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Abstract: This paper deals with the problem of control through a semi-reliable communication
channel, such as wireless sensor networks (WSN). Particularly, the case investigated is the one where
the packet loss rate of the network is time-varying due to, for instance, variation in the distance
between the nodes. Considering this practical motivation, the control system is modeled using a
formulation based on discrete-time Markov jump linear systems (MJLS) with non-homogeneous
Markov chains (time-varying transition probabilities). New control design conditions based on
parameter-dependent linear matrix inequalities are proposed in order to solve this problem. The
purpose is to demonstrate that this strategy is suitable to handle the networked control problem by
comparing the temporal behavior of the closed-loop system with the Markovian controller and a
standard proportional-integral-derivative (PID) controller. The case study presented in the paper
considers the problem of the remote control of a Vertical Take-Off and Landing (VTOL) vehicle
through a wireless communication channel. The network packet loss model employed in the case
study is based on data collected on a wireless network workbench, which was previously developed
and validated by the authors.

Keywords: networked control systems; non-homogeneous Markov chain; wireless network workbench

1. Introduction

Either for their flexible architecture, or for the low cost of installation and maintenance,
networked control systems (NCS) have become more popular in recent decades [1]. The
projects based on NCS can be considered multidisciplinary because they represent an inter-
section between control theory (which considers perfect transmission of measurement and
control input, neglecting packet loss, network-induced delays, and uncertain or time-varying
sampling rates) and communication theory (which studies the transmission of information by
unreliable or semi-reliable channels such as wireless sensor networks—WSN).

The most recent research in the WSN literature is concerned with improving the
robustness of the network by using, for instance, topology optimization models to help
WSN resist cascading failures [2,3], information fusion processes to lower the negative
impact of the environment on message routing [4], and more realistic failure models to
analyse the network invulnerability [5]; etc. However, if the network is used as a commu-
nication channel for NCS projects, there are some alternative techniques that guarantee
the robustness of the closed-loop system even under, for instance, denial of service in
cyber-physical attacks [6,7], network-induced delays [8], and packet loss, among several
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other issues [9–11]. In this sense, despite their advantages, the most common and least
wanted feature of the NCS is the possibility of packet loss in the network. Packet loss can
occur due several factors, such as transmission errors in the physical layer, buffer overflows
in networks that are used for distinct purposes and are shared by heterogeneous devices,
long transmission intervals that lead to package reordering (old packets are discarded in
the control scenario), and so forth.

The first step in designing an NCS that provides theoretical guarantees of closed-
loop stability in the presence of the inherent undesirable phenomena, such as packet
loss, is to determine the model of transmission error associated with the communication
channel. Due to the abrupt changes in its operation point, a suitable modeling for semi-
reliable networks can be performed by so-called discrete-time Markov Jump Linear Systems
(MJLS) [12]. Those systems are based on a sequence of random variables θk (k stands for
the time) belonging to a finite set of operation modes (called Markov chain) such that the
next value of the sequence (θk+1) depends only on the current value (θk) and not on the
past values. Furthermore, the switching between the modes is governed by a transition
probability matrix. Particularly in the NCS context, usually the operation modes are related
to successful or failed transmissions.

Most of the papers in MJLS literature are based on a fragile assumption: that the
transition probability matrix is time-invariant. However, this hypothesis can be often
violated in the NCS scenario because failure transmission probabilities usually depend on
external changed environment, age, humidity, lifespan, different transmission rates, distinct
communication protocols, distance between nodes, and other factors affecting link signal
strength. In this sense, two strategies can be adopted. The first one consists of discretizing
the continuously varying probabilities into a limited number of discrete values, creating a
class of finite piecewise homogeneous Markov chains [13,14]. The second one, employed
in this paper, is to consider a non-homogeneous stochastic process (i.e., the Markov chain is
non-ergodic). This technique is appropriate to model, for instance, the problem of control
design through WSN when the distance between the source and sink nodes is variable [15],
which usually implies the change of the successful transmission probability in the physical
layer of the “Open Systems Interconnection” (OSI) model [16]. Some examples that fit in
this context involve the control of mobile units such as autonomous vehicles, drones, etc.

Notwithstanding, the time-varying probabilities are a common problem in NCS; most
of the research in MJLS control is grounded on the second moment stability (SMS) definition,
which encompasses the stochastic stability, mean square stability (MSS), and exponential
MSS concepts [17], being valid only for ergodic Markov chains [12] [Assumption 3.31].
Therefore, in this paper, aside from considering the Markovian model of NCS, the non-
homogeneous Markov chain (time-varying probabilities) is also considered, aiming at
avoiding instability or performance degradation caused by the misuse of controller designs
based on classical stability concepts (such as proportional-integral-derivative—PID) [18–20]
or on SMS-based techniques.

The main contribution of this paper is the new control strategy (proposed in Theorem 1
and Corollary 1 in Section 5) that are based on the stochastic stability analysis results of [21]
for discrete-time MJLS with a non-homogeneous Markov chain. The controller synthesis is
performed by means of parameter-dependent linear matrix inequality (LMI) conditions
for state-feedback control of this class of system. Nevertheless, in order to compare the
time-behavior of the closed-loop networked control system output using a standard PID
controller versus a Markovian one, the LMI conditions from Theorem 1 are adapted to
provide a robust (parameter-independent) controller. The robustness against the variation
of the probabilities is achieved by fixing the slack variables used to recover the gain.
One novelty when compared with other control literature research on non-homogeneous
MJLS is that this paper handles static output-feedback (SOF) control (which is usually
a non-convex problem, but more applicable in practice), while previous works [21–24]
investigate state-feedback (SF) stabilization or stability analysis. The adaptation from SF
to SOF is assured by Assumption 1 in Section 4, imposing a mask to the gain, that is, a
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particular structure to the slack variables in order to select only the system states available
for feedback. Finally, the case study presented at the end of the paper is motivated by a
practical problem of SOF control of a Vertical Take-Off and Landing (VTOL) helicopter with
remote sensor and remote actuator. To increase the reliability of the numerical experiment,
an additional novelty in relation to previous MJLS control research consists of using the
data provided by a wireless network workbench [25] to compute, with good accuracy, a
Markovian model for the communication channel used in the case study. Despite the fact
that mathematical models for the signal attenuation as a function of time and distance can
be found in the WSN literature, another motivation for using experimental information
representing the packet loss on WSN is to provide data for control designers without the
need for them to be familiar with the communication theory.

This paper is organized as follows. Section 2 presents some related works, discussing
WSN performance analysis tools and their application to NCS problems. Section 3 contains
a detailed description of the wireless network workbench that provides the necessary data
to compute the Markovian model for the communication channel employed in the case
study. Section 4 presents the MJLS model and the mathematical formulation of the NCS
problem. Section 5 develops the theorem for the design of non-homogeneous Markov
control. Section 6 presents a case study of a VTOL vehicle remote control through WSN
with the purpose of comparing the performance of PID and Markov controllers. Finally,
Section 7 presents the final considerations and proposals for future works.

Notation: Capital and lowercase letters are used to, respectively, represent matrices
and vectors (or scalars). The set of real numbers is denoted by R. For real matrices and vec-
tors the transposition is represented by the symbol (′), while (?) is used for blocks induced
by symmetry in square matrices. For symmetric matrices P > 0 or P < 0, respectively,
denote that P is positive or negative definitely. ∪ f∈F M f and ∩ f∈F M f , respectively, stand
for the union and intersection of sets M f where the index f belongs to the set F. Diag(·)
represents a block-diagonal matrix.

2. Related Works

Analytical modeling methods for WSNs require some simplifications to predict their
performance. Thus, they become inadequate in certain analyses due to the inherent com-
plexity and diverse nature of WSNs (e.g., node density, node mobility, dynamic topology,
wireless media characteristics, time-varying channel conditions, etc.). Oversimplified mod-
els may lead to inaccurate results that are not desirable. On the other hand, it may not
be feasible or practical to test and evaluate the performance of protocols through their
actual implementation because this is a complex, expensive and time-consuming activity.
In this scenario, several works in the literature (see [26–32] and references therein) propose
analyzing tools for evaluating algorithms and protocols on WSNs at the design, develop-
ment, and implementation stages, such as simulators, emulators, and testbeds. Each one of
those tools has different features, characteristics, models and architectures for performance
testing on WSNs. Briefly, such tools can be described as follows: simulators are based on
software that models the real environment; emulators differ from simulators because they
can run the same code on real platforms; finally, physical testbeds allow more detailed
real-world settings and assist in capturing realistic experimental data.

In the early design and development phase, the use of simulators can be considered a
good choice because they provide a higher level of abstraction. For example, the design and
development of protocols for routing and topology control decisions can be made based
on the simulation. Simulation-based approaches provide some advantages, such as lower
costs, scalability, shorter test execution times, and ease of implementation. Furthermore,
time, effort, and resources required for the simulation are minimal [29,30].

Emulation is a hybrid approach that combines hardware and software in which some
components are implemented in real hardware (e.g., sensor nodes) and some are simulated
(e.g., links, traffic etc.). Emulators are more effective and useful, especially when testbeds
are not available or cannot be deployed due to the characteristics of the applications. Since
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emulators run the same code in real nodes, they reduce the implementation effort, and the
results obtained are more accurate than simulators [29,30].

Although simulators and emulators are valuable tools for evaluating the performance
of WSNs, unrealistic assumptions and simplified models lead to inaccurate results. To solve
this problem, the testbeds bridge the gap between simulation and actual deployment. They
provide an environment for protocol testing and evaluation similar to real deployment
and offer the opportunity to configure, run, and monitor experiments remotely while
evaluating models, algorithms, protocols, and applications. The results obtained through
tests are more accurate than with software-based tools [31,32].

The research reported in [26] presents a survey of thirty-five assessment tools for WSN
performance that were available in 2010. That paper performs a horizontal and vertical
analysis of these tools, which were selected based on their popularity, support availability,
active maintenance, and available help. In the horizontal dimension, outstanding competi-
tors were selected at each stage of WSN development. For vertical analysis, simulation,
emulation, and testbeds tools were categorized according to their applicability at each
stage. The authors of [26] reinforce that analytic modeling, simulation, emulation, testbed,
and real deployment are the most common techniques used for performance analysis of
WSNs.

Particularly, [27] presents a deeper review of concepts, characteristics, and limitations
of alternatives for simulators, emulators, and testbeds, presenting twenty-three simulators
and emulators in detail. On the other hand, [28] focuses specifically on testbeds, analyzing
sixteen testbeds, some of them also reported in [26], but extending the analysis to some
new ones developed between 2010 and 2016. The authors conclude that testbeds represent
WSNs more accurately, support the great diversity components of hardware and software,
and allow the deployment of a WSN under the same environmental conditions as a real ap-
plication. Testbeds can reveal WSN behavior under the effect of failures and malfunctions,
a situation that cannot be analyzed in theoretical simulations. A malfunction can occur
due to failing hardware, buggy software, power outages in battery-operated systems, and
interference with radio communication. In short, testbeds are the ideal environment to find
solutions for the occurrences of failures and malfunctions and to assess the interference
from the environment. However, [28] states that testbeds are often inadequate for exper-
imentation scenarios that require the repeatability of experiments, since many relevant
operational parameters are beyond the user’s control, such as local radio interference due
to infrastructure and other experiments.

For the reasons listed above, it is considered that emulation workbenches are a good
compromise between simulation and testbed, since they reproduce some characteristics
intrinsic to hardware problems but guarantee greater repeatability for the production
of statistical data. Note that a wireless network workbench may be a suitable option to
obtain probabilistic data for NCS design, since the employment of closed mathematical
models [3,4] or those based on algorithms [2,5] requires more theoretical knowledge.
On the other hand, open simulators such as ns-3 [33] or proprietary simulators such as
Scalable-Networks https://www.scalable-networks.com/ accessed on 11 September 2021
(specialized solutions) also require prior knowledge.

The laboratory emulation of communication systems for use in the transmission of
control signals can also be carried out by means of, for instance, specialty hardware (as sup-
plied by https://www.opal-rt.com/ accessed on 11 September 2021 Opal-RT [34], which
is based on cyber-attack modeling in digital communication), with all the characteristics
that a closed platform implies. Otherwise, the alternative is the use of simple hardware,
as performed in [35], involving only measuring a small set of parameters in the network.
However, since each element of the workbench described in Section 3 is modular, the
radio frequency devices can be changed for the study of such commercial communication
standards as Wi-Fi, Zigbee, Bluetooth, GSM/GPRS, and LoRaWAN, as well as expansion
for other future NCS investigations.

https://www.scalable-networks.com/
https://www.opal-rt.com/
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3. Wireless Network Workbench

As mentioned in the previous section, the state-of-the-art of Wireless Network is com-
posed of a vast literature and frameworks regarding: mathematical modeling of the com-
munication channel [36], simulation [26,27,29,30], emulation, and testbeds [26–28,31,32],
developed to help analyze the effect of digital networks under actual scenarios, considering
channel inspections (physical layer), congestion, collision, and packetization (link and
transport layer). Although the literature is extensive, the use of those tools requires specific
knowledge. As an example, one can cite the discrete-event network simulator for Internet
systems, ns-3 [33], a free, open-source software whose data collection can be hampered and
possibly lead to misinterpretation if users are not particularly familiar with the framework.

Concerning modeling and control in engineering, in which the designers must guar-
antee the stability of closed-loop systems and, usually, the elements (controllers, actuators,
sensors) employ a point–point link, it would be useful to simply obtain the network param-
eters by means of a user-friendly platform. In this sense, the wireless network workbench
considered in this work was developed by two of the authors, and a more detailed descrip-
tion can be found (in Brazilian Portuguese) in [25], which allows the users to evaluate and
test protocol stacks, attenuation behavior, data rates, system losses, transmission power
setups, modulations, carrier frequency, and channel spacing, among other things, for
point-to-point communication, and also generates the statistical data that can be employed
in NCS design. Despite propagation models being well established in communication
theory literature, for didactic purposes, the workbench can be useful to validate the signal
propagation models, allowing comparisons between measured and calculated results, and
providing data for NCS and the cyber-physical systems research community.

The current setup of the workbench enables us to emulate the behavior of a two-node
low-power network under different operating conditions, as shown in Figure 1.

Figure 1. Components of the workbench assembly.

The open-source nature of this workbench ensures full control over the firmware,
software, and hardware. In this sense, despite allowing the use of any radio communication
solutions, the current configuration of the workbench employs the Radiuino Platform [37],
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composed of a pair of radio communication modules, BE900 operating at the Industrial,
Scientific, and Medical (ISM) frequency of 915 MHz.

As shown in Figure 2, the workbench requires a personal computer (PC) to control
the emulation process, which is connected to the sink node and to a microcontroller via
Universal Serial Bus (USB) cables. A variable attenuator and a set of fixed attenuators lie
between the sink and the remote nodes, connected to both via coaxial cables, replacing
the antennas to ensure a confined and ideal propagation path of the radio frequency (RF)
signal with no external interference. The microcontroller module controls the attenuation
level in the link between sink and remote nodes.

ComputerMicrocontroller

Sink

Node

Variable

Atenuator

Fixed

Atenuators

Remote

Node

Coaxial

Cable

Coaxial

Cable

USB

USB

Figure 2. The workbench components and connection setup.

The deterministic constants of the network are reproduced by the fixed attenuators
and the systemic losses. These can be modified by the addition or subtraction of fixed
attenuators, while the variable attenuator, ranging from 0 to 31.5 dB, characterizes the
environmental conditions.

The emulation software, written in Python (Annexes A and B in [25]), runs in the PC
and controls both the sending of communication packets between the sink and the remote
nodes, and the communication path constraints. The PC generates the attenuation values
that are sent to the microcontroller which, in turn, sets the attenuation level on the variable
attenuator, so emulating the communication channel.

For each packet sent from the sink node to the remote node, a new attenuation value is
set in the digital attenuator, aiming to emulate the signal propagation behavior in a variety
of conditions. The remote node then measures and returns the Received Signal Strength
Indicator (RSSI) to the sink node.

The attenuation levels sent to the variable attenuator are defined by the signal propaga-
tion models included in the emulation software. Three model options are available in [36]
[Chapter 3]: Free Space, Log-distance and Shadowing models. While the first two mod-
els consider only deterministic parameters depending on environmental conditions, the
Shadowing model adds a log-normal variable whose standard deviation characterizes the
environment. The uncertainty introduced by this variable can cause unpredictability in the
data transfer rate.

As described in [36] [Chapter 3, Section 3.9.1], it is observed that in the theoretical
models and in those based on experimental measurements, the average power of the
received signal decreases logarithmically with distance. The average path loss can be
expressed as a function of exponent n, according to Equation (1).

PL(d) ∝
(

d
d0

)n
(1)

The log-distance path loss model is defined by [36] [Chapter 3, Section 3.9.1]

PL(d)[dB] = PL(d0)[dB] + 10n log
(

d
d0

)
(2)
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where n is the path loss exponent that describes the rate of loss increase in relation to
the reference distance of measurements near the transmitter d0. The value of n depends
on the propagation environment (n = 2 for free space and n > 2 for environments with
obstructions, see Table 1). PL(d) is the average path loss calculated over distance d.

Table 1. Path loss exponent in various environments [38].

Environment n

Free space 2
Urban area 2.7 to 3.5
Shadowed urban area 3 to 5
In building line of sight 1.6 to 1.8
Obstructed in building 4 to 6
Obstructed in factories 2 to 3

The model of Equation (2) does not consider the surrounding environmental clutter,
which can interfere in a distinct way in two different places at the same distance d. Experi-
mental data demonstrate that the path loss PL(d) in a particular position is random and
log-normally distributed (normal distribution in dB).

The log-normal shadowing model adjusts Equation (2) to take into account statistically
distributed variations experimentally observed: [36] [Chapter 3, Section 3.9.2]

PL(d)[dB] = PL(d0)[dB] + 10n log
(

d
d0

)
+ XdB[dB] (3)

where XdB is a random variable with zero mean and standard deviation σ expressed in
dB, and it is associated with probabilistic models that determine the characteristics of the
environment. Finally, based on Equation (3), it is possible to determine the power received
at distance d (Pr(d)) as a function of the transmitted power (Pt) and path loss (PL):

Pr(d)[dB] = Pt[dB]− PL(d)[dB] = Pt[dB]−
(

10n log
(

d
d0

)
+ XdB[dB]

)
(4)

The use of probabilistic models is useful to describe the unguided propagation of
signals. A continuous random variable can take an infinite number of possible values. This
feature can be used in radio signal modeling. In probability theory, the normal distribution
(or Gaussian distribution) is a continuous probability distribution, used for fluctuations
around a mean value µ and standard deviation σ. The log-normal random variable XdB is
closely related to environmental conditions with the standard deviation σdB, highlighting
the types of environment as shown in Table 2 [38].

Table 2. Standard deviation values for distinct environments [38].

Environment σdB

Urban (distance < 1 km) 3 to 4
Urban 8
Suburban 8
Indoor Small Office 4 to 6
Indoor Hot Spot 1.1 to 1.5
Outdoor to Indoor 7
Open Rural 6 to 8

Before launching the emulation software, the Human–Machine-Interface (HMI) shown
in Figure 3 needs to be fulfilled with the data from the network to be emulated, and the
serial ports of the microprocessor and sink node must be chosen.
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Figure 3. The HMI showing the settings and results menus.

As the emulation progresses, the interface presents the number of the current packet
and corresponding down and uplink RSSI. After the transmission is complete, the software
generates reports that include the following information: the Packet Error Rate (PER), the
maximum, minimum and mean RSSI, and the standard deviation of the RSSI.

The proposed wireless network workbench was validated by comparing its output
data with data obtained in experimental field tests. In this sense, a series of tests were
conducted to compare the signal behavior obtained from the workbench against actual,
point-to-point, reference test networks, using the same communication modules and
configuration parameters, that is, 10 dBm transmission power, 2FSK modulation technique,
9600 bps baud rate, 38.38 kbps data rate, and 125 kHz channel spacing.

Table 3 shows that the emulation results obtained by the workbench are very close to
the ones provided by the experimental field tests in terms of signal intensity, mean and
standard deviation, attesting the quality of the emulation offered by the workbench.

Table 3. Workbench Results Against Reference Networks.

No. of Min. Max. Mean Stand.
Samples RSSI RSSI RSSI Dev.

Real test A 98,000 −67.00 −59.50 −62.78 1.13
Workbench 399 −64.50 −60.50 −62.21 0.62

Real test B 48,000 −83.00 −73.50 −78.05 1.24
Workbench 397 −84.50 −77.50 −80.88 1.2

Real test C 48,000 −70.00 −58.50 −63.47 0.62
Workbench 397 −65.00 −61.00 −63.01 0.38

To analyze the WSN packet loss behavior as the distance between nodes increases,
two additional tests were performed considering a fixed standard deviation in 1.13, but
choosing two opposite extremes for the signal attenuation values: 1 dB representing a
minimum distance between the nodes and 25 dB representing the two nodes 310 m apart.
Table 4 shows the results for these tests.



Sensors 2021, 21, 6420 9 of 21

Table 4. Workbench Results.

Attenuation No. of Stand. Success PERSamples Dev.

Test 1 25 250 1.13 222 11%
Test 2 1 250 1.13 247 1%

It is possible to notice an increase in the packet loss as the distance between nodes
increases, that is, the PER is 11% for the longest distance (310 m), while for the minimum
distance it reduces to 1%.

3.1. Markovian Model for the Communication Channel

Aside from PER, maximum, minimum, mean and standard deviation of RSSI, the
wireless network workbench provides a report where the sequence of sent and received
packets can be found. Since the emulated network is a semi-reliable communication
channel, the sink node may indicate some packet loss; that is, each packet sent by the
source node can be associated with a successful (θk = 1) or failure transmission (θk = 2). For
instance, consider the case illustrated in Table 5 supposing that only 10 packets (numbered
from 1 to 10) are sent by the source node, and the report provided by the workbench
indicates that packets 2 and 5 were not received. Note that θk represents a random variable
at discrete-time instant k that assumes values on a finite setK = {1, 2, . . . , η} containing all
the η operation modes of the system or all the η states of a Markov chain. In this particular
example, one has only two states, that is, K = {1, 2}, where the first one corresponds to
success and the second one represents failure in the transmission.

Table 5. Example of time-evolution for a Markov chain θk.

Packets sent 1 2 3 4 5 6 7 8 9 10

Packets received 1 - 3 4 - 6 7 8 9 10

θk (success = 1, failure = 2) 1 2 1 1 2 1 1 1 1 1

From Table 5, four different transition states can be identified: t11 (two consecutive
successful transmissions), t12 (a successful transmission followed by a failed one), t21 (a
failed transmission followed by a successful one), and t22 (two consecutive failed transmis-
sions, which do not occur in this particular example). As a consequence, the packet loss on
the communication channel can be modeled by the so-called Gilbert-Elliot model [39–41],
whose transitions among the states are described by the diagram of Figure 4.

Success

1
Failure

2

Packet loss

Transmission OK

Transmission

OK

Packet

loss

p11 p22

p12

p21

Figure 4. Markov chain for the Gilbert-Elliot model.
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Assuming a Gilbert-Elliot model, the transition probabilities among states θk = 1
(Success) and θk = 2 (Failure) are given by

p11 = Prob(θk+1 = 1|θk = 1) =
t11

t11 + t12
, p12 = Prob(θk+1 = 2|θk = 1) =

t12

t11 + t12
,

p21 = Prob(θk+1 = 1|θk = 2) =
t21

t21 + t22
, p22 = Prob(θk+1 = 2|θk = 2) =

t22

t21 + t22
.

For a robust set of data that can be provided by the workbench, the time-evolution of
the random variable θk can be represented with good accuracy by a Markov chain associated
with a transition probability matrix P = [pij], where pij = Prob(θk+1 = j|θk = i), pij ≥ 0,
∀i, j ∈ K = {1, η} and ∑

η
j=1 pij = 1, ∀k ≥ 0. In the NCS context, the transition probability

matrix governs the jumps among the η operation modes and, consequently, the system
dynamics behavior. For a Gilbert-Elliot model, η = 2 and

P =

[
p11 p12
p21 p22

]
=

[
1− p12 p12
1− p22 p22

]
.

The statistical information provided by the workbench result in the following proba-
bility matrix is

P(α) =

[
1− PER(α) PER(α)

0.999 0.001

]
. (5)

Note that the packet error rate (PER) provided on the workbench’s HMI (Figure 3)
actually has a direct relationship with the adopted Markovian model. Since the PER values
can change for distinct reasons, such as bandwidth (data rate) or attenuation levels, it is
considered that PER and, consequently, P depend on parameter α; more details about this
parameter are presented in the next sections.

4. Discrete-Time Markov Jump Linear System

Knowing that the Markov jump linear system (MJLS) class can model systems that
suffer abrupt changes in their operation point, such as packet loss in NCS, consider a
discrete-time MJLS represented by

G =

{
x(k + 1) = A(θk)x(k) + B(θk)u(k),

y(k) = C(θk)x(k)
(6)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the control input vector, y(k) ∈ Rny

represents the measured outputs, and θk is a random variable that assumes values on
a finite set K = {1, 2 . . . , η} that represents η linear operation modes of the MJLS. As
described in Section 3.1, the transition among subsystems depends on the associated
Markov chain, with the transition probability matrix given by P(k) = [pij(k)], where
pij(k) = Prob(θk+1 = j|θk = i), pij(k) ≥ 0, ∀i, j ∈ K and ∑

η
j=1 pij(k) = 1, ∀k ≥ 0. If the

transition probability matrix is time-invariant (P(k) = P, ∀k ≥ 0), the Markov chain is
homogeneous, otherwise, it is non-homogeneous [42]. To ease the notation, whenever
θk = i, one writes A(θk) = Ai, B(θk) = Bi, and C(θk) = Ci, ∀i ∈ K.

In this paper, the non-homogeneous case is considered. A more generic representation
of the time-varying transition probability matrix can be found in [24], where, besides the
polytopic model, it considers that each entry pij(k) can belong to a known interval, or is
unknown (pij(k) =?). Thus, the entries pij(k) of the transition probability matrix are not
constant, and P(k) can be represented in terms of a polytope (convex combination of N
known vertices

P(k) =
N

∑
m=1

αm(k)Pm, α(k) ∈ Λ (7)
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where α(k) = [α1(k), . . . , αN(k)]′ is a time-varying parameter vector that lies in the unit
simplex, ∀k ≥ 0

Λ =
{

α ∈ RN :
N

∑
m=1

αm = 1, αm ≥ 0, m = 1, . . . , N
}

.

Assuming a mode-dependent static output-feedback control law robust to the time-
varying parameters

u(k) = L(θk)y(k) (8)

For system (6), the resulting discrete-time closed-loop MJLS is given by

x(k + 1) = Acl(θk)x(k) (9)

where Acl(θk) = A(θk) + B(θk)L(θk)C(θk).

Assumption 1. For the particular case where the output matrix C(θk) is composed by unit vectors
ei ∈ Rnx , where ei is the i-th row of an identity matrix with nx rows and columns, one has that the
product L(θk)C(θk) can be replaced by a sparse matrix K(θk) ∈ Rnu×nx with some null entries.
For example, suppose nx = 4, nu = ny = 2 and C(θk) = [e2, e4]

′, then

K(θk) = L(θk)C(θk) =

[
`11 `12
`21 `22

][
0 1 0 0
0 0 0 1

]
=

[
0 `11 0 `12
0 `21 0 `22

]
(10)

This means that the problem of designing a static output-feedback controller, described in the
next section, is formulated in terms of the synthesis of a state-feedback (SF) control law with the
structure constraint

u(k) = K(θk)x(k). (11)

Furthermore, despite the SOF and SF control laws presented in (8) and (11), respec-
tively, being mode dependent, the design conditions proposed in the next section consider
that the information about η operation modes of the Markov chain cannot be fully available.
This means that there exist ηc ≤ η disjoint groups (clusters), whose union generates the set
K, i.e., K = ∪q∈QUq such that ∩q∈QUq with indexes q ∈ Q = {1, 2, . . . , ηc}.

Finally, aiming to assure the stochastic stability of a closed-loop non-homogeneous
MJLS, this paper adopts the concept of exponential stability in the mean square sense with
conditioning of type I (ESMS-CI) presented in [21,22] and whose further details can be
found in [43] [Page 68 Definition 3.1(c)]. Therefore, before presenting the control synthesis
conditions, consider that the stability of MJLS (6) with u(k) ≡ 0 and polytopic transition
probability matrix P(k) affected by arbitrarily fast time-varying parameters is guaranteed
by the next lemma (which is an extension of Proposition 1 from [22]).

Lemma 1. MJLS (6) with u(k) ≡ 0 is ESMS-CI if, and only if, there exist Pi(α(k)) = Pi(α(k)) > 0
such that the parameter-dependent inequalities

A′iPpi(α(k + 1))Ai − Pi(α(k)) < 0 (12)

with Ppi(α(k)) = ∑
η
j=1 pij(k)Pj(α(k)), hold for each i ∈ K and for all α(k) ∈ Λ, ∀k ≥ 0.

5. Control Problem in Semi-Reliable Network

This section addresses the problem of designing a controller for a system whose
communication with the plant is performed through a semi-reliable network. The following
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theorem presents sufficient parameter-dependent LMI conditions for state-feedback control
of the non-homogeneous MJLS (6).

Theorem 1. If there exist symmetric positive definite parameter-dependent matrices Wi(α(k)) ∈
Rnx×nx , ∀i ∈ K, matrices H` ∈ Rnx×nx and Z` ∈ Rnu×nx , ∀` ∈ Q, such that[

Wi(α(k))− H` − H′` ?
Υi(α(k))′(Ai H` + BiZ`) −Diag(Υi(α(k)))W(α(k + 1))

]
< 0, (13)

holds for all α(k) ∈ Λ, ` ∈ Q and i ∈ K, with

Υi(α(k)) =
[
pi1(α(k))Inx · · · piη(α(k))Inx

]
,

W(α(k + 1)) = Diag
(
W1(α(k + 1)), · · · , Wη(α(k + 1))

)
then K` = Z`H−1

` is a robust partially mode-dependent state-feedback control gain that assures
that MJLS (6) is ESMS-CI in closed-loop with the SF control law (11).

Proof. In the proof, the dependence on α(k + 1) is replaced by a superscript index + and
α(k) is omitted to save space. For A`

cli
= Ai + BiK`, observe that (13) can be rewritten as

Q+XB + B′X ′ < 0 with X =
[
H` 0

]′, B =
[
−I A`

cli
′Υi

]
, and Q = Diag(Wi, W+).

By choosing B⊥ =
[
Υ′i A

`
cli

I
]′

as a base for the null space of B, and then mul-

tiplying (13) on the left by B⊥′ and on the right by B⊥, one obtains Υ′i A
`
cli

Wi A`
cli
′Υi −

Diag(Υi)W+ < 0. Then, applying a Schur complement in the resulting inequality and pre-
and post-multiplying by Diag

(
I, W−1

i

)
, one has

[
I 0
0 W−1

i

][−Diag(Υi)W+ ?
Wi A`

cli
′Υi −Wi

][
I 0
0 W−1

i

]
< 0, (14)

⇒
[
−Diag(Υi)W+ ?

A`
cli
′Υi −W−1

i

]
< 0. (15)

By applying the Schur complement in (15) and making the following change of
variable W−1

i = Pi, one obtains (12), assuring the stability of the closed-loop MJLS.

Corollary 1. Theorem 1 can be adapted to provide a stabilizing robust partially mode-dependent
SOF control law (8) with an output matrix following Assumption 1 by imposing a diagonal
structure on variable H` and a suitable structure (similar to the one presented in (10)) in variable
Z`, ∀` ∈ Q.

It is important to mention that, since the design conditions proposed in this section are
parameter-dependent, they should be solved for all values of α(k) ∈ Λ (infinite dimensional
problem), meaning that they are not computationally programmable. This issue can be
surpassed by fixing the variables as homogeneous polynomials of fixed degrees and
verifying the positivity (or negativity) of the resulting polynomial inequalities in terms of a
finite set of LMIs automatically generated by the Robust LMI Parser (ROLMIP) toolbox [44].
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6. Case Study

Consider the problem of control of a Vertical Take-Off and Landing (VTOL) heli-
copter whose state-space dynamic model in continuous-time is adapted from [45] and
reproduced below

Gc =

{
ẋ(t) = Acx(t) + Bcu(t)

y(t) = Ccx(t)

Ac =


−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208
0.1002 0.3681 −0.7070 1.4200
0.0000 0.0000 1.0000 0.0000

,

Bc =


0.4422
3.5446
−5.5200

0.0000

, Cc =
[
0 0 0 1

]
.

(16)

The states x1(t), x2(t), x3(t), x4(t) and the control input u(t), respectively, represent
the horizontal and vertical velocities (knots), the pitch rate (degree/s), pitch angle (degrees),
and the collective pitch control. Since the plant is remotely controlled through a wireless
communication channel with a limited transmission rate, the control design is performed
in discrete time. For this purpose, the matrices (Ac, Bc, Cc) from (16) are discretized using
the zero order hold (‘zoh’) method in Matlab employing a fixed sampling period Ts = 0.1s,
resulting in discrete-time matrices (A,B,C). Then, a transfer function for the classic PID
controller [18–20] (assuming ideal channel: no packet loss) is computed using the ‘pidTuner’
command from Matlab’s Control System Toolbox [46]:

PID(z) =
−1.383z2 + 2.567z− 1.191

0.05119z2 − 0.002374z− 0.04881

which is equivalent to the following dynamic controller

Gpid =

{
xc(k + 1) = Apidxc(k) + Bpidy(k)

u(k) = Cpidxc(k) + Dpidy(k)

Apid =

[
0.0464 0.9535

1 0

]
, Bpid =

[
1
0

]
,

Cpid =
[
48.8936 −49.0271

]
Dpid = −27.0170.

(17)

For the following initial conditions: x(0) = [1, − 1, 1, − 1]′ and xc(0) = [0, 0]′,
and assuming that the communication channel is fully reliable, the time-behavior of the
closed-loop states (x(k)) and measured output (y(k)) presented in Figure 5a,b confirms that
this controller is suitable when there is no packet loss on the network.
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Figure 5. (a) Closed–loop states and (b) closed–loop measured output with PID controller (17) in a
fully reliable network.

However, this system is controlled through a semi-reliable network with characteristics
similar to the one emulated by the workbench described in Section 3. This means that the
probability of the helicopter receiving a successful transmission of the control signal or the
controller receiving a successful transmission of the sensor measurement can be considered
as a time-varying parameter since it depends on the distance between the controller and
the VTOL helicopter. When testing different attenuation levels between 1 dB and 25 dB in
the wireless network workbench, it was noticed that PER increases monotonically with an
increase in attenuation (representing, in this case, the distance between the nodes). This
characteristic indicates that, at any distance between 0 m (1 dB: PER = 1%) and 310 m away
(25 dB: PER = 11%), following the Gilbert-Elliot model presented in Section 3.1, the Markov
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chain can be represented by a transition probability matrix that is a convex combination of
two vertices:

P(α(k)) =
[

q(α(k)) (1− q(α(k)))
0.999 0.001

]
= α1(k)

[
0.99 0.01
0.999 0.001

]
+ α2(k)

[
0.89 0.11

0.999 0.001

]
(18)

where 1 − q(α(k)) corresponds to the packet error rate (see (5)), which varies from a
lower bound (PER = 0.01, when the distance between the controller and the plant can be
neglected) to an upper bound (PER = 0.11, when the distance between the controller and
the plant matches the maximum range of the radio signal used for communication: 310 m).
Note that, since the distance between the nodes does not remain constant, this means that
both transition probability matrix P and, consequently, the parameter α are time-varying
(depend explicitly on k). Additionally, as discussed in Section 3.1, the Markov model
considers two operation modes: (i) successful transmission of the control and measured
signals, (ii) failure. In this example, the packet loss of the control signal is modeled by the
zero-input [47] approach, which is equivalent to clearing the elements of both the control
and output matrices in the mode associated with transmission failure (B2 = 0, C2 = 0)
and maintaining their actual values (B1 = B and C1 = C obtained from the discretization
of (16)) in the operation mode that represents success. The dynamic matrix maintains its
value in both modes A1 = A2 = A obtained from the discretization of Ac of (16).

In order to evaluate the robustness of PID control against the variation of the transition
probability matrix, the mean of M = 104 Monte Carlo (MC) realizations of the Markov
chain were performed considering: firstly, a constant PER and, secondly, the extreme case
of a randomly time-varying PER. The evolution of the closed-loop output considering the
PID controller for the first case is shown in Figure 6, while the second case is illustrated by
Figure 7. Note that, differently from what was reported in Figure 5, under the circumstance
of packet loss, (whether constant or time-varying) the PID controller can no longer stabilize
the plant.

Once a classic control design method proved ineffective in this NCS problem, a
more suitable technique to design a controller robust to the variation of the transmission
probabilities, given by Corollary 1, is employed next. First, it is assumed that the knowledge
about the failure of the transmission is not available for feedback, then a mode-independent
controller is synthesized by considering a single cluster containing both modes (Q = {1, 2})
on Theorem 1.

Additionally, in order to provide an SOF controller, the following structure constraint
is imposed to variable Z =

[
0 0 0 z4

]
in Theorem 1 since the discrete-time output

matrix (C) is equal to the continuous-time one (Cc from (16)). The SF control gain resulting
from Theorem 1 is K =

[
0 0 0 1.0959

]
, meaning that the SOF control law obtained by

Corollary 1 is
u(k) = 1.0959y(k). (19)

The time responses for 104 MC realizations of the Markov chain for both closed-
loop states x(k) and measured output y(k) are presented in Figure 8a,b considering a
non-homogeneous Markov chain, governed by (18) with randomly time-varying PER.

In addition to stabilizing, the numerical complexity associated with the implemen-
tation of the SOF Markovian control (19) is another advantage when compared with the
traditional PID controller (17). Notice that, while the computation of (19) consists of a
product of scalar variables, the PID controller is required to solve the dynamic state–space
equations of (17). Furthermore, the magnitude of the entries of matrices in (17) is approxi-
mately 50 times the magnitude of the Markovian controller (19), meaning that the use the
PID controller requires a more robust actuator.
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Figure 6. Mean of 104 MC realizations of the Markov chain for closed–loop measured output with
PID controller (17) through WSN with transition probability matrix given by (18) with constant PER
equal to 4, 6, 8, 10% (clockwise, starting from top left frame).
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Figure 7. Mean of 104 MC realizations of the Markov chain for closed–loop measured output with
PID controller (17) through WSN with transition probability matrix given by (18) with a randomly
time–varying PER.
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Figure 8. Mean of 104 MC realizations of the Markov chain for (a) closed–loop states and (b) mea-
sured output with the SOF controller (19) obtained by Corollary 1 through WSN with transition
probability matrix given by (18) with a randomly time–varying PER.

7. Conclusions and Future Work

The first contribution of this paper was the new approach to handle the problem of
static output-feedback networked control design, considering that the wireless commu-
nication channel admits packet loss with a rate that can vary according with the distance
between the nodes. The control design conditions were developed initially to provide
theoretical assurances of closed-loop state-feedback stability for non-homogeneous MJLS,
where the time-varying parameters affect the probabilities (and consequently, the Markov
chain). However, an adaptation of the method to cope with SOF control problem was also
presented, which is most widely explored in practical applications, since usually not all
states are available for feedback.
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The second contribution consisted of obtaining data related to the sequence of packets
sent and received in a semi-reliable network by performing experiments on a wireless
network workbench (previously developed and validated by the authors in real scenar-
ios). Such data allowed us to find a Gilbert-Elliot model that describes the probability of
packet loss in the communication channel. The transition probability associated with the
communication channel model was employed in a practical motivated case study. The
numerical experiments of the case study show that: (i) traditional control techniques such
as PID cannot be applied to problems of networked control by semi-reliable communi-
cation channels since they do not guarantee the stability of the system when there is a
possibility of packet loss, as shown in Figures 6 and 7. On the other hand, the proposed
technique based on the non-homogeneous Markov chain model is feasible and also ensures
the stability of the closed-loop system, as shown in Figure 8; (ii) the numerical complexity
associated with the implementation of a traditional PID controller (17) is much greater
than the computational effort required to implement the static output feedback Markovian
controller (19), requiring more calculations and better actuators, since the dimension and
the magnitude of the controller are greater.

Although, in this paper, the wireless network workbench has been used only as a
source of statistical data to obtain the Markov model for the wireless communication
channel, as a future work, the authors intend to carry out an implementation of a similar
control project on the workbench itself. The initial idea is to attach a microcontroller to each
one of the network nodes so that the control and system dynamics are calculated online by
the microcontrollers and the measurement and actuation signals are transmitted in real
time by the emulated network. The third microcontroller that rules the actions of the digital
signal attenuator will also be reprogrammed to implement an oscillatory behavior in order
to emulate the variation of the distance between nodes. Other future investigation topics
include: to consider different types of routing and models for the communication channel,
and the study of energy efficiency and life cycle of the nodes considering large-scale WSNs,
in which reliability of statistical data and the fluctuation of network factors, as well as the
packet error rate (PER), become more critical.
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Abbreviations
The following abbreviations are used in this manuscript:

WSN Wireless Sensor Network
PLR Packet Loss Rate
PER Packet Error Rate
MJLS Markov Jump Linear System
PID Proportional-Integral-Derivative
VTOL Vertical Take-Off and Landing
NCS Networked Control System
OSI Open Systems Interconnection
SMS Second Moment Stability
MSS Mean Square Stability
LMI Linear Matrix Inequality
SOF Static Output-Feedback
SF State-Feedback
ESMS-CI Exponential Stability in the Mean Square sense with Conditioning type I
ROLMIP Robust LMI Parser
ISM Industrial, Scientific, and Medical
PC Personal Computer
USB Universal Serial Bus
RF Radio Frequency
RSSI Received Signal Strength Indicator
zoh Zero Order Hold
MC Monte Carlo
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