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Abstract: This paper surveys the deep learning (DL) approaches for intrusion-detection systems
(IDSs) in Internet of Things (IoT) and the associated datasets toward identifying gaps, weaknesses,
and a neutral reference architecture. A comparative study of IDSs is provided, with a review
of anomaly-based IDSs on DL approaches, which include supervised, unsupervised, and hybrid
methods. All techniques in these three categories have essentially been used in IoT environments. To
date, only a few have been used in the anomaly-based IDS for IoT. For each of these anomaly-based
IDSs, the implementation of the four categories of feature(s) extraction, classification, prediction, and
regression were evaluated. We studied important performance metrics and benchmark detection
rates, including the requisite efficiency of the various methods. Four machine learning algorithms
were evaluated for classification purposes: Logistic Regression (LR), Support Vector Machine (SVM),
Decision Tree (DT), and an Artificial Neural Network (ANN). Therefore, we compared each via the
Receiver Operating Characteristic (ROC) curve. The study model exhibits promising outcomes for
all classes of attacks. The scope of our analysis examines attacks targeting the IoT ecosystem using
empirically based, simulation-generated datasets (namely the Bot-IoT and the IoTID20 datasets).

Keywords: anomaly-based IDS; IoT architecture mapping; deep learning; machine learning (ML);
intrusion-detection systems (IDS); IoT security

1. Introduction

IoT technologies communicate without the need for human-to-human or human-to-
computer interaction. IoT has increasingly been adopted by organizations to streamline
their operations and is one of the fastest growing technology fields; by the end of 2030,
estimates have IoT at 50 billion devices, which includes everything from smartphones to
kitchen appliances [1]. IoT innovations are contributing to improvements across real-life
smart applications (e.g., cities, healthcare, transportation, and education). Concomitant
cutting-edge and large-scale adoption of IoT technology has introduced new security
challenges. Adherence to IoT security requirements is hindered by the complexity and
integrative arrangements of new and somewhat ad-hoc contexts. IoT devices are connected
mostly over wireless networks and are typically utilized in an unattended fashion. In this
type of environment, an attacker may easily gain both physical or logical access to these
devices illegally. An attacker with assumed malicious intent may indeed cause critical,
life-threatening consequences.

To counter the IoT security conundrum, researchers first opted for adopting conven-
tional security mechanisms, including encryption, authentication, access control, network
security, and application security. However, such adoptions of security technologies have
proved inadequate and have needed enhancement to suit the various contextual needs
of their respective environments. Nevertheless, implementing security measures against
specific security threats has usually been effective, though often thwarted by new attack
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Methods and Tactics (M&T). For example, the Mirai botnet caused large-scale Distributed
Denial of Service (DDoS) attacks by exploiting IoT devices. While amplifying DDoS, these
recent attacks utilize spoofed-source IP addresses to circumvent current solutions targeted
to the Mirai botnet M&T. These solutions have motivated newer, more sophisticated attacks
that are more complex and more destructive than the original Mirai botnet attributed
attacks. Therefore, investigating effective IoT security countermeasures remains a research
priority.

IDSs are one promising avenue for monitoring IoT environments and are mainly
effective at the network level. IDSs deployed in IoT environments analyze network data
packets and generate real-time responses. To be effective, these IDSs need to operate under
stringent IoT conditions of low energy, low process capacity, fast response, and notably
huge volumes of data processing. Thus, enhancing IoT embedded IDSs is a continuous
and serious issue requiring a significant understanding of the security vulnerabilities of
IoT systems.

1.1. Noteworthy Survey and Key Aspects

Many related surveys on IoT already exist in the literature that cover different aspects
of deep learning in cybersecurity. Our comparison of previous studies is based on several
key properties as shown in Table 1. These surveys [2–13] provide a modest focus on IoT
intrusion detection. Most studies are either descriptive of the IoT architecture, or they
present the various IDSs as a general overview for a particular project evaluation and veri-
fication purpose. References [2,3,6,11] are completely dedicated to IoT architectures and
include an incomplete assessment of some applications and protocols. References [4,12]
propose a six-layer architecture for the IoT domains. However. IoT security and IDSs were
not considered in their study. In [13], the architecture, protocols, and privacy are described
only as brief IoT security concepts, including the interconnection between the objects of
things. In [7], the authors presented a survey of IDS in IoT but nothing about DL/ML
techniques in IDS. Several attacks targeting protocol topology (the Routing Protocol for
Low-Power and Lossy Networks (RPL), IPv6 over Low-Power Wireless Personal Area Net-
works (6LoWPAN)) are discussed in [5] without classifying those attacks on an IoT layered
architecture connected with IDS. Reference [8] similarly provides a classical comparative
analysis for several existing papers based on advantages and disadvantages. Their focus,
furthermore, concentrates on the attacks without due consideration of the ML/DL methods
as a general solution.

A few studies provided an extensive background on all IoT areas through an enhanced
IoT security (based on IoT-specific threats) approach [6,11,12,14,15]. However, they did not
examine, as we have, all of the domains of anomaly-based-IDS for IoT. Table 1 describes
those studies that show the preeminent role of anomaly-based IDS for the security of
things. This table identifies the gaps in the previous survey studies within the standard
architecture layers of IoT systems and then links them with IDSs, such as anomaly-based
IDS, with the intent to clarify their solution context and mechanism (An anomaly-based
intrusion-detection system is an intrusion detection system for detecting both network and
computer intrusions and misuse by monitoring system activity and classifying it as either
normal or anomalous).



Sensors 2021, 21, 6432 3 of 30

Table 1. Comparison of Intrusion Detection Systems (IDSs) properties.

Survey Area Survey
Content Design Focused Domain Attacks ML/DL

Methods
Type of

Experiment Reference

IoT Vision: IoT
application

six-layer IoT
architecture IoT architecture

√
- - [4] 2014

IDS in IoT

IDS in IoT

- IDS
√

ML Statistical
analysis [7] 2018

Five research
questions IDS

√
- - [8] 2019

IDS - IDS
√

- - [9] 2018

IoT
architecture
IoT security

IoT-IDS
architecture IDS

√
- - [6] 2018

IoT Security-Based
Data

Analysis
IoT security Five-layer IoT

architecture IoT Security
√

ML - [11] 2020

IoT
Architectures and

Applications
IoT

architectures

IoT taxonomy Five-layer
architecture - - - [3] 2017

IoT-Based Info of
Things - IoT architecture - - - [2] 2013

IoT Architecture IoT survey
taxonomy

IoT architecture,
Protocols and

security Privacy
- - - [13] 2020

Attacks Attacks - RPL and 6LoWPAN
in IoT

√
- - [5] 2015

NIDS for IoT NIDS IoT threats
classification

Three-layer
architecture, IoT

threats NIDS

√
ML Statistical

analysis [10] 2019

ML/DL Methods for
IoT Security

ML/DL in IoT
IoT threats

IoTsys and threats
ML/DL taxonomy

IoT security
Six-layer IoT
architecture

√
ML/DL - [12] 2020

1.2. Contribution and Paper Organization

Accordingly, the thesis of this paper is as follows:

1. IoT architecture standards in term of compatibility and difference between those
standards are discussed. This reconciles and creates a mapping between those various
IoT architectures with respect to IoT security aspects making the IoT ecosystem robust
against intrusions.

2. A novel comprehensive taxonomy is presented that includes state-of-the-art deep
learning for IoT-IDS in terms of (a) IoT targeted attacks, (b) IoT architecture, (c) various
IDSs, (d) deep learning approaches, and (e) common IoTIDS datasets. The potential
attacks and requisite security needs are proposed for each IoT layer defined in Table 1.

3. A fine-grained review on anomaly-based IDSs in the IoT ecosystem using deep
learning approaches and traditional anomaly-based IDS approaches is provided. A
comparative and descriptive analysis of different anomaly-based IDS approaches in
terms of strategy, advantage, and disadvantage is also presented.

4. An experimental study of the performance of four ML approaches, (a) LR, (b) SVM,
(c) DT, and (d) ANN, is performed using the Bot-IoT [16] and IoTID20 datasets [17].

Going forward, this article is organized as follows: The taxonomy of deep learning for
IoT-IDS security is discussed in Section 2. Security issues and challenges associated with
IoT systems are presented in Section 3. Section 4 discusses IoT standards and paradigms.
Section 5 examines existing IDS systems used in the IoT environment, including their
different detection techniques. Experimental examples, results, and a discussion are found
in Section 6. The experiments described in Section 6 were conducted to ascertain and
validate the expectation that, within the context (i.e., diverse IoT (i.e., as defined by the data
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sets)), preliminary proof-of-concept compositions (i.e., ML Models and flow charts) had (1)
never been tried before and (2) were able to (preliminarily) perform better than expected
and thus (3) are the basis for pursuing more extensive experimentation to establish a more
empirical explanation. Section 7 presents future directions and conclusions.

This paper is oriented towards illuminating and surveying the existing state-of-the-art
technologies in IoT IDSs and evaluating them based on what various methods can/cannot
accomplish. Therefore, we propose an ML and DL framework by which the researcher
should abide to build a correct ML/DL model. Moreover, we introduce how to build deep
learning-based IDS architecture as a framework in Figure 4. In addition, in Figure 5, we
present our model depending on the process of building the model, described in Figure 4.

2. Taxonomy of Deep Learning for IoT-IDS Logic

Hindy et al. [15] classified various common threats using the seven-layer OSI model.
Those various threats are presented as a taxonomy here based on the tools need to carry
out said attacks. In [18], the authors presented an overall taxonomy based on public
IDS-established datasets. The references [3,4,11,12] provided new IoT architectures and
classified current IoT architecture. Other investigators have focused on deep learning
techniques, which are classified deep learning methods based on their view of knowledges.
In [19], for example, the authors reviewed deep learning-based IDS taxonomy, whereas
in [20], the authors provided a taxonomy based on machine learning methods. This section
classifies deep learning for IoT-IDS through various aspects. The taxonomy described in
Figure 1 houses the aspects associated with IDS expertise by facilitating industry, govern-
ment, and investigators to develop an intelligent intrusion-detection system in the IoT
ecosystem. Figure 1 provides a detailed taxonomy of deep learning approaches used in
IDSs. The taxonomy includes the various areas that are important to understanding IoT
security issues and their solutions. The taxonomy includes (1) IoT security attacks, (2)
IoT architecture layers, (3) intrusion-detection systems for IoT, (3) DL techniques used in
the IoT IDSs, (4) common datasets used in the evaluation of the DL systems, and (5) their
classification strategies. The different areas included in the taxonomy are in various ways
interconnected as root causes of IoT security vulnerabilities in IoT and/or solutions to
counter such causes.
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2.1. IoT-Targeted Attacks

In Figure 1, on the leftmost branch, IoT security attacks are enumerated along with
the corresponding layer needed to detect them. Indeed, IoT architectures are vulnerable to
various threat actors and attack methodologies. These attacks could be passive or active
and internal or remote, as seen in Table 1 and Figure 2. The passive attacks monitor
for vulnerabilities and do not disturb IoT ecosystem services (i.e., collecting information
needed for future penetration attempts). Active attacks disrupt (i.e., interrupt/block) the
operation of targeted IoT devices or IoT ecosystems. These attacks and threats include but
are not limited to the methods listed in Figure 1 (e.g., data accessibility, man-in-the-middle,
denial of service, distributed denial-of-service attack, eavesdropping, sniffing, routing
attack, sybil, replay spoofing, and mass node authentication). Section 3 explains more
about the challenges of IoT security Issues.
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2.2. IoT Architecture Layer

Different architectures (see layers 3, 4, 5, and 6 in Figure 1) have been identified by
various vendors and researchers. Section 4 discusses and compares the most popular
architectures. Section 4.3 proposes a mapping between the literature architectures to
facilitate the understanding of the layers proposed by entities and academia. Figure 3
summarizes the layers in the proposed taxonomy.

2.3. Intrusion Detection System (IDSs)

Many studies have proposed, developed, and empirically evaluated different ap-
proaches for IDSs [21–26]. There are primarily four different categories as shown in
Figure 1: (1) anomaly-based intrusion-detection system (AD-IDS), (2) signature-based
intrusion-detection system (S-IDS), (3) hybrid-based intrusion-detection system (Hybrid-
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IDS), and (4) specification-based IDS. AD-IDS depends on established known patterns for
normal behavior. Behavior outside the realm of “normal” is considered anomalous, thus
causing some sort of warning or alert. S-IDS relates to the known pattern (signature) of
malicious traffic to detect attacks. The zero-day (unknown; never been seen before) attack
cannot be detected by S-IDSs. Specification-based IDS and hybrid-IDS attempt to leverage
complementary capabilities by integrating the first two types (AD-IDS and S-IDS). ML and
DL algorithms are good examples of the core capability used in AD-IDS. The snort tool is
an excellent example of S-IDS [27–29]. Other important considerations and details related
to IDSs are examined in Section 5.

2.4. Deep Learning (DL) Approaches

DL algorithms can be organized into three different types, as shown in Figure 1,
based on their functionality and structure: (1) supervised, (2) unsupervised, and (3) hy-
brid (semi-supervised) algorithms. The common supervised, unsupervised, and hybrid
algorithms are all used to protect IoT systems. Supervised algorithms include Deep Neural
Network (DNN) [30], Convolutional Neural Network (CNN) [31], Deep Belief Network
(DBN) [32], Recurrent Neural Networks (RNN) [33], Bi-Directional RNN (Bi-RNN) [34],
Long-Short-Term Memory (LSTM) [35], and Gated Recurrent Neuro Networks (GRU) [36].
Unsupervised algorithms comprise Deep Restricted Boltzmann Machine (DBM) [37] and
Autoencoder Neural Network (AE) [38]. The Generative Adversarial Network (GAN) is
an example of the hybrid approach. DL Algorithms contain a sequence of many common
hidden layers. Artificial neural networks (ANNs), usually simply called neural networks
(NNs), are computing systems vaguely inspired by the biological neural networks that con-
stitute animal brains. ANN is considered the simplest neural network. DNN is considered
the most complicated neural network due to multiple “hidden” layers. DNNs are widely
used in various applications, such as network security, image recognition, and speech-
recognition systems. All methods can be used for binary classification, multi-classification,
and prediction as well as relatively high feature extraction to enable data reduction and
faster convergence times [39,40]. To improve accuracy and to obtain a low false-negative
rate, one must employ feature engineering. This considers techniques, such as converting
non-numeric to numeric, normalization, and scaling, during the deep learning model
development phase. Section 5.3 deeply examines recent studies and findings for the DL
class of algorithms.

2.5. Common IoT Datasets

As shown in Figure 1, the list of datasets used to validate DL approaches and specifi-
cally IoT cybersecurity are substantial. The number and diversity of studies and citations
substantially contributed to establishing the structure and criteria of the taxonomy. The
datasets that were selected include: (1) NSL-KDD, (2) CICandMal2017, (3) Bot-IoT, (4)
Botnet, and (5) IoTID20. All selected datasets are publicly available. Section 5.4 explains in
greater detail the nature of each.

2.6. Deep Learning Strategy

DL models can be categorized based on the primary goal for the analysis, such
as classification, feature extraction, prediction, and expression. The feature-extraction
technique plays a significant role in extracting important features, especially in high-
dimensional data, such as IoT ecosystem. Feature extraction is significant for creating
a suitable prediction or classification model. Most studies describe how to create non-
handcrafted features of the data as the basis for training their IDS model for the purpose
of enhancing the quality of classification, prediction, and/or regression outcomes. In
classification, the model organizes the existing traffic data into two classes, benign (normal)
or malicious traffic (a binary classification), with the goal of minimizing false-negative
and false-positive rates. Another strategy is to create a model that can handle multi-
classification to categorize the abnormal patterns into different malicious attack types. To
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build a robust prediction model, the feature extractions must be carried out before building
the predictive application. A prediction model analyzes the past data and generates a
predictive model to forecast future data. It may be a possible solution for transmission
issues of IoT sensors data to cloud applications. A prediction model plays an important
role to solve spatial-temporal problems in IoT ecosystem. It plays an important role in
improving industrial IoT products, reducing the cost, and providing good decision making.
The regression model comes with two different kinds of regression: linear regression and
nonlinear regression. It fits the time-series problems. It began to surface in IoT ecosystem
as one of the solutions for spatial-temporal problems, but it remains the least popular in
the IoT research community. To preview those strategies, refer to Figure 1.

3. IoT Security Challenges

One important challenge reported in the literature [2–5,7–13] is securing IoT tech-
nologies, which can be life threatening. A harmful scenario can result with Integrated
Smart-Devices (ISD) when exploited by hackers, especially in industrial IoT applications
or Internet of Vehicles (IoV). There is a number of IoT technology-hacking scenarios as
illustrated in [41,42] that could cause a high level of harm to the system. IoT information se-
curity issues are associated with the preservation of authentication, authorization, integrity,
confidentiality, non-repudiation, availability, and privacy [43,44]. Security issues and chal-
lenges related to IoT technologies can be approached from aspects of issues associated with
different IoT layers. Some studies [4,6,45] have proposed security requirements for each
layer within the IoT architecture separately, whereas some other references [8,12,25,27–29]
remain focused on analysis and presentation of the potential threats that attack each layer.
This paper seeks to combine security requirements against threats to propose a three-layer
IoT architecture. Accordingly, the most basic IoT architecture, the three-layered architec-
ture, provides a simple platform from which to present security requirements and concerns
as well as threats/exploits at each layer of the architecture as illustrated by considering
Table 2 combined with Figure 2.

Table 2. IoT architecture, attacks, and security requirements.

Layers Attacks Security Requirements

Application Data accessibility and authentication, Data privacy
and identity, Dealing with availability

Privacy protection, Authentication, Information
security management,

Network Man-in-the-middle, Denial of service,
Eavesdropping/Sniffing, Routing attack.

Authentication, Communication security, Key
management, Routing security, Intrusion detection,

Perception
Node capture, Denial of service, Denial of sleep,
Distributed denial of service, Fake node/Sybil,

Replay, Side channel, Mass node authentication,

Data confidentiality, Lightweight encryption,
Key management, Authentication.

The security requirements of Table 2 are defined here. Authentication is confirming
the identity of a claimer. Thus, in IoT, each device is expected to have the ability to verify
the identity of its user and another device for the interaction with others. Authorization is
giving access to an entity to interact in the IoT environment. Integrity refers to maintaining
the consistency, precision, and dependability of information, while confidentiality is about
making sure that sensitive information is accessed by authorized entities. Non-repudiation
guarantees holding an entity accountable for its actions. Availability ensures that IoT
services are there and can be accessed from anywhere and anytime the user needs them.
Privacy is a property and/or process of ensuring that private information is only accessible
by authorized entities. The properties above, taken as requirements, should be enforced to
achieve the highest levels of safety. However, IoT device constraints will naturally limit the
extent and depth achievable, which therefore necessitates a risk assessment to understand
better the threats, impacts, and tradeoffs. Figure 2 shows how active and/or passive threats
can impact those aforementioned properties within the IoT ecosystem [12,36–38].
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4. Standards, Paradigm Uptake and Inherent Vulnerabilities

The IoT technology sector comprises different technologies within various application
domains. A plethora of terminology has emerged and is used by different vendors to refer
to many sorts of IoT domains (i.e., application scenarios and configurations) with vastly
different degrees of criticality. Devices with the same purpose, similar functionalities, and
structure can be connected into the various circumstances that often represent investments
justified by a smarter, more sustainable infrastructure. The critical technologies underpin-
ning IoT include Machine-to-Machine communication (M2M), Internet of Vehicles (IoV),
Internet of Energy (IoE), and Internet of Sensors (IoS).

In the history of IoT, the technology has seen tremendous uptake and adoption.
IoT-based applications produce huge volumes of data that represent billions of objects
communicating amongst each other. IoT is often tightly integrated with cloud computing
from fog-nodes through various stages of processing and storage. This layered structure
aids in the flow of data between the three layers, where data is autogenerated from an
IoT sensor and stored automatically in the cloud [46]. Unfortunately, existing proposed
frameworks for the data compression process lack a data-protection scheme to protect or
avoid data spoofing/exfiltration and/or integrity at various points within those layers.
The very nature of the IoT charge and its vast and ambitious domain of application give
rise to inherent vulnerabilities, which have been a driving force in choosing vendors,
configurations, and protocols. There have been numerous but mostly proprietary reference
architectures thrust into the marketplace.

4.1. IoT Reference Architecture

There are several different IoT architectures proposed by vendors, such as the exam-
ples by Microsoft [47], SAP [48], and Intel [49], which are shown together in Figure 1. These
are a subset, excluding Cisco, Boeing, and others. There are several other architectures
proposed by researchers, though there is no one internationally agreed upon IoT reference
architecture [50]. However, numerous commercial interests promote their own proprietary
structures as being open. A generalized IoT architecture proposed in the literature should
consist of three basic layers: perception, network, and fog/cloud (i.e., application) layers
as shown in Figure 3b [2,51–53]. The layers include the perception layer, which is the
physical layer that senses the environment to observe and measure the physical properties
using smart devices that employ different sensing technologies. The network layer over-
sees/controls the receiving of data from the device layer and the transmitting of data up to
the application layer via various network protocols. Finally, the application layer provides
application-specific services to consumers (e.g., Losant Enterprise IoT Platform, Smart City,
Intelligent transportation system, Hewlett Packard Enterprise, IBM, etc.).

Another popular IoT architecture proposed in [45,54,55] consists of five layers as
seen in Figure 3c: perception (i.e., physical), transport (i.e., network), processing (i.e.,
middleware), application, and business layers. The supplementary layers are the processing
layer and the business layer. The processing layer is a middleware layer responsible for
providing various types of services, including storage, analysis, and post-processing of data.
The business layer is the overarching “overall” IoT system where big data analytics are
conducted, and the decision-making process regarding business strategies and roadmaps
is conducted.

Reference [12] proposes a six-layer architecture: physical objects, connectivity, mid-
dleware, big data analytics, applications, and collaboration and business objectives layers
as shown in Figure 3d. The physical objects layer (i.e., sensing) comprises sensors and
actuators of the IoT ecosystem. The plug-and-play (PnP) configuration phase of IoT-devices
happens at this layer, providing interconnection within a heterogeneous environment. A
key step for fulfilling a context-aware IoT ecosystem is understanding the sensor data sup-
plied by those devices. Therefore, the connectivity layer is a key target of malicious attacks
due to its typical ad-hoc nature. The connectivity layer typically includes collaboratively
connected heterogeneous sensors in designs that seek to achieve cooperative fault-tolerant
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goals. The objective of a middleware layer is to provide a versatile interoperability layer
that enables developers to concentrate on solving the problem without interruption at the
level of the software and/or hardware within the ecosystem. A big-data analytics layer
builds in IoT intelligence by providing smart services. This layer can leverage ML/DL to
play an analytical role using data captured within the ecosystem. The application layer
consists of several smart applications, such as smart transportation, smart agriculture,
smart robot, smart healthcare, etc. Finally, the collaboration and business objective layer
is used to enhance and improve a multitude of applications from smart living to numer-
ous commercial industrial types through efficient use of data collection, distribution, and
evaluation at different levels of the ecosystem. Similarly, the authors in [4] consider six
layers as their adopted architecture but use different nomenclature. The layers begin with
sensing at the bottom, short-communication, gateway access, network, service platform
and enabler, and application at the top of the stack.
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4.2. IoT Standards

Several criteria (i.e., standards) to baseline IoT architectures have been proposed by
standards organizations, such as ITU Telecommunication Standardization (ITU-T) [56],
and related open-standards organizations (e.g., advancing network functions virtualiza-
tion (NFV) and software-defined networking (SDN)). Intel’s involvement in these open-
standards organizations includes 3GPP, Cloud Native Computing Foundation, European
Telecommunications Standards Institute, Linux Foundation Edge, Open Network Founda-
tion (ONF), Open RAN Alliance (O-RAN Alliance), Internet Engineering Task Force (IETF),
and Open Container Initiative (OCI) [57]. Such standard initiatives aim at facilitating
interoperability, simplifying development, easing implementation, and identifying both
functional and non-functionable weaknesses in the IoT systems. Figure 3a illustrates the
functional view of the IoT standard proposed by ITU-T [56]. The architecture consists
of four layers: the (1) device, (2) network, (3) service and application support, and (4)
application layers.

4.3. Architecture Mapping

In this section, a comparison mapping between various proposed architectures with
the ITU-T standard as illustrated in Figure 3 is developed. Mapping the layers from
Figure 3c to Figure 3b, the business, application, processing, transport, and perception
layers correspond functionally to the three layers (perception, network, application) in the
latter architecture, respectively. The network layer in Figure 3b could be split into two



Sensors 2021, 21, 6432 10 of 30

different layers (processing and transport layers) as shown in Figure 3c. Similarly, the
application layer in Figure 3b corresponds to the business layer and the application layer.

While there are myriad pieces in the puzzle that build complete end-to-end IoT
architectures including both cutting-edge and legacy technologies as well as broadening
applications areas, there is no single architecture considered to be suitable for all areas
across the board. Most of the architectures can be considered an extension to the basic IoT
model. We conducted our analysis to provide evidence of convergence by matching various
architectures with one another. This analysis provided an approach to support affinity
matching across architectures and mapped the five-layer architecture and the six-layer
architecture as follows: (1) sensing (physical objects) layer in Figure 3d corresponds to the
perception Layer in Figure 3c; the (2) connectivity layer coincides with the transport layer;
the (3) middleware and big-data layers match the processing layer in Figure 3c; while the
(4) application layer match the application layer and the (5) collaboration and business
layer in Figure 3d correspond to the business layer in Figure 3c. The logic for the mapping
from Figure 3d to Figure 3b is given therefore as follows: the (1) sensing layer in Figure 3d
corresponds with the perception layer in Figure 3b; the (2) connectivity, middleware, and
big-data analysis layers in Figure 3d correspond to the network layer in Figure 3b; and
the (3) application and collaboration and business layers in Figure 3d correspond to the
application layer in Figure 3b.

The mapping logic endures within recently proposed architectures. The ITU-T stan-
dard with the six-layers architectures is roughly similar when overlapping between layers
is considered. ITU-T standard as shown in Figure 3a consists of four layers, which can
be mapped with the six-layer architecture in Figure 3d by the following representation:
the device layer corresponds to the sensing layer, the network layer comprises two func-
tionalities distributed among two different layers (connectivity and middleware layers),
the service and application support layer corresponds to big-data analysis layer, and the
application layer coincides to both application and collaboration and business layers in
Figure 3d. The compatibility between the ITU-T standard and the basic architecture of
the three layers and five layers can be deduced through the following compatibility: the
device layer in Figure 3a corresponds to the perception layer provided in Figure 3b,c, the
network layer corresponds to the network layer in Figure 3b and the processing layer and
transport layer in Figure 3c, the service and application support layer and the application
layer in Figure 3a correspond to the application layer in Figure 3b (with a difference to the
application layer in Figure 3b cannot provide full service and support as same as service
and application support in Figure 3a), and the application layer in Figure 3a corresponds
to the application layer in Figure 3c, whereas the service and application support layer in
Figure 3a corresponds to the business layer in Figure 3c.

5. Intrusion Detection System (IDS) in IoT

Security practitioners use monitoring systems to discover security vulnerabilities and
anomalous, possibly malicious, activities. These monitoring systems use passive traffic
collection and analysis to accomplish their objectives. An IDS is a monitoring tool that
observes data in network traffic to identify and protect against intrusions that threaten
the security of information systems [7,58]. IDSs are best known as the second line of
network defense. This security component comes into two forms: (1) host-based (HIDS)
and (2) network-based (NIDS). HIDSs monitor activities on the server, whereas NIDS
systems monitor network activities and communications. Since normal and malicious
behaviors are assumed distinct, IDSs can monitor behaviors of host and network activities
for signs of attack [7]. IDS architectures can be categorized into centralized, distributed,
and hierarchical. Centralized IDSs monitor data from a central location which, in most
cases, is in a remote or host-based location. Distributed IDSs are positioned among multiple
nodes within a network with “equally” shared responsibilities. In the HIDSs situation, an
IDS node can exist alone or in combination with other types of architectures with evenly
distributed responsibilities [6]. IDSs can be misuse-based or anomaly-based. Misuse-based
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methods use a database of known signatures and patterns to detect well-known attacks as
contrasted to anomaly-based systems, where a normal data pattern (i.e., profile) is created
based on data from user’s established normal behavior and then compared against current
data patterns in an online manner to detect anomalies [7]. Our current research focuses on
anomaly-based IDS systems with reference to the systems identified in Figure 1.

Both types of IDSs use different algorithms for detection. Most lightweight IDSs in
the literature are favored for use in the IoT ecosystem. These lightweight IDSs systems
use a principal component analysis (PCA), which is a lightweight algorithm that employs
various detection techniques in IDSs [59]. Consequently, this paper focuses on discussions
related to PCA used in IoT anomaly-based IDSs. In [60], the researchers proposed PCA to
create an anomaly-based statistical and data-mining IDS that depends on the division of
the principal components into the most and least significant principal components. PCA
used for intrusion detection is based on payload modeling in [61], statistical modeling
in [62], machine learning in [63], and data mining in [64]. Table 3 shows the advantages
and disadvantages of anomaly-based IDS approaches employed in IoT as related to the
detection modeling techniques [7,65]. Machine learning (ML) algorithms are applied via
two stages: the training stage that uses mathematical algorithms fed with ordinary data
to learn the characteristics of the computing environment, followed by a detection stage,
where non-ordinary data are used to validate detection and classification [66]. The preferred
use of data-mining techniques are for online environments with unbounded, continuous,
and rapidly increasing volumes of data to automatically generate models that depend on
the traffic description [67,68]. The Payload Model processes a packet byte-by-byte in a
streaming context from network traffic. This model distinguishes the normal (ordinary)
characteristics of network packet traffic on a specific port or for a specific user for a given
application from abnormal characteristics to identify attacks [69]. The statistical model
uses a kind of stochastic filter operation, such as the statistics of historical user behavior to
create a normal profile. Consequently, any deviations from the established norm are then
considered abnormal and detected as an attack [70], though not necessarily malicious.

Table 3. Advantage and disadvantage of Anomaly-based IDS detection techniques.

Techniques Advantages Disadvantages

Machine Learning
High detection accuracy Requires training data

Suitable for massive data volumes Long training time

Data Mining

Models are created automatically
Misuse of information

Security issues

Suitable for online datasets Depends on complex algorithms

Applicable in various environments Privacy issues

Payload Model High detection accuracy for known attacks Privacy issues

Long processing time

Statistical Model

Suitable for online datasets Based on historical behavior

System simplicity
Detection accuracy depends on statistical and

arithmetic ops

Limitation with large dataset

5.1. Anomaly IDS-Based Traditional Detection Approaches in IoT

In IoT environments, anomaly-based IDSs are used to monitor the behavior of a normal
network and to define a threshold to detect deviations from the normal behavior [71]. In
this section, we review existing anomaly-based IDSs proposed for the purpose of protecting
the security of IoT environments. We study different detection techniques employed in each
of the reviewed systems. For example, in [72], the researchers present an anomaly-based
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IDS system that uses data-mining techniques as a distributed intrusion-detection scheme
to detect anomalies in IoT environments. Their research theoretically showed, by using
the intrusion semantic to distinguish intrusive from a normal behavior, that the proposed
approach is accurate and extensible. Ding et al. [73] proposed a non-cooperative differential
game model that uses statistical techniques to allow all nodes in an IoT environment
to choose the optimal amount of network resources to invest in information security
contingent upon the state of the game. This research models selfish-nodes and malicious-
nodes interactions as a differential game. The results show that malicious behavior can
be discovered with high probability and high detection accuracy, good performance, and
low resource consumption. Chen et al. [74] proposed a fusion-based approach for attack
inference at the IoT network level. The approach details the attack and IDS procedure as
a zero-sum game. The outcome of the game equilibrium is used to evaluate the network
robustness achievable from a given proposed defense mechanism.

Rajasegarar et al. [75] proposed a distributed anomaly-based IDS approach that utilizes
numerous hyper-ellipsoidal groups to show the information at every node and detect
global and neighborhood abnormal behavior within the system. The approach uses a novel
scoring-based technique that provides a score for each hyper-ellipsoidal model, achieving a
higher detection performance. The approach is proposed for resource constrained networks,
which makes it suitable for use in IoT environments. Ham et al. [76] proposed a machine
learning-based IDS approach that employs the SVM to distinguish anomalies on android
for the IoT services. The approach uses behavioral-based detection to enable automatic
anomaly classification to ensure detection accuracy. Wong et al. [77] proposed an online
anomaly detection method for IoT environments that uses an integrated probabilistic model.
The MATLAB simulation environment was used for the implementation and evaluation
of this approach. Pongle and Chavan [78] proposed an IDS that recognizes wormhole
attacks for IoT. This approach uses a data-mining model to recognize an intrusion by
employing a local node with its neighbor node data to identify intrusion by adding a flag
inside a victim packet to distinguish malicious nodes. Summerville et al. [61] proposed
an ultra-lightweight deep packet anomaly-detection scheme for resource-constrained IoT
devices to identify normal and abnormal behavior. their approach uses payload modeling
that uses bit-pattern and n-gram sequences. The proposed approach can be implemented
on an IoT device or can be built into network appliances and firewalls. Additionally, in [79],
the research provided a lightweight IDS that uses payload modeling to detect distributed
denial of service (DDoS) over IoT networks. There are a number of other anomaly-based
IDS approaches that use previously mentioned detection modeling approaches for IoT
environments, including the one proposed in [80] that uses taint analysis to detect attacks
on IPv6 within the IoT routing service. Rahman et al. [81] presented a neuro-fuzzy based
IDS that identifies incidents at the physical or medium access control (MAC) layer of the
IoT. In our previous work [82], we addressed anomaly problems by offering an improved
Adaptive Anomaly Detection (AAD) methodology that resolves the heterogeneity issues
by building local profiles that define normal behavior at each IoT node.

One of the main shortcomings associated with the reviewed anomaly-detection ap-
proaches is the lack of high accuracy specifically when used in IoT. With the ever-increasing
complexity of attacks, the traditional detection algorithms, such as classical machine
learning, statistics, payload, and mining-modeling techniques, are incapable of detecting
complex cyber breaches [83]. As a result, researchers have opted to use deep learning
in intrusion-detection systems and have shown that it could have a novel application in
anomaly detection for IoT [84–86]. Deep learning has been improved over ML in many
computing domains due to current developments in hardware and powerful deep learning
algorithms (Deep learning (DL) algorithms, a subset of machine learning, are characterized
by their complexity (or depth) of the neural network (NN) hidden layers. ML contains
either linear or nonlinear algorithms as a single layer. In ML, the feature extraction (se-
lection) is the first step that precedes the implementation of the model, while in DL, the
feature extraction is embedded within the model). The huge volumes of data generated in
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cutting-edge technologies also make a tremendous contribution to the current adoption of
deep learning in intrusion detection.

5.2. Deep Learning (DL) Approaches

DL has been applied to a myriad of problems. Here, we highlight recent advances
from the perspective shown in Figure 1, namely protecting IoT security. DL is a state-of-the-
art feature extraction and classification method well known within the domains of image
recognition and data processing. It extracts huge, complex, and nonlinear hierarchical
features to build models that transform inputs to an output, so-called as ANN algorithms,
with more than two layers of neural network [87]. Numerous different DL algorithms exist.
The preferred use of DL is feature extraction and classification [88]. DL uses interconnected
neurons to jointly perform a non-linear transformation of inputs to certain desired outputs.
In IoT security, DL architectures are a powerful method of data exploration to learn about
normal and abnormal behaviors. DL techniques are used in IoT security because they can
perceptively predict future unknown attacks. Data collected, for example, from each layer
of the IoT architecture is used as input to determine the normal patterns of interaction,
resulting in identification of malicious behavior at an early stage. DL techniques are also
used to predict new attacks, which are, in most cases, mutations of known attacks. DL
methods are principally used in IoT systems that produce huge volumes of data and are
filtered using one of the three supervised, unsupervised, or semi-supervised learning
types [89]. The common supervised DL approaches used for the security of IoT systems
include DNN [30], DBN [32], CNN [31], RNN [33], LSTM [35],(Bi-RNN) [34], and GRU [36].

DNN, a branch of ANN, provides the backbone structure of DL algorithms, which
leverage Multilayer Perceptrons (MLP) composing multi-hidden layer architectures. DBN
is a series of stacked RBM layers that execute greedy layer-wise training to achieve robust
performance [90]. DBN can be utilized for dimensionality reduction. In DBN, the data
are represented by the visible layer, while the hidden layer transforms to represent the
characteristic features. The technique learns how to perform the processing while training.
CNN also allows automatic feature learning and reduces the data parameters compared
to conventional machine learning approaches. CNN uses sparse interaction, parameter
sharing, and equivariant representations to accomplish data parameter reduction. The
CNN approach has two alternating types of layers: convolutional layers and pooling layers.
CNN has another essential part called the activation unit, which performs a non-linear
activation function called the rectified linear unit (ReLU, i.e., f(x) = max (0, x). This function
takes the value (x) from the previous neuron (and zero (1st parameter)), thus making the
output of the current neuron passed to the next neuron (i.e., if greater than zero; making all
negative values of x set to zero). The training time and scalability of CNN architectures can
be improved by reducing the connections between its layers. Several researchers have used
CNN for IoT security [91,92]. The RNN approach, on the other hand, handles sequential
data and is used for applications that consist of sequential inputs, such as sensor data.
IoT devices generate many sequential data from sources such as network traffic flows
(e.g., in [93]). Investigators have debated RNN-assisted networks for secure and reliable
IoT storage. LSTM was first proposed as an implementation of the RNN [35]. The LSTM
architecture is different from RNN; it is trained for cases that require state awareness, as
LSTM can retain the knowledge of earlier states. In addition, there is a lightweight version
of LSTM derived from GRUs [36]. GRU aims to solve the vanishing gradient problem
reported in standard RNN architectures. GRU can be considered as a simpler architectural
variation on LSTM, which uses a gating mechanism. GRU is known as a LSTM with a
forget gate and fewer parameters. Bi-RNN [34] puts two RNN together to enable both
backward and forward information propagation. Accordingly, Bi-RNN runs inputs in
two ways, one from past to future and the other one from future to past. Bi-RNN, with
two hidden states combined, can preserve information from both the past and the future,
different from LSTM, which runs only backwards to preserve information.
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Common unsupervised DL approaches include AE and DBM. Deep AE methods are
introduced in [38] to produce better data representation resulting from dimensionality
reduction. An AE, apart from the hidden layers of low-dimensional features, consists of
an equal number of feature vectors for each input and output layer. An AE combines an
encoder that extracts features from the entire dataset and learns to convert the input into a
low-dimensional representation. The decoder receives the low-dimensional representations
and reconstructs the original features [94]. RBM neural network introduced by Ackley
et al. [95] contains fewer hidden layers and has been used in many domains, including
securing IoT systems [96,97]. RBM, unlike AE, consists of two types of layers: input
layers, which are the visible layers, and hidden layers. The main motive behind RBM
is to limit the number of features processed by each layer. RBM has limited feature-
representation capability and is substantially stacked from two or more RBM layers to form
a DBN. In [37], the authors produced a new learning algorithm based on a fully connected
Boltzmann machine to enhance the RBM technique, so-called DBM, which is an undirected
model, as is RBM. DBM, unlike RBM, consists of several hidden layers, whereas RBM only
contains one or possibly two hidden layers. Unfortunately, RBM possesses drawbacks that
are inapplicable to onboard devices with limited resources. However, investigators still
employ RBM/DBM in securing IoT environments. Nevertheless, IoT architectures will
perhaps be adapted to accommodate the use of DBM, thereby streamlining the use of ANN
countermeasures.

Hybrid or semi-supervised DL methods combine generative features in early phases
and discriminative features at a later stage for data differentiation. Generative adversarial
network (GAN) is a good example of hybrid deep learning. GAN has been adapted into
the IoT environment for security purposes [98,99]. GAN may show improved success
because it can learn different attack scenarios that are combined to generate samples similar
to a zero-day attack scenario. Such predictive capabilities represent a higher level of
learning and require that such hybrid algorithms receive extra attacks samples to learn
other than existing attacks [12] that approximate suspicious zero-day behaviors. This
course aims to achieve lower false-negative rates, though perhaps at the expense of higher
false-positive rates. Yet, some would argue that higher learning layers are necessary to
anticipate unknown, sophisticated attack strategies.

5.3. Deep Learning-Based IDS Architecture

Traditional detection techniques, noted previously, have fallen short of detecting new
complex attacks. As the volume of data increases, for example, into terabytes, it has become
even more important to find alternative techniques. DL models can train using massive
amounts of data to build robust anomaly detection systems. The model classifies the new
traffic into either a normal or anomaly class [100]. DL techniques learn from hierarchical
discriminative features discernable in the data. The fact that anomalous behavior is often
not precisely defined poses challenges for conventional techniques; therefore, domain
experts have begun to advocate solving the problem using DL techniques [87]. Some
anomaly-based IDSs are used in the IoT context by employing deep learning techniques
for their insights. The most common deep learning architectures employed for anomaly
detection in conventional systems include CNN [31,101], DNN [30], LSTM [84,102,103],
and RNN [104]. Such deep learning architectures are employed in an anomaly-detection
system for either feature learning or classification [69]. Figure 4 shows the (typical) overall
framework of IDS based on deep learning.
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A few studies have used DL architectures in anomaly-based IDSs in IoT. In [105],
researchers proposed a distributed anomaly-detection-based IDS for IoT environments.
The approach uses Autoencoder Neural Networks (AE), which is a two-part algorithm
that resides on sensors and the IoT cloud/Fog, respectively. The anomalies can be detected
at sensors in a distributed manner, while the computing burden is handled in the cloud
with a lower frequency. The researchers use their own dataset to test the performance of
the proposed approach. The authors [106] proposed a hybrid spectral clustering-based
detection technique using DNN in sensor networks. They utilized the KDD99 and NSL-
KDD datasets to detect intrusion behavior. They employed k-clusters for feature extraction
from the entire dataset and to evaluate the performance of their model. The authors of [107]
utilized LSTM to propose a model to predict the operating state of IoT equipment by
analyzing the data collected from IoT sensors. In [108], the authors implemented LSTM
on the Coburg Intrusion Detection Datasets (CIDDS) to create an IDS for classification
problems. They applied LSTM to generate their model in a simple way. They compared
their model (LSTM-IDS) with ML methods (SVM, Random Forest, Naive Bayes, and
ANN). They achieved higher accuracy using LSTM-IDS: close to 85% more than other
methods. Their model’s weakness is that it classifies only known attacks accurately, with
no accounting for zero-day type attacks. Pamukov et al. [109] suggested a classification
algorithm that uses DL in anomaly-detection-based IDS. The approach uses a negative
selection algorithm for training the system and a simple neural network to conduct the
actual classification. The negative selection algorithm creates training data only using
normal network behavior data. The approach also uses the R-continuous Bit-Matching
rule as a classification function. To evaluate the performance of the approach, they used
the NSL-KDD dataset. The model is not an online solution and is not suitable for bringing
solutions to areas of large-scale self- or non-self-classification problems.

The study in [110] proposed an ANN to detect DDoS attacks. The neural network
is trained on a labeled data set that learns a mapping from input to output that enables
the classification of normal and anomalous behavior. The researchers used their own data
to train the proposed approach for performance evaluation. Live data are collected from
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network traffic from a simulated environment without modification. The performance
provided in the evolution part of the approach is promising and has shown that more time
is required for good efficiency. The study in Lopez et al. [111] proposed an anomaly-based
NIDS system that uses an Intrusion-Detection Conditional Variation Auto-Encoder (ID-
CVAE) within the IoT context. They claim the approach is less complex and provides better
classification results. The approach provides feature reconstruction to recover missing
features from incomplete training datasets. They utilized the NSL-KDD dataset to evaluate
their model. The study in [83] proposed an anomaly-based IDS approach that uses DL
to enable the detection of attacks in a social IoT. The approach is centralized and can be
extended to distributed systems. The researchers utilized theoretical analysis to compare
the work with other works that employ ML techniques using the NSL-KDD dataset. The
approach provided a good detection accuracy and low false-positive rates, although the
downside of the approach is that it needs high training time and resources.

Authors of [112] proposed an adaptive model combining an “improved” genetic
algorithm (GA) combined with a Deep Belief Network (DBN) for an IoT-ecosystem IDS.
The DBN model was divided into two phases: (1) the training stage, which uses multiple
RBM layers, each trained separately, and (2) the backpropagation stage neural network,
which was set the last layer of the DBN. The study used the NSL-KDD dataset to apply
the model to detect attacks and acquired the accuracy from 97.78 to 99.45% for various
attacks. The study used GA to adopt an optimal network structure. In [113], use of DBN
and DNN and an anomaly-based IDS approach was proposed. The approach is a near
real-time detector that provides effective detection. The researchers used the approach in
real-network traces to provide proof of concept and simulation for evidence of scalability.
The authors in [114] utilized BiRNN with LSTM to propose a DL model to detect malware
in IoT ecosystem based on operation codes “OpCodes”. Their dataset was 180 malware
and 271 benign files. They acquired a high accuracy (98.18%) in both training and testing
data. It is worth noting that there is little research using BiRNN to apply IDS in IoT. In
the same context, there are not enough studies using GRU to apply IDS in IoT ecosystem.
The authors of [115] applied a GRU to design an effective IDS in IoT ecosystem. Their
model was a lightweight IDS for IoT ecosystem in which IDS places at each TCP/IP layer
architecture. The KDD 99′cup data set was used by applying their model to classify the data
at each IDS device. The DNN technique was used to classify benign network traffic from
malicious network traffic, while a perceptual learning model was used for data collection
and feature extraction.

In [60], investigators used the DNN in a distributed attack detection scheme. They
did not clearly state the detection method used to achieve the scheme. The approach
proposed in [103] used LSTM for outlier detection of attacks in industrial IoT. The method
used a predictive error for the Gaussian Naïve Bayes model to classify attacks and was
evaluated using three real-life datasets. The results demonstrate promising performance
over other methods. Researchers in [102] contributed a host-based anomaly-detection
framework that uses Extreme Gradient Boosting (XGBoost) and LSTM. The framework
uses abnormalities in the system call sequence as an indicator in real-time experiments
to evaluate the performance of both models. The approach uses an N-gram algorithm to
extract features and the stacked XGBoost and LSTM for classification. In [101], a framework
that monitors abnormality in IoT traffic was proposed. The framework used the Vector
CNN approach for classification in Fog environments. The framework was evaluated
with the Bot-IoT dataset, and the results provided showed relatively better performance
compared to RNN and LSTM. LSTM-based models, previously highlighted, are reported
to have better performance than CNN-based models. In [116], a CNN-based network
anomaly-detection system using a special layer for packet pre-processing was proposed.
The validation used the NSL-KDD dataset. A comparison of the reviewed anomaly-based
IDS approaches that use deep learning techniques is provided in Table 4.
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Table 4. Comparison of deep learning techniques that are used for anomaly-based IDSs in IoT.

Ref. DL Approach Strategy Dataset Advantage Disadvantage

[83] DNN Classification NSL-KDD Real-time, high accuracy,
utilizing a fog computing

Needs more time and
resources

[101] Vector-CNN

Feature extraction
using VCN and

Classification using
FCN

Bot-IoT Scalable detection, less time Works better with selected
features

[102] LSTM Classification Own real data and
ADFA-LD Real-time, high accuracy Needs more time

[103] LSTM Classification Own real data Real-time, high accuracy Needs more time, more
resources

[105] Auto-Encoder Classification Own real data Self-adoptive, low false neg Does not match large scale
data

[106] Hybrid -DNN Classification,
prediction

KDD99 and
NSL-KDD datasets

Suitable for heterogeneous
environments, comparison with

ML techniques

Average accuracy, fewer
training samples

[107] LSTM Prediction, regression Sensory data
Prediction accuracy, real-world

data, comparison with other
results

Does not handle
inner-relations of data

[108] LSTM Classification CIDDS Comparison with ML
techniques

Not suitable for Zero-day
attacks, not suitable for

heterogeneous env.

[109] Simple neural
network Classification NSL-KDD Low processing time, high

detection accuracy, scalability

Not real-time capable,
non-suitable for zero-day

attack

[110] Simple Neural
network Classification Own real data Real-time usage, high detection

accuracy,
Needs more time for good

efficiency

[111] ID-CVAE Classification NSL-KDD Less complex, low latency High false positive, needs
more resource for training

[112] GA and DBN Classification NSL-KDD High accuracy, self-adaption
Lack experiments on the
test-set, does not match

large scale data

[113] DNN Classification Own real data Real time detection needs more time

[114] BiRNN, LSTM Malware analysis,
Feature extraction

IoT application,
own real data

Comparative accuracy with
various ML techniques,

self-training, high accuracy,
multiple models

Not suitable for complex
patterns, computational-

complexity-learning,
random initialization

[115] GRU, Random
forest

Feature extraction,
Classification KDD-99 Multi-layered IDS,

Comparisons with existing IDSs
Outdated dataset,
stationary model

[116] Vector-CNN Feature extraction NSL-KDD dataset Needs minimum data Need more resources as
data increase

5.4. IDS Datasets Appropriate for IoT

There are a good number of datasets available for the development and validation
of IDSs. The most popular datasets used in the implementation of IoT-IDSs include NSL-
KDD [117], the Bot-IoT [16], the Botnet [118], and the Android malware [119] datasets. The
NSL-KDD dataset is designed to solve some of the inherent problems of the KDD’99 dataset.
Thus, NSL-KDD eliminated redundant duplicate records, thereby significantly reducing the
total number of records. The number of borderline (i.e., difficult) records were eliminated
based on the inverse percentage so that the NSL-KDD dataset has far fewer borderline
records than other datasets. Several papers focused on IoT intrusion detection have used
this NSL-KDD and reported judicious and sensible results. The Android malware dataset
(CICAndMal2017) contains malware and benign applications, proposed in [119]. The
malware samples used to develop this dataset consist of Adware, Ransomware, Scareware,
and Short Message Service (SMS) malware and include more than 80 network traffic
features. The Bot-IoT is an IoT traffic-based dataset that contains more than 72,000,000
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records, including DDoS, DoS, OS and Service Scan, Key-logging, and data exfiltration
attacks [16]. The Bot-IoT, compared to other datasets, is dedicated to the validation of IDS
within an IoT environment. The Botnet dataset is an internet-connected devices-based
dataset containing training and test data that include 7 and 16 types of botnet attacks,
respectively [118]. The data featured in the botnet dataset include four groups: Byte-,
Packet-, Time-, and Behavior-based. Finally, IoTID20 was developed for anomalous activity
detection for the IoT ecosystem. It was generated by including laptops, smartphones, Wi-Fi
cameras, and other IoT devices. The Bot-IoT and IoTID20 are described in Section 6.2.

6. Experimental Results and Discussion

We used two real traffic IoT datasets: the Bot-IoT dataset [16] and the IoTID20
dataset [17]. We selected 5%, which included full features from the Bot-IoT database,
while the second dataset was fully selected in the experiment. The proposed model and ex-
periments were trained and tested using the Google Collaboratory (Colbab) with Graphics
Processing Unit (GPU), Python, TensorFlow, Scikit-Learn, SkFeature, Numpy, and Pandas.

The process details of the experiments for building the IDS-ML model are shown in
Figure 5. The following ML algorithms, namely LR, SVM, DT, and ANN, were employed in
this study. The proposed model consists of four stages: (1) data processing, (2) dimensional
reduction, (3) training, and (4) testing stage. Visualization preparation and dataset analysis
were implemented in stage (1), while ROC requires utilization of all steps to build the
model and extract the results.

It is more important to understand the imbalanced dataset because it influences both
accuracy and prediction. Effort was devoted to answer the following question: Does ROC-
AUC give a better performance rate under various threshold tunings in the unbalanced
dataset?
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6.1. Evaluation Metrics

We used the following well-established metrics to measure model performance. Clas-
sification can be further categorized into binary classification and multi-classification. In
binary classes, the class labels are either “normal” or “attack.” The outcomes for binary
classification must be categorized as follows: (i) true positive (TP): when an attack is
correctly identified as an attack by the model; (ii) false positive (FP): when a benign node is
defined as an attack; (iii) true negative (TN): when a benign node is correctly identified as
non-attack; and (iv) false negative (FN): when the model identifies an actual attack as a
non-attack (i.e., attackers win and defenders lose). These four categories shape the so-called
confusion matrix [120]. To evaluate ML models, the following equations derived from the
confusion matrix are (universally) used. These matrices are characterized by the following
equations:

ACC =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

PR =
FP

FP + TN
(3)

The accuracy (ACC) is the percentage of correctly identified cases divided by total
cases that were considered (whole populations). Sensitivity is also known as “recall,” or
true-positive rate (TPR) or simply the “detection rate.” Sensitivity intuitively indicates
the model’s power to correctly identify attacks. Moreover, it provides the ability of the
model classifier to find all the positive samples in the training model, while in the receiver
operating characteristic curve, or ROC curve plots, FPR is represented on the X-axis, and
TPR is represented on the Y-axis. In other words, the upper-left hand corner of the plot
(image) is the “ideal” point, where TPR = 1 and the FPR = 0. Thus, using the ROC curve,
efficiency of the model is measured as best when the Area Under the Curve (AUC) is
maximized. Accordingly, ACC, ROC curve, and AUC (area under the ROC curve) are used
to evaluate the model, whereas the ROC curve is a graph used to visualize the performance
of classifiers at various threshold settings.

6.2. IoT-Datasets

Bot-IoT dataset: The selection of the BoT-IoT dataset is to display various types of
security threats and cyber-attacks. These were categorized into the main category of
attacks and the subcategory of attacks as illustrated in Table 5, Figures 6 and 7. Due to the
limitations of IoT devices, DDoS and DoS are more prevalent than other attacks. Therefore,
the most significant attacks that IoT devices encountered are DDoS and DoS.
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Table 5. Attack types selected from the BoT-IoT dataset.

Main Category Attack Subcategory Attack Training and Testing

DDoS/DoS

UDP 1,981,230

TCP 1,593,180

HTTP 2474

Total: DDoS/DoS 3,576,884

Reconnaissance
Service Scanning 73,168

OS_ Fingerprinting 17,914

Normal Normal 477

Theft Keylogging 73

Total: theft
Data Exfiltration 6

79

Total 3,668,522

Therefore, traditional protection systems, such as Firewalls and Snort, fall short when
challenged by such attacks. Table 5 shows a detailed representation of the distribution
of various attacks and their anomalies (in just 5% selected data from the whole dataset)
and indicates the number of attacks in each category. Table 5 clearly shows that UDP and
TCP are the most important services (protocols) affected by malicious attacks. DoS occurs
in some unwanted traffic (source and receiver). An attacker sends many vague packets
and repeated packets to the victim (target), and as a result, the victim’s services become
unavailable to other clients and services. The attacker takes advantage of a weak node to
launch an attack through the whole network. Through the vulnerable nodes, the attacker
starts sending a large amount of fake data through the network to other nodes.

Figure 8 shows targeted attack intensity for each of the seven services (from left to
right). The service distribution gives a first impression of the scale of challenges confound-
ing the IoT ecosystem. This is a difficult problem that must be addressed and mitigated.

IoTID20 dataset: The IoTID20 dataset was developed for anomalous activity detection
for the IoT ecosystem. The data consists of various types of IoT attacks as well as normal
traffic (i.e., many features that are present are of a general nature). These attacks include
Mirai, DoS, Scan, MITM ARP Spoofing, Scan Host port, and Mirai-UPD flooding.

The dataset was generated by including laptops, smartphones, Wi-Fi cameras, and
other IoT devices [78]. Effectively, the IoTID20 dataset represents a smart-home envi-
ronment. The authors derived OpTID20 by splitting the devices within the simulation
testbed into two groups. The first group represents the attacking devices, while the second
group (e.g., Wi-Fi camera) is the IoT victim devices. The testbed has been implemented to
simulate various attacks by using the Network Mapper (Nmap) tool. Figure 9 shows the
main categories of attacks that are found in the dataset, whereas the subcategories in this
dataset are illustrated in Figure 10.
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6.3. Result and Discussion

Table 6 shows the performance of all four models (LR, SVM, DT, and ANN). Figure 11
shows accuracy for each of the four experiments that were conducted on the IoTID20
dataset. These results indicate the feasibility and efficiency of our approach using the
four ML algorithms to detect malicious and normal (benign) nodes. The ROC curves of
(1) LR, (2) SVM, (3) DT, and (4) ANN are discussed and shown in Figure 12. The ANN
model produced the highest detection rate (DR) for three attack types, namely Mirai-ACK
flooding (M.A.F), Mirai-HTTP Flooding (M. HTTP.F), and Mirai-UDP Flooding (M.UDP.F).
On the other hand, the DT model produced the highest detection rate (DR) for MITM ARP
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Spoofing (M.ARP.S), Mirai-Host brute force (M. Host. B. force), Scan Host-port (S.H. P),
and Scan Port OS (S.P. OS).

The ROC-AUC is a more important metric to represent the performance of a predic-
tion/classification model. The ROC-AUC clearly demonstrates the ability of different ML
algorithms to accurately detect various malicious attacks in network traffic. The ROC-AUC
score is a measure of the diagnostic ability of the classifier model. ROC is a probability
curve, while AUC represents the measure of separability accuracy rate under various
threshold tunings and rank features. The higher the percentage of accuracy (i.e., more
AUC), the better the model prediction and/or classification performance. One of the
main advantages of the ROC is to compare between algorithms as Figure 12 shows. The
ROC-AUC curve was generated to outline multiple classes. Therefore, it is preferable to
use the ROC-AUC first to understand which algorithms are the most accurate toward
determining (i.e., down selecting) the prime ML algorithms before embarking on building
a detection/prediction model. Figures 11 and 12, and Table 6 answer our experimental
question, therefore, to achieve a high rate of accuracy. In this way, we used various thresh-
old tunings to obtain high accuracy and performance rates. Furthermore, the challenges
in cybersecurity issues are related to dealing with unbalanced categories. In particular,
IoT ecosystem generates locally in an individual sensor/node or globally in a centralized
location enormous data, which results in a general, imbalance dataset. An imbalanced
dataset problem prevents achieving high accuracy in shallow machine learning algorithms
due to the different weights in each class.

Table 6. Performance of various ML algorithms relative to the various attack type and normal.

+ LR SVM DT ANN

DoS-S. F 100% 100% 100% 100%

M.ARP.S 93% 92% 99% 98%

M.A. F 87% 87% 81% 90%

M.HTTP.F 87% 87% 81% 90%

M. Host. B. force 87% 87% 100% 98%

M.UDP.F 95% 95% 93% 96%

Normal 97% 97% 100% 100%

S.H. P 86% 88% 96% 95%

S.P. OS 90% 91% 98% 97%
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7. Conclusions and Future Direction

The results from our comprehensive assessment for using DL anomaly-based IDSs
in the IoT environment are presented. Based on the reviewed approaches, DL-based
techniques can provide a more effective method for monitoring and detecting malicious
nefarious intrusions. Most of the approaches provided high true-negative rates. While
some approaches in “IoT-tailored” anomaly-based detection systems that use deep learning
gave better detection rates for certain attacks, others were effective at detecting other
atypical disruptions. We also observed that most approaches focused on the classification
or detection phase in employing DL techniques. None of the reviewed approaches used
DL for feature extraction in IoT-tailored anomaly-based detection systems. However, with
the variety of data produced in IoT environments, applying hand-crafted manual feature
selection is time consuming. Instead, we claim that learned features extracted with some
DL techniques would improve the performance of anomaly-based IDS approaches.

There are feature-extraction DL architectures adopted in many domains, such as
image recognition, image processing, image retrieval, etc. [88]. Therefore, it is necessary
to investigate the adoption of an end-to-end DL model for anomaly-based IDSs in the
IoT environment. For instance, the researchers in [31] used CNN-based features for an
anomaly-detection model. In addition, well-known DL architectures, such as CNN, RNN,
or LSTM, have rarely been utilized (i.e., investigated) for anomaly-based IoT detection
systems. Moreover, to the best of our knowledge, there is no single study that refutes
the employment of such DL approaches. Hence, in the future, investigations that involve
the use of such popular DL approaches to detect anomalies in the IoT environment are a
promising avenue to study and understand the potential impact they may bring to this
increasingly enormous IoT assurance problem.

In this paper, therefore, we compared the DL anomaly-based IDSs approaches that
have been used from published research accounted for in the matrix shown in Table 7.
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Table 7 depicts detection accuracy, resource consumption, false-positive rate, real-time
capability, scalability, flexibility, and robustness of each approach. Table 7 shows the criteria
used in each of the previous research studies that are available in the literature, where
the check (X) indicates that the criterion is discussed in the research, and “×” indicates
otherwise. We clearly observed that most previous works do not include both prediction
and classification together. We also observed that the classification accuracy criteria are
receiving more attention from researchers, contrary to flexibility and robustness criteria,
which do not get much attention. We wanted to define other meanings and not just (×,
X), for example, good/bad performance/criteria; however, since it depends on personal
opinions, authors preferred to use (×, X) to give better proportionality between the criteria.
In addition, the extracting features approach did not pay attention to the more profound
studying. Most of these approaches have been evaluated against the accuracy of detecting
anomalies (e.g., intrusions) in IoT. In [105], the approach was reported to have achieved
an accuracy of 70% and 60% FPR. The approach in [80] showed a significant variation
in accuracy between the attack scenarios, with a margin between 40–50%. The authors
in [110] evaluated their work against simulated IoT networks, demonstrating 99% accuracy,
while in [111], the approach was able to recover categorical features with an accuracy of
99%. With the other two remaining approaches, in [83], an overall accuracy of detection
increased from around 96% to over 99% with the increase in layers (i.e., nodes), and the
approach [113] showed a 99.5% accuracy for simulated networks and 98.47% accuracy
when implemented on an experimental IoT testbed. These results show that there are
differences, as might be expected, that result in a range of accuracies reported.

Table 7. A comparison of deep anomaly-based IDS approaches in IoT.

Scheme Classification
Accuracy

Prediction
Accuracy

Resource
Consumption

False-Positive
Rate

Real-Time
Capability Scalability Flexibility Robustness

[83] X × X X × X × ×

[101] X X × X X X × ×

[102] X × × X × × × X

[103] X X × X × × X ×

[105] × × X X × × × ×

[106] X X X X X × × X

[107] × X × × X X × X

[108] X × × X × X X ×

[109] X × X X × X × ×

[110] X × × X × X × ×

[111] X × × × X × X ×

[112] X × X X × × X ×

[113] × × X X X X × ×

[114] X × × × X X × X

[115] X × X X × X X ×

[116] X X × X X × × X

There are two issues that can be highlighted based on this review. First, the resource-
constrained nature of IoT devices is one of the main limitations that make the adoption of
IDSs in IoT environments challenging. Conventional IDSs cannot be implemented in the
IoT environment because of their computational cost. Such approaches require a heavy
number of resources (e.g., memory/storage for data-classification purposes) not typically
available in such environments. To that end, lightweight IDSs that need fewer resources
are required. The second issue concerns centralized data analysis employed by IDSs, which
is not fundamental in IoT. In this sense, anomaly-based IDSs are more suitable to the
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distributed nature of IoT because they actually can minimize communication overhead,
reduce network traffic, and are a less invasive cure to detecting malicious intrusions.

Implementing distributed anomaly-based IDSs can be investigated as a
solution [12,14,15,24,60,69,71,72,74–77,81,82,99] to providing a less invasive IDS. Regarding
detection techniques, such as the anomaly-based IDSs, the preparation and testing time
needed to accomplish the normal behavior of networks is high. A huge dataset is needed
for training such IDSs to accomplish the normal behavior of the IoT network. Designing an
IDS that can handle these problems is challenging. DL techniques using anomaly-based
IDSs are a promising avenue for future research. Some other characteristics that future
IoT-IDSs may have included a real-time approach with safe routing processes. We conclude
that more attention must be paid to building a strong IDS as an intelligent system based on
strong DL algorithms. This would help to prevent the onslaught of attacks to the victim
(IoT device) and to improve the accuracy of detection.

In summary, this manuscript documents a review of anomaly-based IDS systems
used in IoT, deep learning techniques, intrusion detection systems, the IoT security, and
various IoT attacks, including the various common architectures found in the IoT ecosystem.
Furthermore, this study creates a novel mapping between various architectures to match
them in term of structure, functionality, and security. The deep learning approaches for
IDSs included supervised, unsupervised, and hybrid models. Specifically, this paper
analyzed several deep learning approaches to anomaly-based IDSs in the literature. The
deep learning approaches used in these anomaly-based IDS systems involved a proposed
detection model or a comparative analysis of the various (published) approaches. Different
approaches used different performance metrics without accounting for the type of network
protocols and inherent weakness of the various IoT devices. Likewise, common datasets
utilized in the IDS systems used in IoT environments were highlighted. The reviewed
anomaly-based IDS systems studies either used their own data or the NLS-KDD dataset.
Deep learning-based anomaly detection used in IoT continues to be an active area of
research, and our future studies plan to extend and update this review as more sophisticated
techniques are developed.
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