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Abstract: Considering the resource constraints of Internet of Things (IoT) stations, establishing secure
communication between stations and remote servers imposes a significant overhead on these stations
in terms of energy cost and processing load. This overhead, in particular, is considerable in networks
providing high communication rates and frequent data exchange, such as those relying on the IEEE
802.11 (WiFi) standard. This paper proposes a framework for offloading the processing overhead of
secure communication protocols to WiFi access points (APs) in deployments where multiple APs
exist. Within this framework, the main problem is finding the AP with sufficient computation and
communication capacities to ensure secure and efficient transmissions for the stations associated
with that AP. Based on the data-driven profiles obtained from empirical measurements, the proposed
framework offloads most heavy security computations from the stations to the APs. We model
the association problem as an optimization process with a multi-objective function. The goal is
to achieve maximum network throughput via the minimum number of APs while satisfying the
security requirements and the APs’ computation and communication capacities. The optimization
problem is solved using genetic algorithms (GAs) with constraints extracted from a physical testbed.
Experimental results demonstrate the practicality and feasibility of our comprehensive framework in
terms of task and energy efficiency as well as security.

Keywords: IoT edge computing; TLS offloading; device association; security

1. Introduction

The applications and density of Internet of Things (IoT) stations, also known as IoT
devices, are increasing at a very fast pace. It is projected [1] that one trillion new IoT
devices (i.e., stations) will be produced by 2035. The number of IoT connections will reach
83 billion by 2024, rising from 35 billion connections in 2020 [2]. In many IoT applications,
the stations at the edge are usually constrained in terms of computation and communication
resources [3]. There is an unprecedented need for solutions that are more efficient in terms
of resource consumption, as these stations become more widely adopted.

Exchanging data with IoT stations requires a secure connection to prevent eavesdrop-
ping, tampering, forgery, and other types of attacks. To this end, cryptographic techniques
such as public key cryptography (PKC) and symmetric key cryptography (SKC) have been
adopted. Secure protocols, such as transport layer security (TLS) and datagram transport
layer security (DTLS), are also applied to provide end-to-end communication with au-
thenticity, security, and integrity [4,5]. However, the existing solutions often lead to heavy
computation overhead, which IoT stations cannot afford due to their resource-constrained
nature. Moreover, a slight increase in a station’s resource consumption causes significantly
higher resource consumption when being applied on a large-scale basis across many IoT
stations, thereby increasing the energy footprint of IoT technology.
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There have been various attempts to reduce the computation overhead of security
operations for IoT stations. However, these solutions only partially reduce computa-
tion/communication costs, which can be measured in terms of time and energy consump-
tion. In particular, as the amount of data exchanged with stations increases, the overhead
of secure communication with stations also increases excessively. Therefore, especially for
high-rate standards such as IEEE 802.11 (WiFi) [6], there is a need for a more comprehensive
offloading solution to relieve a station’s heavy computation burden by transferring the
computation to gateways such as WiFi access points (APs). Given that offloading computa-
tion from stations to their associated AP is a classical many-to-one matching problem [7],
the question of to which AP a station should be associated becomes significant. An AP
has a finite computational capacity, whereas each station requires its associated AP to
satisfy its demand. This becomes a device association (DA) problem, a natural extension of
station-to-AP computational offloading, and can be defined as an optimization problem
with multiple constraints. An optimal solution to the DA problem can ensure a significant
reduction in resource consumption for all stations in the entire network. Existing DA
studies mainly focus on improving network throughput by considering factors such as
signal quality, transmission delay, load balancing, etc. However, these studies seldom
consider an AP’s computational capacity a constraint when capacity is actually crucial for
identifying the optimal AP to which the extra computation overhead will be offloaded.

This paper treats security offloading and DA as an integrated problem. Specifically,
the proposed framework aims to establish lightweight end-to-end secure connections
between IoT stations and the cloud by offloading the complex security operations to APs.
Furthermore, this study focuses on the scenario where multiple APs are available for a
station to be associated with. The goal of DA is to achieve maximum network throughput
while utilizing a minimum number of APs. To the best of our knowledge, this is the first
study to formulate the DA problem by considering the TLS offloading overhead incurred
by security computations. The major contributions of this work are summarized as follows:

• We propose a security offloading framework that allows resource-constrained stations
to offload expensive TLS handshake processes to their associated AP securely. This
can significantly reduce stations’ resource consumption and improve their lifespan.
A testbed is used to implement and evaluate the proposed framework, revealing
savings in terms of energy by approximately 15x compared to the conventional
approach of establishing TLS handshakes.

• As an integrated component of the offloading framework, we formulate a multi-
objective DA optimization problem, aiming to maximize the network throughput via
a minimum number of APs while satisfying security requirements and not overloading
the APs’ computation and communication capacities. The optimal solution is identi-
fied based on genetic algorithms (GAs), which can flexibly support multi-objective
functions with constraints. Experimental results demonstrate that the proposed DA
scheme can deliver higher throughput compared to other existing DA schemes as
the network size grows. Additionally, the proposed DA scheme supports 35% more
stations than its closest competitor.

The rest of the paper is organized as follows. Related works are discussed in Section 2.
The proposed security offloading framework and DA scheme are discussed in detail in
Sections 3 and 4, respectively. Section 5 presents the experiment setup and analyzes the
results. Lastly, Section 6 concludes the study with future research directions.

2. Related Work

We categorize the related work into two main groups: (1) offloading schemes and
cryptographic optimizations and (2) device association (DA). Table 1 summarizes the
characteristics of the most relevant related work.
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Table 1. An overview of the related works on offloading schemes, cryptographic optimizations,
and device association (DA). ‘DA factors’ refer to the input an implementation needs to perform DA
(only applicable for works covering DA). E: Experimental. S: Simulated. PO: Partial offloading. FO:
Full offloading. CO: Cryptographic optimization. CEN: Centralized. DIST: Distributed.

Reference E/S Category DA Factors Architecture

[8] E PO, CO N/A N/A

[9] E FO N/A N/A

[10] S FO N/A N/A

[11] E CO N/A N/A

[12] E CO N/A N/A

[13] E CO N/A N/A

[14] E CO N/A N/A

[15] S DA Throughput, load balancing CEN

[16] S DA Network utility, user-AP airtime CEN

[17] S DA Channel assignment, multicast. CEN

[18] S DA Load balancing, throughput CEN

[19] S DA Load balancing, energy savings, throughput CEN

[20] S DA Load balancing, energy savings CEN

[21] S DA Throughput, load balancing, free air time CEN

[22] S DA Throughput CEN

[23] S DA Throughput DIST

[24] S DA Fairness, throughput DIST

[25] S DA Throughput DIST

[26] S DA Channel utilization DIST

2.1. Offloading Schemes and Cryptographic Optimizations

Offloading the heavy computational security operations is critical to ensure efficient
and secure communication and a long lifespan of IoT stations. There has been significant
research to provide authentication, privacy, and integrity. For example, in [8], the authors
employ GPUs and an optimized implementation of RSA to build a novel IoT architecture,
enabling the offloading of only the signature generation component of TLS to a smart
gateway. As opposed to this work, our proposed framework offloads the entire TLS
handshake, which consists of authentication, confidentiality, and integrity algorithms.

There are a few works on offloading the entire handshaking process of datagram
transport layer security (DTLS), which is limited to messages of a 1500-byte size [27].
For instance, the authors in [9] design an architecture that enables resource-constrained
devices to establish end-to-end secure communication using DTLS. A dedicated network
node is proposed to perform handshake offloading on behalf of an IoT station. The authors
in [10] propose to offload DTLS handshake through one trusted gateway. Their work
mainly focuses on IEEE 802.15.4, which is not suitable for facilitating communication
among large numbers of IoT stations or for large area coverage [28]. In this study, we focus
on IEEE 802.11, which has a 300x higher data rate and 10x longer range than the IEEE
802.15.4 standard [9,10,28]. To the best of our knowledge, this proposed framework is the
first one to focus on IEEE 802.11 TLS handshake offloading from a resource-constrained
IoT station to an AP.

In addition to offloading, another approach is to reduce the computation overhead
on stations through algorithmic optimization. Porambage et al. [11] design a lightweight
authentication protocol (PAuthKey) to enable mutual authentication and key establishment,
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providing application level end-to-end security via DTLS with a cipher suite that includes
ECDSA and ECDH. In [12], a customized lightweight SSL protocol is proposed; it operates
on resource-constrained devices under IEEE 802.15.4 standard and adopts ECDSA and
ECDH as its cipher suites. In [13], Zhang et al. were able to improve the efficiency of
the RSA algorithm by approximately 50% for a 2048-bit key size to be able to run on a
station. Compared to these schemes, the proposed framework reserves only the symmetric
algorithm (AES_GCM_256) on the IoT station, resulting in less computational overhead on
the stations.

2.2. Device Association

In a large network, where multiple APs are available, it is necessary to identify an
optimal DA scheme with certain objectives, subject to some constraints. Prior to finding the
optimal DA scheme, it is often necessary to consider DA as an optimization problem with
various factors. Saad et al. [22] approach the user-association problem in small cell wireless
networks by employing analytical techniques based on the college admissions game and
coalitional game theory [29,30]. Peng et al. present user to remote radio head association
(RRH) strategies for cloud radio access networks (C-RANs) and derive closed-form expres-
sions for the ergodic capacity of the proposed association methods, ultimately providing
a theoretical proof of concept [31]. In [15], the authors model DA as a weighted bipartite
graph and find the optimal semi-matching using the Kuhn–Munkres (K-M) algorithm.
Dandapat et al. frame the DA issue as a max-flow problem and demonstrates that their
proposed heuristic is a promising solution [24]. Other works consider the DA problem a
mixed/integer linear programming problem [18,19,23]. Existing DA formulations, while
novel, mostly incorporate factors such as throughput, signal level, load balancing, channel
utilization, link quality, number of transmissions, etc. [15,16,18,19,21,32]. In our study,
we treat the AP’s computational capacity as a new major factor, which arises as a natu-
ral extension of our offloading framework, along with factors mentioned in the existing
studies above. Incorporating the AP’s computational capacity leads us to formulate a
multi-objective optimization problem, with the goals of achieving maximum network
throughput while requiring a minimum number of APs.

Finally, a DA decision can be made in either a distributed or centralized manner.
Distributed mechanisms require stations to collect information on the neighboring APs
and to identify an optimal association resulting in extra overhead for stations [23–26]. This
contradicts the purpose of minimizing the computation on IoT stations. On the other
hand, our proposed centralized approach takes into account the AP’s computational and
communication capacities, as well as security level, as opposed to other studies [15,17,19].

3. Secure Offloading Framework

In this section, we introduce TLS basics and the security rationale for the proposed
offloading framework. Then, a detailed description of the framework’s functionalities is
presented. All handshake functions in this framework refer to the establishment of TLS
connections between any two peers.

3.1. TLS Preliminaries

In this subsection, we briefly discuss the basics of the TLS protocol to facilitate the
understanding of the proposed offloading scheme. TLS consists of two major layers: the
handshake protocol and the record layer. The handshake protocol, which adopts PKC,
allows the server and the client to authenticate each other and negotiate an agreed-upon
cipher suite from a set of related cryptographic algorithms defined for varying needs
of security. The record layer, which adopts symmetric cryptography, handles messages
between the application layer and the transport layer by performing data fragmentation,
encryption, and decryption.

Our previous work [33] has quantitatively measured the significant amount of energy
consumption required by these cryptographic algorithms, especially the PKC algorithms
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and the authentication processes needed by the handshake protocol. Therefore, in this
paper, we propose to offload to the AP the asymmetric algorithms as well as signing and
verification processes, which usually consume a significant amount of resources [10]. Mean-
while, only the lightweight symmetric encryption will be carried out on the IoT stations
based on a pre-shared key, which has been previously distributed by an AP manager
to stations and APs, as covered in detail later. We adopt an authenticated encryption
with additional data (AEAD) algorithm with the Galois/counter mode (GCM), one of the
symmetric ciphers that is recommended in TLS 1.3 [34]. The adopted algorithm can satisfy
both security and efficiency requirements at the IoT stations [35,36].

3.2. System Overview

This section presents an overview of the proposed framework. In particular, we aim
to establish a secure connection between a station and a server on the cloud through the
secure TLS handshake protocol. However, rather than performing all the TLS operations
at the resource-constrained IoT station end, we propose to offload the TLS handshake
component, which is the most computationally heavy process, to the associated AP. This is
accomplished by maintaining a secure connection between the station and the associated
AP. To achieve this, we mainly consider three types of devices as follows:

1. AP manager (henceforth referred to as mgrGateway): a centralized monitor and
controller of the network. It is responsible for real-time station monitoring and station
handover as well as dynamic distribution of pre-shared keys.

2. AP : a set of m access points marked as {ap1, ap2, . . . apm}, all working on the same
channel to facilitate connections between stations and the cloud. Every station associ-
ated with an AP is allocated airtime in a manner that ensures each station’s demand
is met. We also assume that only one station can transmit at a given time for every
AP. The order of airtime allocation follows the heuristic approach in which the station
with maximum demand transmits first.

3. ST A: a set of n IoT stations marked as {sta1, sta2, . . . stan}.
Figure 1 depicts the architecture of the framework, showing interactions among differ-

ent devices in the network. All APs share the same SSID and passphrase. When a station
enters the network, it needs to first connect to the mgrGateway, through which it will be
associated with an appropriate AP. Afterwards, when the station needs to establish an
end-to-end secure connection with a server on the Internet through TLS, it will offload
the TLS computation to its associated AP, which forms a link between the AP and the
mentioned server. The other part of the connection is between the station and the AP. Such
a connection uses the symmetric key that is dynamically distributed when that station joins
the network and becomes associated with that AP, as shown on the left side of Figure 1. The
key idea is that the station only needs to undergo the TLS process once with mgrGateway.
From that point onward, the station can access any desired server on the Internet through
the associated AP without needing to perform the TLS handshake again. The core ad-
vantage of the proposed architecture is that stations can offload computation to the APs,
freeing precious resources for other computational tasks. Note that the communication
between each station and its associated AP are also secured by the layer-2 WPA2 or WPA3
method of WiFi [6].

3.3. Security Analysis

Whenever an AP or a station joins the network it is required to establish a TLS hand-
shake with the mgrGateway. A certificate is required for each node during the TLS hand-
shake for mutual authentication. Furthermore, through the TLS session with mgrGateway,
a symmetric 256-bit key is generated and subsequently used to secure later message ex-
changes between mgrGateway and the other node. In this case, the other node is the AP
or station that has recently joined the network. The usage of symmetric keys between the
node pairs is described in detail in the sequence diagrams later in the paper.
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sta2sta1 sta3 sta4

ap1 ap3

server

apj

wireless

wired

ap2

sta5 stai

router

AP manager

Figure 1. The overall system architecture. Stations are connected with their associated APs. APs are
connected to an AP manager through one or multiple routers.

To facilitate these connections, the key security parameters are stored in different
tables managed by mgrGateway or APs. In particular, mgrGateway manages the following
tables: apTable, staTable, and mgrKeyTable. These tables store and maintain real-time
information about all network nodes. In particular, apTable shows information about
individual APs that are available at any given time in the network, including SKgj, which
is the shared key between mgrGateway and any AP apj. Furthermore, staTable has
information on individual stations present at any given time in the network, including
the IP and MAC address of the station. In mgrKeyTable, the key SKji (shared key between
station stai and AP apj) is also saved, in case mgrGateway moves stai to a different AP.
Finally, each AP (i.e., apj) manages its own apKeyTable, which shows all the stations
connected to it and their associated shared keys.

The proposed framework can effectively defend against different types of prevalent
exploits in IoT settings, including man-in-the-middle (MITM), eavesdropping, packet
manipulation, replay, and known-key [37]. The proposed framework is secured against
the MITM exploit by the mutual authentication provided by TLS for any communications
between a station/AP and the mgrGateway [38]. For eavesdropping attacks, even if an
eavesdropper manages to capture any packets, the encryption mechanism ensures that
the eavesdropper cannot extract any meaningful data from the sniffed packet [37]. This is
because each packet is either part of the end-to-end TLS session or protected by a previously
distributed pre-shared key between a station and its associated AP.

Packet manipulation is also rendered challenging by the framework, as every packet
is secured by an AEAD encryption mechanism, such that any tampering can be detected
by the receiver. On the other hand, if an attacker tries to replay a packet, the replayed
packet will be rejected by the receiving party, because every message sent using the GCM
algorithm includes both an encoded nonce and a counter in the AEAD. A replayed packet
will cause different counters at the sender and the receiver ends, resulting in a failed
integrity check [37]. Last, but not least, the proposed framework is robust against known-
key attacks, as the framework enforces the use of ECDHE for key exchange, featuring
forward secrecy. Even if a malicious entity compromises a session key, it is not able to
decrypt the previous sessions.

3.4. Adding an AP

This subsection covers the process of adding a new AP to the network, as shown in
Figure 2. In this particular scenario, two nodes are involved: the mgrGateway and the
new AP joining the network. The new AP needs to play two types of roles. The first role
is as a client to connect with mgrGateway, which is marked as mgrClientj. The second
role is as a server (i.e., marked as staServerj) to provide offloading services to potential
stations connecting with it in the future. Therefore, as shown in Figure 2, both mgrClientj
and staServerj are marked in the same color to indicate two different roles played by the
new AP.
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staServerjmgrGateway

2 : SKgj = genKey

3 : send(SKgj)

mgrClientj

4 : send(apj .info())

6 : startStaServer

1 : handshake

5 : store(apTable, apj)

Figure 2. Sequence diagram describing the process of adding a new AP to the network. Once added,
the new AP can be used for computational offloading.

Upon booting up, the AP typically requests to join the network and executes the
client code mgrClientj, where j represents apj. Subsequently, the process of adding an
AP occurs as follows: Step 1 : A TLS handshake is performed between mgrClientj and
mgrGateway to establish a secure channel for the remaining steps. The handshake involves
mutual certificate authentication. Step 2: The mgrGateway generates a shared key SKgj
(where g represents the mgrGateway). Step 3: The mgrGateway sends the shared key SKgj
to the mgrClientj. This shared key will be used between mgrGateway and the new AP
apj for all the messages exchanged between them henceforth. Step 4: mgrClientj sends
its information to the mgrGateway: MAC address apmac

j and an available port. The port
will be used later to create socket connections with IoT stations. Step 5: mgrGateway
stores the values of apip

j (apj’s IP address previously extracted from the TLS handshake),
apmac

j , SKgj, and the available port in apTable. Step 6: At last, the mgrClientj forks a new
program called staServerj, that will serve IoT stations associated with this AP. apmac

j is used

to establish a wireless connection between stations and apj, while apip
j and the available

port are used to establish a socket connection. In addition, it is staServerj that will later
carry out the offloaded functions for all associated stations.

3.5. Adding a Station

This subsection explores the procedure of adding a new station to the network,
as shown in Figure 3. A station, shown as stai, obtains credentials and interacts with
the AP and mgrGateway. The AP encompasses the following entities in the sequence
diagram: apk, the chosen apj, and staServerj. Adding a new station to the network hap-
pens as follows: Step 1: When a new station first seeks to join the network, it arbitrarily
connects to any AP available (e.g., apk). Step 2: Based on step 1, a TLS handshake can
then be established between the station stai and the AP manager mgrGateway. Information
related to this station (e.g., IP) is stored and/or updated in staTable. The handshake
involves mutual certificate authentication, preventing malicious stations from joining the
network. Step 3: Based on the proposed DA scheme, mgrGateway identifies the optimal
AP apj. The details of the proposed DA scheme will be discussed in Section 4. At this point,
mgrGateway retrieves the information about the selected apj from apTable and returns
information about apj to the station stai. This information is collected whenever a new
AP initially joins the network, as demonstrated by Figure 2. Step 4: mgrGateway creates a
symmetric shared key SKji, which will be used between stai and apj. Step 5: mgrGateway
generates and stores information about stai, apj as well as their shared key SKji. These val-
ues can be used later when mgrGateway hands stations over to different APs to balance the
network. Step 6: mgrGateway establishes a socket connection sockgj (where g represents

the mgrGateway) with apj using apip
j and the corresponding port, retrieved from apTable.
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Step 7: mgrGateway also locates the shared key SKgj from apTable, which will be used to
send and receive encrypted messages between mgrGateway and apj. Then, mgrGateway
sends a message containing stai and SKji to apj’s server module staServerj. Step 8: Upon
receipt, staServerj stores stai and SKji in apKeyTable. Step 9: Through the secure channel
established between the AP manager and the station stai, mgrGateway sends the following
values to stai: SKji, apip

j , apmac
j , and the port. Step 10: stai connects to apj using apmac

j .

Step 11: stai establishes a socket connection to staServerj using apip
j and the previously

retrieved port. This creates an association between stai and apj. Later, when stai connects
to any server on the Internet, apj will facilitate the connections by carrying out the TLS
handshake with the remote cloud servers. The station only needs to connect to apj through
a secure channel using SKji.

stai mgrGateway apk

4 : SKji = genKey

chosen apj staServerj

6 : sockgj = sockConnect

9
:
se
n
d(
i,
a
p j
.(
in
f
o)
,S

K
j
i)

11 : sockji = sockConnect

1 : connect

10 : connect

2 : handshake
3 : apj = findBestAP

5 : store(mgrKeyTable, apj)

7 : sockgj .send(stai, SKji) 8
:
st
or
e(
k
ey
T
a
bl
e,
st
a
i,
S
K

j
i)

Figure 3. Sequence diagram describing the process of adding a new station to the network. Dur-
ing this process, a newly joined station is associated with an optimal AP. Once this process is finished,
a station can offload its TLS computation to the associated AP.

3.6. Station Handover

When a station moves or a particular AP reaches its capacity, it is possible for one
or multiple stations to be handover to a different AP. This subsection describes the steps
needed to move station stai from a source AP aps to a destination AP apd, as shown in
Figure 4. This process involves the AP manager mgrGateway, the station stai, and the
server module of the source and destination APs staServers and staServerd.

Step 1 and 2: mgrGateway first retrieves information from apTable about two APs:
aps and apd. This information includes: two previously stored sockets (sockgs and sockgd),
three shared keys (SKgs, SKgd, and SKsi), and other information (IP, and MAC address
and port for both APs). It should be noted that s, d, g, i represent aps, apd, mgrGateway,
and stai, respectively. Step 3: mgrGateway sends a message encrypted by the shared key
SKgd through the socket sockgd to staServerd. This message contains information about
stai and the shared key SKsi which has been previously used between stai and aps. SKsi
is now used to encrypt subsequent messages between stai and staServerd. Step 4: The
staServerd stores the recently received information about stai as well as SKsi in apKeyTable.
Step 5: mgrGateway uses socket sockgs and shared key SKgs to send a message to staServers
with the following content: stai, IP address, MAC address, and port of apd (all previously
obtained in steps 1 and 2). Step 6: The staServers uses socksi and SKsi to propagate
the message from the previous step to stai, asking stai to connect to staServerd. Step 7:
Upon receiving the message from the previous step, stai connects through WiFi to the
AP staServerd. Step 8: stai establishes a socket connection to staServerd. Any subsequent
messages between stai and staServerd will be encrypted by SKdi (previously known as
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SKsi). It should be noted that stai has not changed the shared key between itself and
staServerd. At this point, stai is handed over from source AP aps to destination AP apd.

mgrGateway staServerd stai

1 : retrieve(apTable, s)

staServers

7 : connect

8 : sockdi.sockConnect

2 : retrieve(apTable, d)

3 : sockgd.send(stai, SKsi)

5 : sockgs.send(stai, apd.(info))

4
:
st
or
e(
a
pK

ey
T
a
bl
e,
st
a i
,S

K
s
i)

6
:
so
ck

s
i.
se
n
d(
st
a
i,
a
p d
.i
n
f
o(
in
f
o)
)

Figure 4. Sequence diagram of station handover functionality. This process is used to hand a station
over to another AP.

3.7. TLS Offloading

With the previously discussed modules, the proposed framework is able to offload
the TLS handshake protocol, which is the most computationally expensive component of
TLS, from IoT stations to their associated APs.

To begin the offloading procedure, the station stai associated with the AP apj performs
a series of tasks. First, stai sends a request reqic to apj. This request is encrypted using SKji
between stai and apj; the request contains information about the cloud server c to which
the station seeks to send and receive messages. Second, after receiving this encrypted
request, apj decrypts it using the same shared key SKji and performs a handshake with
the server c. Third, apj sends the extracted content from the request reqic to the server c
and obtains a response, resic. Finally, apj encrypts the response resic with SKji and sends
the encrypted response back to stai. Such offloading can significantly reduce the resource
consumption on the IoT stations while satisfying the security requirements.

4. Device Association

In an extensive network where multiple APs are available, an IoT station can be
associated with different APs, requiring a process to identify the most appropriate AP. We
define such a device association (DA) process as an optimization problem of mapping n
stations to no more than m given APs. The maximum network throughput can be achieved
with the minimum number of APs involved. More importantly, we assume that each AP
has limited capacity to facilitate offloading and set such limitations as constraints in our
problem formulation. Such an assumption differentiates this work from most existing ones.
Furthermore, finding the best association is an NP-hard problem. To address this problem,
we propose an efficient DA scheme that can adapt to the dynamics of large-scale networks.

4.1. Association Problem Formulation

We formulate the constraints for optimized association using several backbone for-
mulas and quantities. In this study, the stations usually operate in the context of IoT and
thus transmit messages reporting different status types to the AP. Each station provides
information about its demand when it first joins the network. Such demand remains fixed
throughout a station’s lifespan.
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In particular, we mathematically formulate the optimization model as a multi-objective
problem involving two components: (1a) maximizing the total network throughput,
and (1b) minimizing the number of active (required) APs. The key symbols are sum-
marized in Table 2.

maximize
n

∑
i=1

m

∑
j=1

log(1 + rji ∗ cji) (1a)

minimize
m

∑
j=1

aj (1b)

subject to:
m

∑
j=1

cji = 1 ∀i ∈ STA (1c)

m

∑
j=1

(ψji ∗ cji) ≥ P0 ∀i ∈ STA (1d)

m

∑
j=1

(Rji ∗ cji) ≥ R0 ∀i ∈ STA (1e)

n

∑
i=1

sli ∗ cji ≤ S0 ∀j ∈ AP (1f)

∑
k∈K

(
∑n

i=1 mk
i ∗ cji

f (mk)

)
≤ 1 ∀j ∈ AP (1g)

There are multiple constraints considered in the model. The constraint (1c) ensures
that every station is associated with exactly one AP. The constraint (1d) guarantees that
the signal received from any station has to be above a certain threshold P0 in order for
the AP to sense and process that signal, as dictated by IEEE 802.11 standards. The con-
straint (1e) makes sure that the received signal by the station from the AP has to be above
a certain threshold R0 (minimum RSSI threshold) in order to ensure proper transmitting
and successful association. These are typical constraints considered by existing studies for
device association.

Beyond the above constraints, we propose a security constraint (1f) to control the
maximum number of stations transmitting sensitive data that an AP can serve. We assume
that a station stai may have its own security level requirement (i.e., marked as sli). A higher
value of sli indicates a higher security requirement and thus more computation complexity.
The sum of these quantities across all stations served by an individual AP cannot exceed a
certain threshold, S0, which can be customized based on the network’s security conditions.
A smaller S0 value can help limit not only the security overhead on each AP, but also the
number of stations associated with a single AP. Therefore, in case the AP is compromised,
fewer stations are impacted.

We propose the constraint (1g) to consider the APs’ computation and communication
capacities. In particular, we consider that different types of messages (i.e., represented by k
with size mk) may require different computation/communication resources. The function
f , which returns the maximum number of messages that can be processed by an AP per
second, can be implemented as either fsc or fc to represent different scenarios. Specifically,
the function fc mainly focuses on plaintext messages that are not encrypted. On the other
hand, the function fsc mainly focuses on encrypted messages for secure communications.
Since additional computation is required for continuous encryption and decryption, the AP
can only process a smaller number of messages, leading to smaller return values for fsc
when the inputs are the same. Both of these functions are customized functions. Therefore,
in this study, we quantitatively evaluate their function based on a real testbed, which is
discussed more in Section 5.
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Table 2. Physical meanings of key symbols.

Symbol Definition

AP Set of m access points {ap1, ap2, . . . , apm}

AP j Set of stations associated with access point apj

ST A Set of n stations {sta1, sta2, . . . , stan}

SNRji Signal to noise ratio between station stai and access point apj

cji Binary variable indicating 1 if station stai is associated with apj, 0 otherwise

giu Binary variable. If station stai ∈ AP j interferes with station stau ∈ AP z, j 6= z, and both
stations are transmitting concurrently, then giu equals 1, otherwise, giu equals 0

aj Binary variable indicating 1 if there is one or more users associated with apj, 0 otherwise

rji Rate from station stai to access point apj

mk
i Number of messages of type k ∈ K ( size mk ) that station stai sends every second

f A placeholder function name which could be substituted for either fc or fsc

fc A function returning the number of messages processed with non-secure communica-
tion every second per core for a given size of message

fsc A function returning the number of messages processed with secured communication
(featuring encryption and decryption) every second per core for a given size message

R0 Minimum AP signal strength needed so that a station can connect with it

sli Security level assumed by device stai

ψji Received signal strength at access point apj transmitted by the antenna of station stai
from a distance d

B Channel bandwidth

Rji Received signal strength at station stai that is transmitted from access point apj

P0 Carrier sensing threshold

σ2 Additive Gaussian white noise

S0 Security threshold

Furthermore, some key parameters involved in these constraints are calculated as
follow: first, the received signal strength indicator (RSSI) at stai, represented by Rji, is
calculated by subtracting the total path loss, measured in dB, from apj’s transmission

power Pj
Tx

[39]. On the other hand, ψji refers to the received signal strength at apj from
station stai, which is calculated by subtracting the total path loss from stai’s transmission
power Pi

Tx
. Without losing generality, we simply assume that all nodes in the network

have the same transmission power and use omnidirectional antennas. The total path loss is
calculated as LD0 + 10γ log10

(
d

D0

)
+Xg, where LD0 represents the path loss at a reference

point D0; γ is the path loss exponent; and Xg is a zero-mean Gaussian distributed random
variable (in dB) [40]. It should be noted that Xg is used only when there is a shadowing
effect, and will be set as zero if the shadowing effect is not considered.

Second, we calculate the transmission rate between the station stai and the AP apj
(marked as rji). Based on the Shannon–Hartley theorem [40], the transmission rate rji
can be calculated by multiplying the binary logarithm of SNRji with B, the channel
bandwidth. In reality, the actual rate may also be affected by the chosen modulation and
coding scheme (MCS).

rji = B log2(1 + SNRji) (2)
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Specifically, for a given uplink connection from stai to apj, SNRji of the apj can be
calculated as

SNRji =
ψji

I(apj, stai) + σ2 (3)

In Equation (3), σ2 refers to the value of additive white Gaussian noise (AWGN).
The function I(apj, stai) returns the cumulative interference produced by all other trans-
mitting stations that interfere with station stai for a given apj. ‘Transmitting stations’ refers
to all stations in the entire network, including those associated with other APs.

The function I(apj, stai) is described in detail by Algorithm 1 where apj and stai are
the input (stai is associated with apj) and the interference value is the output. Given an
arbitrary station stau, associated with any AP apz such that j 6= z, if stau interferes and
transmits concurrently with stai, then gui is 1, else gui is 0. When gui is 1, the interference
value is incremented by ψzu.

Algorithm 1: Procedure describing function I(apj, stai) in Equation (3)

Input: An AP apj and a station stai
Output: interference

1 interference← 0
2 for apz ∈ AP do
3 // skip the given apj
4 if apz 6= apj then
5 for stau ∈ AP z do
6 if gui then
7 interference += ψzu ;
8 end if
9 end for

10 end if
11 end for
12 return interference;

An illustration of our assumed communication and interference model is shown
in Figure 5. As an example, Algorithm 1 can be used to compute the interference of
SNR12 between sta2 and ap1. Assuming that g23 equals 1, meaning sta2 and sta3 are
interfering with each other and transmitting at the same time, the function I(1, 2) returns
ψ23. Therefore, the denominator of SNR12 is ψ23 + σ2. As another example, we compute
the interference of SNR24 between sta4 and ap2. In this case, the function I(2, 4) returns 0
as none of the stations from ap1 interferes with sta4, therefore the denominator of SNR24
is only σ2.

sta2
sta1

sta3 sta4

ap1

ap2

wireless

communication range

interference range

Figure 5. Communication and interference ranges for stations in a simple topology.
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The interference calculated by the function I(apj, stai) can be treated as AWGN.
The reason is that the interference is not dominated by only a few interferers. For ex-
ample, if every AP has one station associated, the interference per station will be impacted
by all the stations in the network, as all stations will be transmitting concurrently. On the
other hand, in a network with only one AP and multiple associated stations, there is zero
interference from other stations when a station transmits.

Once SNRji is determined, we can use the Shannon–Hartley theorem to calculate
rji. To formulate our first objective (1a), used as a common quantitative measure for DA
scheme comparison, we employ rji. The second objective (1b) of our DA optimization
problem is to minimize the number of APs needed. The resulting resource consumption
reduction on both stations and APs is significant, as measured in the form of energy and
time later in Section 5.

4.2. Proposed DA Scheme

In this study, we adopt genetic algorithms (GAs), an effective approach to resolve
optimization problems, to associate stations with APs. This method allows us to add a
wide range of dynamic network constraints flexibly to yield a well-optimized association
solution. Some of the classic problems that GAs can solve effectively include bin allocation,
knapsack, and traveling salesman [41–43]. To the best of our knowledge, this is the first
study to adopt GAs to address the WiFi station association problem. In particular, we revise
the default GA by setting the optimization goal as maximizing network throughput and
minimizing the number of APs. Furthermore, several core functions of the GA, including
fitness, crossover, and mutation, have been revised to fit our specific device association needs.

The basic working mechanism of the GA is as follows. Inspired by how genetics work,
a GA program begins with a set of variables that internally resemble the chromosomes
storing human genetic information. This involves an initial set of individuals represent-
ing candidate solutions. A feasibility function checks if an individual satisfies a list of
constraints before declaring it valid. Invalid individuals are disposed of, while valid indi-
viduals’ fitness values are evaluated. For every generation, either crossover or mutation
occurs at a configurable probability. Crossover occurs on valid individuals by the mate
function to create child individuals for the next generation. Additionally, a certain number
of individuals are subject to mutation, a process that helps add more diversity into the
system by producing more interesting individuals. Finally, only a small percentage of the
entire valid population is selected for the next generation using the select function, which
chooses the individuals that best satisfy an objective function out of the subset mentioned
above. The entire process is repeated for a given number of generations. Ultimately, the en-
tire population evolves, but only the best individuals are selected as the final solution in
the hall of fame, which keeps track of the individuals with the greatest fitness at any given
time. Pareto efficiency is used as the criterion to select the best individuals for the hall of
fame. One crucial characteristic, and perhaps weakness, of GAs is that there has to be a
clear way to evaluate the fitness of a potential solution.

To adopt the GA, we format the association problem modeled in Section 4.1 by
representing each candidate association solution (i.e., individual in the GA) as a binary
matrix. In this matrix, each row represents a specific AP, and each column represents a
specific station. If an entry at (j, i) is 1, it means stai is connected to apj. In this matrix
format, a specific candidate association solution can be easily compared and evaluated
for fitness.

We illustrate the crossover process implemented in this study in Figure 6. Specifically,
during the crossover, two individuals, which are binary matrices, are considered as inputs.
Let us consider the crossover operation on two individuals, called ind1 and ind2, respec-
tively. During this process, a particular range of consecutively numbered stations is chosen
at random, which are then swapped between both individuals. For example, if sta3 and
sta4 are chosen to be swapped, then at the end of the crossover process, the two individuals
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will be transformed through the swapping of columns (sta3 and sta4) and become two
new individuals.
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Figure 6. Crossover process. ind1 and ind2 are two input individuals, which are transformed by the
crossover function. Here, sta3 and sta4 are chosen at random to be swapped during crossover to
create new individuals.

In addition, we also tailor the mutation function for our association problem, as de-
picted in Figure 7. During mutation, which takes an individual as an input, a station is
chosen at random to be associated with another AP, which is also randomly selected. For ex-
ample, an ind1 can experience a mutation, in which sta2 is selected through randomness to
change its associated AP.
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ap1
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Figure 7. Mutation process. This shows the mutation of an individual, namely ind1. sta3 is chosen at
random to change its associated AP during mutation.

The purpose of crossover and mutation is to introduce more randomness into the
population to ensure that the evolutionary process is not trapped in a suboptimal solution.

5. Experiments and Results

This section discusses the testbed setup and the experiments for performance evalua-
tion of the proposed framework, along with results and analysis.

5.1. Specifications of Network’s Nodes

Table 3 summarizes the specifications of the nodes present in the network. The three
platforms used in the network are CYW43907, Raspberry Pi 4, and an Intel Core i5 machine.
First, this study uses multiple CYW43907 (CYW) [44] boards as stations. CYW is an embed-
ded wireless system-on-a-chip (SoC). Boasting the powerful ARM Cortex-R4 processor and
an on-chip cryptography core, the CYW board is optimized for IoT computation-heavy
applications and supports hardware-accelerated AES. The development on the CYW plat-
form is carried out in C code using WICED Studio version 6.1.0 [45], the standard SDK
for the CYW platform. This SDK includes a free, open-source library of cryptographic
algorithms for embedded systems called mbed TLS [46].
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Table 3. Summary of the specifications of hardware platforms used in this work.

Platform CYW43907 (CYW) Raspberry Pi 4 B (RPi4) Intel Core i5 (Intel_i5)

MCU ARM Cortex R4 ARM Cortex A72 Intel Core i5

Word Size 32-bit 64-bit 64-bit

RAM 2 MB 2 GB 4 GB

Clock Frequency 320 MHz 1.5 GHz 2.4 GHz

WiFi Standards 802.11b/g/n 802.11b/g/n/ac 802.11b/g/n/ac

On-chip Crypto Core Available Not Available Available

Second, multiple RPi4s and Intel_i5 machines are adopted as APs. Raspberry Pi 4
(RPi4) is a single-board computer and features strong computing power with support for
a variety of communication standards [47]. At the time of writing, RPi4 is not known to
support hardware-accelerated cryptography natively. To diversify the testing platforms,
a machine using Intel Core i5 (Intel_i5), which has more computational resources than
RPi4, is also included. This ensures a variety of hardware during our study, as these
high-performance platforms are convertible to an AP (this can be carried out by using
hostapd, a user-space daemon enabling a host to act as an AP) and powerful enough to
handle computation offloaded by the stations. For development on the APs, Python is
chosen as it allows for quick prototyping.

Third, the AP manager mgrGateway is hosted on either an RPi4 or an Intel_i5 to enable
simulations with larger networks and higher performance requirements.

Last, but not least, to achieve high speed transmission, we use a high-performance
WiFi dongle BrosTrend AC1200 USB WiFi Network Adapter (5GHz). The guaranteed
speed between the AP and the station is measured by the iPerf utility to be between 240 to
300 Mbps.

5.2. Energy and Time Measurement Tool

This work uses a powerful evaluation tool, EMPIOT, developed by our previous
work [48] for energy and time measurement of IoT stations. EMPIOT is a shield board
installed on top of a Raspberry Pi. The start–stop mechanism of EMPIOT energy measure-
ments can be carefully controlled by utilizing the GPIO pins of the Raspberry Pi. EMPIOT
is accurate to 0.4 µW when measuring energy. When taking measurements on IoT devices
using 802.15.4 and 802.11 wireless standards, the EMPIOT’s energy measurement errors
are less than 3%. When using 12-bit sampling resolution, this tool can stream 1000 samples
per second. All energy and time measurements in this study have been carried out using
this platform.

5.3. Reduction of Resource Consumption via Offloading

The proposed offloading framework is able to deliver substantial reductions in re-
source consumption on an IoT station. In order to evaluate the duration and energy
consumption on the CYW board, we conducted a series of experiments in which a CYW
board and an RPi4 serve as a station and a server, respectively. The tasks executed on
the station correspond to the columns in Table 4 as follows: (1) HS: establishing a TLS
handshake, (2) HS and records: establishing a TLS handshake and sending 512 messages
(each of 16 bytes) to the server, and (3) encrypted messages: establishing a TCP socket,
sending two 4096-byte messages encrypted using symmetric keys to the server and closing
the socket.

As shown in Table 4, HS demands a significant amount of time and energy. Therefore,
sending messages on top of establishing a TLS connection requires even more resources,
as depicted in column HS and records. However, the resource consumption is significantly
reduced by adopting our proposed offloading framework, which uses TCP to create a socket
for secured communication with symmetric cryptography. Column Encrypted messages
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reveals that our offloading approach uses 15 times less energy than the conventional
approach shown in column HS and records.

In our proposed offloading framework, a station needs to make at most one TLS
handshake, HS, with mgrGateway. Next, the station is assigned to an AP using our
proposed DA scheme. From that point onward, all communication between the station
and the cloud occurs through the AP with a TCP socket, which is very economical as seen
in column Encrypted messages. In contrast, for a conventional network, a station would
have to establish a TLS connection directly with a server on the cloud every time there is a
need for communication. Column HS and records reveals that this conventional approach
is, computationally, highly expensive.

Earlier works, such as [8], propose offloading the signature calculation of the TLS
handshake. Based on our previous empirical analysis of TLS resource consumption [33],
which uses a similar physical testbed to this study, a single 2048-bit RSA signature calcu-
lation performed on a CYW board requires 0.169J of energy and 0.201 s. If this signature
calculation were to be offloaded to another node in the network, based on subtracting
the mentioned signature generation values from those of column HS, the resource con-
sumption on the station would be 2.369J and 20.207s. Even with such savings, the resource
consumption remains high as compared to our proposed framework consumption (column
Encrypted messages).

Table 4. Summary of resource consumption values. This table presents the effect of offloading on
resource saving. Values shown in this table are the average of 10 iterations for each task. Confidence
intervals are presented.

Task HS HS and Records Encrypted Messages

Energy (J) 2.538 ± 0.195 2.729 ± 0.365 0.173 ± 0.060

Duration (s) 20.408 ± 1.554 21.005 ± 2.868 1.326 ± 0.435

5.4. Estimating AP Capacity via a Real Testbed

This subsection presents the proposed closed-loop testbed, which quantitatively mea-
sures the AP’s message processing capacity. As shown in Figure 8, the proposed testbed
mainly includes two devices: an AP and a station. In particular, we employ both an ARM-
based platform (RPi4) and an Intel-based machine (Intel_i5) to diversify the experiment
settings. Furthermore, since the transmission delay between the AP and the cloud server is
not the focus of this study, we close the loop in our testbed by directly connecting the AP
back to the station through an Ethernet connection, for which the transmission delay can
be ignored.

Access Point 

core1

core2

core3

core4

thread1

thread4

thread3

thread2

te

ts

Kernel Space User Space User Space Kernel Space 

Station 

Figure 8. The closed-loop testbed used to determine fc and fsc. At the time ts, a packet is originated
from the station and is sent to the AP. Once this packet is received, a new packet is created on the AP
and sent to the station, completing a closed loop at time te.

The software components of the testbed include several applications running on the
station and the AP to transmit and receive the messages. Since the AP has four cores, four
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threads are created at the station to send packets through the wireless channel to ensure
that the AP utilizes its maximum processing capacity. Another four threads are created at
the station to receive responses through the wire.

Given a specific packet size, an AP’s processing capacity is measured as the number
of packets it processes per second per core, represented by the outputs of fc for plaintext
packets and fsc for encrypted packets. To this end, it is necessary to measure the time
spent by the AP’s CPU to process a message for a duration marked by ts and te. Tracing
the arrows in Figure 8 allows us to understand the path of the message. At the time ts,
a message starts its path at the user-space of the station. It then proceeds to the kernel space
of the station and is transmitted to the kernel space of the AP using WiFi. After traversing
the AP’s user space and kernel space, the message is sent through an Ethernet wire back to
the station. This completes the closed loop and is marked by the timestamp te.

Since the AP’s CPU is working close to 100% capacity, the duration marked by ts and
te includes context switches between kernel space and user-space as well as encryption and
decryption (if the ciphertext is used) along the way. This duration can be used to find how
many messages can be processed per second. By repeatedly determining such duration for
different sizes/types of messages across different platforms, we are able to estimate fc and
fsc for different inputs.

Figure 9 shows the plots for fc and fsc when running the testbed with RPi4 and Intel_i5
platforms serving as APs. The data points are shown along with the corresponding boxplots
and distributions in the form of half-violins to the left of each grouping. The plotting
follows an approximate Gaussian distribution for all the groupings. In this figure, there
is a downward trend for both subplots showing fc. The number of messages processed
per second goes down in a pure communication setting with no encryption/decryption
as the message size increases. However, for subplots depicting fsc, the trend is more
or less uniform. Different patterns indicate that the packet transfer component cannot
efficiently handle all the messages when their sizes increase significantly. In other words,
the bottleneck to process messages at the AP is not the encryption/decryption operation
but rather the packet transfer component.

The actual coefficients of the regression functions for fc and fsc are summarized in
Table 5. In the later experiments, we select the regression lines from both the Intel_i5 and
RPi4 plots in Figure 9 to estimate the fc and fsc functions.

Figure 9. Raincloud plots for fc and fsc on two platforms: RPi4 and Intel_i5. The regression lines
from these plots enable us to determine fc and fsc using the message size as input.



Sensors 2021, 21, 6433 18 of 24

Table 5. Summary of coefficients for fsc (cipher text) and fc (plain text) functions. Both regression
functions are under the form F = β1 + mβ2 + m2β3.

Platform Function β1 β2 β3

Intel_i5 fsc 2342.165 0.090 −9.751× 10−5

Intel_i5 fc 5701.493 −0.230 −2.117× 10−4

RPi4 fsc 997.379 −0.050 6.856× 10−6

RPi4 fc 3945.306 −0.467 −1.409× 10−4

5.5. Comparison Schemes

In this study, we use the Distributed Evolutionary Algorithms in Python library
(DEAP) [49] to implement the proposed GA scheme. A complete summary of the key
parameters used by the GA is provided in Table 6. These parameters are fine-tuned to
achieve the best performance by following the recommendations from DEAP’s docu-
mentation.

Table 6. Summary of GA parameters and the values used in our implementation.

Symbol Definition Actual Value

µ Number of individuals to select for the next generation 25

λ Number of children to produce at each generation 50

cxpb The probability that an offspring is produced by crossover 0.75

mutpb The probability that an offspring is produced by mutation 0.2

ngen Number of generations 200

Furthermore, for performance validation, we compare the GA with the following
four algorithms:

• Round robin (RR): A station selects the next AP for association in a round robin fashion.
If the station is not able to associate with the selected AP, the algorithm returns.

• Received signal strength indicator (RSSI): A station selects an AP with the strongest
signal indicator for association. A heuristic for signal strength is the distance between
the station and the AP. If the station is not able to associate with the selected AP,
the station selects the AP with the next strongest signal indicator. This process
continues until either association occurs or no AP can satisfy the station’s demand,
the latter causing the algorithm to return.

• User decision (UD): A station is associated with a user-chosen AP. This approach is
commonly used in practice. For this study, UD is implemented such that every station
selects an AP at random from a set of APs that are able to satisfy the station’s demands.
If the set is empty, the algorithm returns.

• Mixed integer linear programming (MILP): Stations are associated with APs based on
the solution to a mixed integer linear programming problem.

Except for MILP and the GA, the remaining algorithms are iterative approaches for
which the order of association is crucial. We use both iterative and non-iterative methods as
benchmarks to validate the performance of our proposed DA scheme. MILP problems are
typically solved using the branch-and-bound technique [50], a non-iterative approach that
has been implemented in several libraries. The idea behind MILP has been applied to solve
a variety of optimization problems, such as traveling salesman, scheduling, and generalized
assignment [51–53]. Previously used for DA, MILP is implemented in this study using the
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lp_solve library [54]. The nature of MILP means that we have to combine our objective
functions into one function and add more constraints for MILP to work:

maximize
n

∑
i=1

m

∑
j=1

log(1 + rji ∗ cji)−
m

∑
j=1

aj (4a)

subject to:
n

∑
i=1

cji ≥ aj ∀j ∈ AP (4b)

n

∑
i=1

cji ≤ n ∗ aj∀j ∈ AP (4c)

aj ∈ {0, 1} ∀j ∈ AP (4d)

The objective function 4a is actually the combined form of two objective functions,
(1a) and (1b), previously defined in Section 4. The purpose of both constraints, (4b) and
(4c), is to ensure that aj = min(∑n

i=1 cji, 1). This means that if apj has no stations associated
with it, aj = 0, otherwise aj = 1. This transformation allows the DA problem to be solved
by lp_solve.

5.6. Maximum Network Throughput

In order to understand the impact of the association order, we run hundreds of
repetitions with different orders using the same stations based on location and demand
(using the same random seed). For the proposed DA algorithm and MILP, no repetition is
performed because these approaches do not depend on the association order.

In order to identify the maximum throughput supported in this network, we deploy
different numbers of APs and run all five algorithms while gradually increasing the number
of stations until no solution is found (the APs’ maximum capacity is reached). The higher
this upper bound, the better the algorithm. In some cases, a particular order cannot satisfy
the AP’s constraints (security or capacity). When this occurs in repetition, the number of
stations is reduced, and the association is attempted again until a solution is found. For this
experiment, which is demonstrated by Figure 10, we deploy a range of APs from two to
16 in increments of two APs in the same area in order to evaluate the throughput and the
maximum number of stations supported.

In Figure 10, simulation results for all five algorithms on different platforms with
plain and cipher messages are shown. Since the evolutionary mechanisms of the proposed
DA scheme allow it to converge to optimal solutions, it surpasses other algorithms in
our experiments. Unlike the proposed DA scheme, the RSSI, RR, and UD algorithms
highly depend on the association order. As previously mentioned, since the data for these
approaches consists of hundreds of repetitions, changing the association order can affect
the final solutions of RSSI, RR, and UD. It is known that in some repetitions, a particular
association order may lead to no valid solutions, which requires reducing the number of
stations until an association is possible. Therefore, these approaches are not as robust as
the proposed DA scheme. Out of all these algorithms, MILP performs the worst. This
is because MILP requires heavy computation to identify the optimal solution, and the
computing power of our testbed limits its performance. Furthermore, there is a strong
correlation between network throughput and the maximum number of stations supported,
which can be explained by Equation (1a). Nevertheless, the proposed DA scheme can
always provide better throughput than other comparison algorithms for any given number
of stations.
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Figure 10. Simulation results for all five algorithms on RPi4 and Intel_i5 platforms for cipher text
and plain text. These plots show how each algorithm performs in terms of the network throughput
(TPT), which is measured in bits per second (bps) and the maximum number of devices supported.

5.7. Minimum Number of APs

Another experiment is performed to find the minimum number of active APs, which
is the lower bound needed to support a fixed number of stations. Without losing generality,
we assume all stations generate an identical amount of traffic. Thus, we can represent
a fixed amount of overall network throughput by fixing the number of stations. In this
experiment, as demonstrated by Figure 11, we simulate a small and a large network by
deploying four and 10 APs in a given area, respectively. Please note that these are the total
number of available APs. Different algorithms will end up employing a different number
of APs to satisfy the overall throughput requirements. We consider the algorithm that
yields the smallest number of active APs as the best one.

Figure 11 shows the performance of different algorithms in terms of the number of
active APs required to support a fixed number of stations. RR is not shown here as it
always uses all the APs in the network. The left column of Figure 11 involves only four
total available APs, representing smaller networks, and the right column of Figure 11
involves ten total available APs, representing larger networks.
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Figure 11. Number of active APs required by a fixed amount of network throughput. Four algorithms
are implemented on RPi4 and Intel_i5 platforms across two scenarios: cipher text and plain text.
The number of active APs could be lower than the total number of APs available, as some algorithms
do not need all APs to be able to support a particular number of stations.

When the number of stations increases, the number of required APs increases in a
discrete way. For example, adding five more stations may not require any extra AP, while
adding six more stations may suddenly require an extra AP. Therefore, although we run
each specific number of stations in our experiments, in Figure 11, we only mark the number
of stations that leads to an increase in the number of active APs.

Based on Figure 11, we observe that to support a fixed number of stations, the pro-
posed DA scheme requires fewer APs, especially for large networks with more stations.
For example, in Figure 11a, when there are 20 stations, the proposed DA scheme can asso-
ciate them with two APs. In contrast, the RSSI and UD algorithms need three APs, while
the MILP algorithm requires four APs. The proposed DA scheme also shows superiority
when there are ten APs. Taking Figure 11b as an example, when there are 40 stations,
the proposed DA scheme can associate all of them with five APs, while the MILP requires
eight APs, and the RSSI and UD require nine APs. In the case of MILP, when more stations
are added, the required number of active APs increases linearly, which is undesired. As dis-
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cussed before, this is because MILP requires heavy computation to identify the optimal
solution, and its performance is limited by the computing power of our testbed.

As shown in the results, the proposed DA scheme outperforms all the other schemes;
unlike the remaining schemes, it provides flexibility in evaluating the feasibility of each
potential solution during every iteration, leading to a better DA solution and less resource
consumption for the network. The GA can be further fine-tuned through various param-
eters as shown in Table 6. It is relatively easy to modify the parameters to ensure quick
convergence to a solution depending on the size of the network, which helps to reasonably
limit computational complexity in a real-world deployment. The real benefit of the pro-
posed DA scheme is its ability to deliver a macro-scale reduction of resource consumption
for the entire network. The proposed DA scheme could be executed on either a regular
machine (Intel_i5) or a resource-constrained device (RPi4).

The offloading framework and the DA scheme complement each other. In a real-world
deployment, the offloading framework’s f indBestAP functionality calls the proposed
DA scheme to identify the best AP for the current station. By periodically monitoring
the network and reassigning the stations by the proposed DA scheme, as mentioned
in Figure 4, the proposed framework is able to ensure that the network achieves high
throughput and the number of active APs is reduced. Combining the offloading framework
and the proposed DA scheme should enable a network to handle a large number of stations
and APs smoothly and securely.

6. Conclusions

This work proposed a comprehensive framework for resource-constrained IoT stations
to offload the heavy burden of TLS connections to WiFi APs. We focused on large-scale
scenarios where multiple APs are available, and each IoT station must be associated with
the most appropriate AP. We model the device association problem as a multi-objective
optimization issue that maximizes network throughput while minimizing the number of
APs. Experimental results validate the offloading framework’s significant overhead savings
compared to the conventional approach of using TLS and the proposed DA scheme’s
superiority over other comparison schemes. The proposed framework can be adopted in
settings with a large number of resource-constrained IoT stations that transfer data through
a secured channel, such as industrial IoT or smart cities. The proposed framework can
ensure secure communication while enhancing the lifespan of stations.
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