independent query that shows which types of quality metrics are available for
each indicator type. The calibration data, unlike the rest, can have both the recency of its
calibration and its measurement uncertainty as metrics.
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(a) (b)
Figure 5. SPARQL queries and corresponding outputs applied on the qod ontology. (a) SPARQL query and result showing
that the MPU9250 has both a battery level and calibration data as quality indicators, while the dummy sensor is only
provided with a battery level indicator. (b) SPARQL query and result showing the different types of metrics available to the
quality indicators in the ontology.

5. Conclusions

A basic scheme and an ontology for representing the quality of data in sensor net-
works have been presented. The concepts derived were then used to formulate a machine-
interpretable description of QoD for a real-world use case. In Section 2 a semantic descrip-
tion of QoD was developed based on four main classes-systems, indicators, metrics and
interpretations. A clear distinction was made between the metric which we defined as a
method to calculate a score corresponding to a particular indicator, and the interpretation of
the score itself. By integrating this distinction into our ontology, we emphasize the machine
interpretability of our model at each level. The scheme introduced was consolidated into
an ontology in Section 3 such that the proposed semantically expressive description of QoD
was extended with relationships between the different concepts and between individual
classes and datatypes. The qod ontology makes existing metrics explicit by relying on the
trans ontology to describe the mathematical building blocks of the underlying compu-
tations. By including the SSN system capabilities module in our ontology, the inherent
applicability of the model to soft sensors and sensor aggregates, in addition to physical
sensors, was ensured. The constructed ontology was evaluated for the x-axis angular
velocity sensor of the MPU9250 system in Section 4. A representation of the battery level
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and calibration data as quality indicators was presented along with corresponding metrics.
For the battery level, a percentage value was used as a metric, while the recentness of the
calibration and the measurement uncertainty were assigned as quality metrics for the cali-
bration data. The QoD assessment for the aforementioned case was encoded in Section 4.1
using the JSON-LD format in order to take advantage of its hierarchical structure. The
use of simple keys to refer to IRIs corresponding to ontology concepts greatly improves
the human readability of the data format. Furthermore, a general evaluation of the qod
ontology by means of a series of competency questions (CQs) was presented in Section 4.2.
Future work will focus on the incorporation of QoD as additional inputs into machine
learning algorithms that act on sensor network data. The key issues to be tackled in this
regard is the influence of such higher level algorithms on QoD and finding appropriate
methods for the assessment of QoD in soft and model-based sensors. The incorporation of
events in the ontology in order to model the influence of changes in the sensor network
structure, for instance with regard to sensor failure or the addition of new components,
will also be a focus of future research .

Author Contributions: Conceptualization, A.P.V., J.N., M.G. and S.E.; funding acquisition, S.E.;
investigation, A.P.V., M.G. and S.E.; methodology, A.P.V., M.G., J.N. and S.E.; writing-original draft
preparation, A.P.V. and M.G.; supervision, A.P.V. and S.E.; writing-review and editing, A.P.V., J.N.,
M.G. and S.E. All authors have read and agreed to the published version of the manuscript.

Funding: This work was part of the GEMIMEG-II project and received funding from the German Fed-
eral Ministry for Economic Affairs and Energy (BMWi), Grant reference: *GEMIMEG 01 MT20001E*.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this publication is publicly available. Corresponding
references are given in the paper.

Acknowledgments: Research for this paper was co-financed within the project GEMIMEG-II of the
Federal Ministry of Economic Affairs and Energy (BMWi). We also thank Thomas Engel for his
valuable comments on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SSN Semantic Sensor Network
SOSA Sensor, Observation, Sample, Actuator
QoD Quality of data
QoS Quality of Sensing
IoT Internet of Things
IIoT Industrial Internet of Things
DCC Digital Calibration Certificate
CQ Competency Question
SI Système international (d’unités)
VIM Vocabulaire International de Métrologie
D-SI Digital SI
IRI Internationalized Resource Identifier

References
1. Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The industrial internet of things (IIoT): An analysis framework. Comput. Ind.

2018, 101, 1–12. doi: 10.1016/j.compind.2018.04.015. [CrossRef]
2. Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 2016 49th Hawaii

International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [CrossRef]

doi: doi: 10.1016/j.compind.2018.04.015
http://doi.org/10.1016/j.compind.2018.04.015
http://dx.doi.org/10.1109/HICSS.2016.488


Sensors 2021, 21, 6462 20 of 21

3. Joint Committee for Guides in Metrology. JCGM 100: Evaluation of Measurement Data-Guide to the Expression of Uncertainty
in Measurement. 2008. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf (accessed
on 27 September 2021).

4. Eichstädt, S. Publishable Summary for 17IND12 Met4FoF “Metrology for the Factory of the Future”. 2020. Available online:
https://zenodo.org/record/3404800 (accessed on 27 September 2021).

5. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. International Vocabulary of Metrology-Basic and General Concepts and Associated
Terms (VIM); JCGM: Sèvres, France, 2012. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_200_20
12.pdf (accessed on 27 September 2021).

6. Hackel, S.; Härtig, F.; Hornig, J.; Wiedenhöfer, T. The digital calibration certificate. PTB-Mitteilungen Forsch. Prufen 2017,
127, 75–81.

7. Li, Y.; Parker, L.E. Nearest Neighbor Imputation Using Spatial-Temporal Correlations in Wireless Sensor Networks. Inf. Fusion
2014, 15, 64–79. [CrossRef] [PubMed]

8. Eichstädt, S.; Gruber, M.; Vedurmudi, A.P.; Seeger, B.; Bruns, T.; Kok, G. Toward Smart Traceability for Digital Sensors and the
Industrial Internet of Things. Sensors 2021, 21, 2019. [CrossRef]

9. Goebel, K.; Yan, W. Correcting Sensor Drift and Intermittency Faults with Data Fusion and Automated Learning. IEEE Syst. J.
2008, 2, 189–197. [CrossRef]

10. Cannarile, F.; Baraldi, P.; Colombo, P.; Zio, E. A Novel Method for Sensor Data Validation based on the analysis of Wavelet
Transform Scalograms. Int. J. Progn. Health Manag. 2018, 9. [CrossRef]

11. Teh, H.Y.; Kempa-Liehr, A.W.; Wang, K.I.K. Sensor data quality: A systematic review. J. Big Data 2020, 7, 11. [CrossRef]
12. Schütze, A.; Helwig, N. Sensorik und Messtechnik für die Industrie 4.0. tm-Tech. Mess. 2017, 84, 310–319. [CrossRef]
13. Schneider, T.; Helwig, N.; Schuetze, A. Industrial condition monitoring with smart sensors using automated feature extraction

and selection. Meas. Sci. Technol. 2018, 29. [CrossRef]
14. Eichstädt, S.; Ludwig, B. Metrology for heterogeneous sensor networks and Industry 4.0. at-Automatisierungstechnik 2020,

68, 459–464. doi:10.1515/auto-2020-0059. [CrossRef]
15. D’Aniello, G.; Gaeta, M.; Hong, T. Effective Quality-Aware Sensor Data Management. IEEE Trans. Emerg. Top. Comput. Intell.

2018, 2, 65–77. [CrossRef]
16. Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. Sci. Am. 2001, 284, 34–43. [CrossRef]
17. Sheth, A.; Perry, M. Traveling the Semantic Web through Space, Time, and Theme. IEEE Internet Comput. 2008, 12, 81–86.

[CrossRef]
18. Padmavathi, T.; Krishnamurthy, M. Semantic Web Tools and Techniques for Knowledge Organization: An Overview. Knowl.

Organ. 2017, 44, 273–290. [CrossRef]
19. Bertossi, L.; Rizzolo, F.; Jiang, L. Data Quality Is Context Dependent. In Enabling Real-Time Business Intelligence; Castellanos, M.,

Dayal, U., Markl, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–67.
20. Kuka, C.; Nicklas, D. Enriching sensor data processing with quality semantics. In Proceedings of the 2014 IEEE International

Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), Budapest, Hungary, 24–
28 March 2014; pp. 437–442. [CrossRef]

21. Fortuna, L.; Graziani, S.; Rizzo, A.; Xibilia, M. Soft Sensors for Monitoring and Control of Industrial Processes; Springer: London, UK,
2007. [CrossRef]

22. Shang, C.; Yang, F.; Huang, D.; Lyu, W. Data-driven soft sensor development based on deep learning technique. J. Process. Control
2014, 24, 223–233. doi: 10.1016/j.jprocont.2014.01.012. [CrossRef]

23. Klein, A.; Lehner, W. Representing Data Quality in Sensor Data Streaming Environments. J. Data Inf. Qual. 2009, 1. [CrossRef]
24. Sachidananda, V.; Khelil, A.; Suri, N. Quality of information in wireless sensor networks. In Proceedings of the 15th International

Conference on Information Quality, ICIQ 2010, Little Rock, AR, USA, 12–14 November 2010. MIT Information Quality Program.
25. Ye, J.; Stevenson, G.; Dobson, S. Detecting abnormal events on binary sensors in smart home environments. Pervasive Mob.

Comput. 2016, 33, 32–49. doi: 10.1016/j.pmcj.2016.06.012. [CrossRef]
26. Geisler, S.; Weber, S.; Quix, C. Ontology-based data quality framework for data stream applications. In Proceedings of the

16th international conference on information quality (ICIQ-11), Paris, France, 18–20 November 2011; Koronios, A., Gao, J., Eds.;
pp. 145–159.

27. Gruber, T.R. A Translation Approach to Portable Ontology Specifications. Knowl. Acquis. 1993, 5, 199–220. [CrossRef]
28. Patel-Schneider, P.; Parsia, B.; Motik, B. OWL 2 Web Ontology Language. Structural Specification and Functional-Style Syntax, 2nd

ed.; World Wide Web Consortium (W3C): Online, 2012. Available online: https://www.w3.org/TR/owl2-syntax/ (accessed on
27 September 2021).

29. Sheth, A.; Henson, C.; Sahoo, S. Semantic Sensor Web. Internet Comput. IEEE 2008, 12, 78–83. [CrossRef]
30. Gruber, M.; Eichstädt, S.; Neumann, J.; Paschke, A. Semantic information in sensor networks: How to combine existing ontologies,

vocabularies and data schemes to fit a metrology use case. In Proceedings of the 2020 IEEE International Workshop on Metrology
for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020; pp. 469–473.

31. Vedurmudi, A.P.; Gruber, M.; Eichstädt, S.; Paschke, A. Semantics in Sensor Networks: An Ontology for Dynamic Transfer
Behavior in Calibrated Sensors. In Proceedings of the IEEE 2021 International Workshop on Metrology for Industry 4.0 & IoT,
Rome, Italy, 7–9 June 2021; pp. 358–363.

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
https://zenodo.org/record/3404800
https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf
https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf
http://dx.doi.org/10.1016/j.inffus.2012.08.007
http://www.ncbi.nlm.nih.gov/pubmed/28435414
http://dx.doi.org/10.3390/s21062019
http://dx.doi.org/10.1109/JSYST.2008.925262
http://dx.doi.org/10.36001/ijphm.2018.v9i1.2670
http://dx.doi.org/10.1186/s40537-020-0285-1
http://dx.doi.org/10.1515/teme-2016-0047
http://dx.doi.org/10.1088/1361-6501/aad1d4
doi: doi:10.1515/auto-2020-0059
http://dx.doi.org/10.1515/auto-2020-0059
http://dx.doi.org/10.1109/TETCI.2017.2782800
http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1109/MIC.2008.46
http://dx.doi.org/10.5771/0943-7444-2017-4-273
http://dx.doi.org/10.1109/PerComW.2014.6815246
http://dx.doi.org/10.1007/978-1-84628-480-9
doi: doi: 10.1016/j.jprocont.2014.01.012
http://dx.doi.org/10.1016/j.jprocont.2014.01.012
http://dx.doi.org/10.1145/1577840.1577845
doi: doi: 10.1016/j.pmcj.2016.06.012
http://dx.doi.org/10.1016/j.pmcj.2016.06.012
http://dx.doi.org/10.1006/knac.1993.1008
https://www.w3.org/TR/owl2-syntax/
http://dx.doi.org/10.1109/MIC.2008.87


Sensors 2021, 21, 6462 21 of 21

32. Lefort, L.; Henson, C.; Taylor, K.; Compton, M.; Corcho, Ó.; Castro, R.; Graybeal, J.; Herzog, A.; Janowicz, K.; Neuhaus, H.; et al.
Semantic Sensor Network XG Final Report. 2011. Available online: https://www.w3.org/2005/Incubator/ssn/XGR-ssn-201106
28/ (accessed on 27 September 2021).

33. Haller, A.; Janowicz, K.; Cox, S.; Lefrançois, M.; Taylor, K.; Le-Phuoc, D.; Lieberman, J.; García-Castro, R.; Atkinson, R.; Stadler, C.
The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and
actuation. Semant. Web 2019, 10, 9–32. [CrossRef]

34. Janowicz, K.; Haller, A.; Cox, S.J.; Le Phuoc, D.; Lefrançois, M. SOSA: A lightweight ontology for sensors, observations, samples,
and actuators. J. Web Semant. 2019, 56, 1–10. doi: 10.1016/j.websem.2018.06.003. [CrossRef]

35. Hutzschenreuter, D.; Härtig, F.; Heeren, W.; Wiedenhöfer, T.; Forbes, A.; Brown, C.; Smith, I.; Rhodes, S.; Linkeová, I.; Sýkora, J.;
et al. SmartCom Digital System of Units (D-SI) Guide for the Use of the Metadata-Format Used in Metrology for the Easy-To-Use,
Safe, Harmonised and Unambiguous Digital Transfer of Metrological Data. 2019. Available online: https://zenodo.org/record/
3522631#.YUv6sGJByUk (accessed on 27 September 2021).

36. Rijgersberg, H.; van Assem, M.; Top, J. Ontology of units of measure and related concepts. Semant. Web 2013, 4, 3–13. [CrossRef]
37. Gruber, T.R.; Olsen, G.R. An Ontology for Engineering Mathematics. In Proceedings of the Fourth International Conference on

Principles of Knowledge Representation and Reasoning, Bonn, Germany, 24–27 May 1994; pp. 258–269.
38. Battle, R.; Kolas, D. Enabling the geospatial Semantic Web with Parliament and GeoSPARQL. Semant. Web 2012, 3, 355–370.

[CrossRef]
39. Ausbrooks, R.; Buswell, S.; Carlisle, D.; Chavchanidze, G.; Dalmas, S.; Devitt, S.; Diaz, A.; Dooley, S.; Hunter, R.; Ion, P.; et al.

Mathematical Markup Language (MathML) Version 3.0. 2014. https://www./TR/2014/REC-MathML3-20140410/ (accessed on
21 June 2021).

40. Nevzorova, O.A.; Zhiltsov, N.; Kirillovich, A.; Lipachev, E. OntoMathPROOntology: A Linked Data Hub for Mathematics. In In-
ternational Conference on Knowledge Engineering and the Semantic Web; Klinov, P., Mouromtsev, D., Eds.; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 105–119.

41. Baillie, C.; Edwards, P.; Pignotti, E.; Corsar, D. Short paper: Assessing the quality of semantic sensor data. In Proceedings of the
6th International Workshop on Semantic Sensor Networks, Sydney, Australia, 22 October 2013.

42. Belhajjame, K.; Cheney, J.; Corsar, D.; Garijo, D.; Soiland-Reyes, S.; Zednik, S.; Zhao, J. PROV-O: The PROV Ontology. 2012.
Available online: https://www.w3.org/TR/prov-o/ (accessed on 27 September 2021).

43. Taylor, K.; Haller, A.; Lefrançois, M.; Cox, S.; Janowicz, K.; García-Castro, R.; Le-Phuoc, D.; Lieberman, J.; Atkinson, R.; Stadler, C.
The Semantic Sensor Network Ontology, Revamped. In Proceedings of the Journal Track Co-Located with the 18th International
Semantic Web Conference (ISWC 2019), Auckland, New Zealand, 26 October 2019.

44. Musen, M. The protégé project: A look back and a look forward. AI Matters 2015, 14, 4–12. [CrossRef]
45. Noy, N.F.; Musen, M.A. PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. In Proceedings of the

Seventeenth National Conference on Artificial Intelligence (AAAI-2000), Austin, TX, USA, 30 July–3 August 2000.
46. TDK Corporation, San Jose, CA. TDK-InvenSense Motion Sensor Universal Evaluation Board (UEVB) User Guide. 2017. Available

online: https://invensense.tdk.com/download-pdf/invensense-motion-sensor-universal-evaluation-board-uevb-user-guide/
(accessed on 23 June 2021).

47. Sporny, M.; Longley, D.; Kellogg, G.; Lanthaler, M.; Lindström, N. JSON-LD 1.1: A JSON-Based Serialization for Linked Data.
2019. Available online: https://json-ld.org/spec/latest/json-ld/ (accessed on 29 June 2021).
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