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Abstract: The features of the atmospheric γ-background reaction to liquid atmospheric precipita-
tion in the form of bursts is investigated, and various forms of them are analyzed. A method is
described for interpreting forms of the measured γ-background response with the determination of
the beginning and ending time of precipitation, the distinctive features of changes in the intensity
of precipitation and the number of single (separate) events that form one burst. It is revealed that
a change in the intensity of precipitation in one event leads to a change in the γ-radiation dose
rate increase speed (time derivative). A method of estimating the average value of the intensity
and amount of precipitation for one event, reconstructing the intensity spectrum from experimental
data on the dynamics of the measured dose rate of γ-radiation, is developed. The method takes
into account the radioactive decay of radon daughter products in the atmosphere and on the soil
surface during precipitation, as well as the purification of the atmosphere from radionuclides. Rec-
ommendations are given for using the developed method to correct for changes (daily variations) in
radon flux density from the ground surface, which lead to variations in radon in the atmosphere.
Experimental verification of the method shows good agreement between the values of the intensity
of liquid atmospheric precipitation, calculated and measured with the help of shuttle and optical rain
precipitation gauges.

Keywords: rainfall intensity; γ-dose rate; γ-background; rain sensor; method; radon decay product;
liquid precipitation; atmosphere; activity; simulation

1. Introduction

Systematic monitoring of precipitation is carried out by specialized bodies and national
meteorological centers. They perform measurements and observations at specified standard
times and locations; usually, they monitor total rainfall over 12 h. The current pace and
magnitude of climate change is shaping new trends in the environment state. To identify
and control them, it is necessary to have a developed network of stations for monitoring
geophysical characteristics, covering large areas with high spatial resolution [1,2].

At the same time, all around the world, with the growing demand for carbon-free
energy, there has been a revision in the attitude toward nuclear energy (nuclear power
industry). Due to the growth in the number of nuclear power plants and the stricter
requirements for nuclear and radiation safety, the number of stations for the monitoring of
background radiation is growing [2–4].

It has been repeatedly reported [5–13] that periods of precipitation are accompanied
by an abnormal rapid increase (bursts) of the γ-radiation background. This phenomenon
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is explained by the processes of washing out short-lived β- and γ-emitting decay products
of radon and thoron from the atmosphere onto various surfaces and is known as “radon
washout” [14].

Much has already been done to determine the relationship between the γ-background
and precipitation intensity. Attempts to find a quantitative relationship between the intensity
of precipitation and the magnitude of bursts in the dose rate of γ-radiation were undertaken
earlier in [5–7], but no significant relationship was found. Many models have been developed
to analyze bursts of ambient dose rate of γ radiation associated with precipitated radon decay
products, taking into account various dynamic and physical processes, having different levels
of complexity and based on various assumptions [7–11]. For example, the “rainout-washout”
model developed in [7], which divides the atmosphere into two parts—“in the cloud” and
“under the cloud”—has not yet received experimental confirmation.

Nevertheless, in the work [11], a mathematical model was proposed that allows to
restore the dose rate of γ radiation during the fallout of liquid atmospheric precipita-
tion. Its effectiveness is confirmed by a high determination coefficient (R2 = 0.81–0.99)
between the measured and recreated ambient dose equivalent rate during single and
multiple rain events. In this work, only washout from the subcloud space was consid-
ered, while the error between the measured and reconstructed dose rate was rather small
(RMSE = 0.0045 µSv·h1). The results of this work confirm that the radionuclides are washed
out mostly from the subcloud space, and the contribution of radionuclides that are in the
cloud is likely negligible.

Estimation of the intensity and other precipitation characteristics by dynamics of
the γ-radiation dose rate is quite a difficult task. Numerous studies have shown that
knowledge of the γ-radiation dose rate alone is not sufficient. In [12], this was due to
insufficiently high temporal resolution of the data. In works [9,10,15], the authors found
that it is necessary to take into account the washout ability of precipitation, as it depends
on its duration and intensity. In [16], the absence of a significant relationship between the
intensity of precipitation and the γ-radiation dose rate spike was explained by the fact that
during prolonged precipitation that lasts many hours, the atmosphere gradually clears,
and hence, the amount of deposited radon decay products decreases. Therefore, the next
event results in the deposition of fewer radon decay products.

Considering the above, the aim of our work was to develop a simple method of
estimating the average values of intensity and amount of precipitation for one event (as
well as intensity spectrum) based on the dynamics of the measured γ-radiation dose rate.
For this purpose, it was necessary to solve a number of tasks: (1) to study the features of
the atmospheric γ-background response to liquid precipitation; (2) to develop a method
for determining the average per-event values of the intensity and amount of precipitation
(as well as spectrum) from the experimental data on the γ-radiation dose rate; and (3) to
perform experimental verification of the method.

Section 2 describes the experimental equipment used for method testing. Section 3 con-
siders the classification of the γ-background responses to liquid atmospheric precipitation,
and describes the characteristic features of rain cases in the γ monitoring data. Section 4
describes the method called GammaRain, which takes into account the radioactive decay
of radon decay products in the atmosphere and on the ground surface, atmospheric clear-
ance from radionuclides during precipitation, and changes in radon flux density from the
ground surface. The last two sections present the results of the experimental verification of
the method and the general conclusion.

2. Experiment Equipment

Each year, starting from 2017, from the moment of snow melting and until the be-
ginning of snow cover establishment, the measurements of γ-radiation dose rate ambient
equivalent were performed with high data sampling rate of 1 minute, using scintillation
detector BDKG-03 (made by ATOMTECH, Republic of Belarus). Detector BDKG-03 as a
sensitive element contains NaI(Tl) scintillator with dimensions Ø25 × 40 mm. The range
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of detectable energies of gamma radiation is from 50 keV to 3 MeV. The choice of the
γ-background sampling rate of 1 minute is due to the statistical error, which is 4–10% in the
absence of precipitation, and during the period of precipitation, is reduced by increasing
the statistics to 2–4%. Reducing the data sampling rate to less than 1 min for this type of
gamma detector will increase the statistical uncertainty, but increasing the data sampling
rate to 2–3 min or more is not acceptable for intensity spectrum reconstruction purposes
because the precipitation process is classified as rapidly changing. BDKG-03 detectors
were installed at the experimental site of the Geophysical Observatory of the Institute of
Monitoring of Climate and Ecological Systems of Siberian Branch of the Russian Academy
of Sciences (IMCES SB RAS) at the height of 1 m from the ground surface. The choice
of γ-background measurement height equal to 1 m from the soil surface is conditioned
by the requirements for the control of the radiation situation for the population. Same
installation height provides comparability of measurement results for different territories
both in Russia and abroad.

Precipitation intensity data with high temporal resolution were recorded by a Davis
Rain Collector II shuttle precipitation gauge (Davis Instruments, Hayward, CA, USA). An
optical (laser) precipitation gauge, OPTIOS, developed at IMCES SB RAS, was installed at
a distance of not more than 10 m from the γ-radiation detector.

To measure the radon flux density from the soil surface, we used an EQF-3200 radiome-
ter (SARAD, Germany) with an accumulation chamber as well as a measuring complex
“Alfarad plus—AR” (NTM-Zashchita LLC, Moscow, Russia).

3. γ-Background Response to Liquid Atmospheric Precipitation

Detailed analysis of the results of long-term experimental data showed that all reg-
istered bursts in the γ-background, which have no definite periodicity, are caused by
precipitation (excluding bursts caused by errors in operation of γ-radiation detectors).
Figures 1 and 2 show the dynamics of the γ-dose rate (pink) and precipitation intensity
(blue). Minute data are indicated by dots, and the solid line shows data smoothed by a mov-
ing average of 5–7 points. During precipitation, the greater the growth of the γ-radiation
dose rate, the greater the number of registered pulses and, correspondingly, the smaller the
total uncertainty of measurement results, which is well illustrated by Figures 1d,e and 2b.
Analysis of experimental data (Figure 1) allowed to reveal that the γ-background out-
burst value does not correlate with the precipitation intensity, which agrees well with the
experimental data on the γ-background [5,6,10].

The response of the γ-radiation dose rate to precipitation, manifested as anomalous
bursts in the γ-background, was studied in detail, and their classification was made
(Figure 1). Four characteristic forms of bursts in the γ-background, corresponding to liquid
atmospheric precipitation with different parameters, were distinguished:

(I) A peak with different position of the maximum: on the left (Figure 1a); in the middle
(Figure 1b) or on the right;

(II) Flat/plateau (as it stays on about same level after reaching max value/bending point)
(Figure 1c) and bell (Figure 1d);

(III) Double-humped (Figure 1e,f);
(IV) Wavy/wave-shaped (Figure 1g) and toothed/saw-toothed/jagged (Figure 1h).

The characteristic form of the burst, which can be called “classic”, for single short- to
medium-intensity rains is shown in Figure 1a. The rain shower that occurred on 22 August
2018 (at IMCES, Tomsk, Russian Federation) had an intensity of more than 100 mm/h at its
maximum. The responses of the classical form are characterized by a sharp increase and,
after reaching the maximum, by an exponential decrease in accordance with the law of
radioactive decay (e−λt) with exponent power in the range of λ ≈ 2.8–4.3 ×10−4 s−1; the
last value is close to the decay constant for 214Pb.
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Figure 1. Different forms of γ-background responses to liquid atmospheric precipitation (occurred at IMCES, Tomsk, RF):
(a) peak with left position of maximum; (b) middle maximum position; (c) flat/plateau shaped; (d) bell-shaped; (e,f) double-
humped shape; (g) wave-shaped; (h) toothed shape.
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Figure 2. Analysis of γ-background dynamics during type III precipitation of (a) 18 August (b) 30 May (occurred at IMCES,
Tomsk, RF).

The explanation for the increase in γ-radiation dose rate during precipitation periods
is that the γ-emitting short-lived radon decay products 214Pb and 214Bi are washed out
of the atmosphere by precipitation onto the soil surface. Other natural radionuclides, for
example, γ-emitting decay products of thoron, practically do not influence the value of
γ-radiation dose rate because their activity in the near ground atmosphere is much less
than the activity of 214Pb and 214Bi. 218Po, the 1st decay product of 222Rn, is α-active, so it
does not influence the γ-background.

Analysis of long-term data on γ-background responses to liquid atmospheric precip-
itation has allowed us to develop a method for interpreting various forms of measured
γ-background response by characteristic features of changes in the precipitation intensity:

- The time of the beginning of γ-background growth corresponds to the beginning of
precipitation (point 1 on Figure 2);

- The growth rate of γ-radiation ambient equivalent dose rate (change of slope angle of
growth curve or dose rate derivative characterizes current value of precipitation intensity);

- The time of the maximum onset (if there are several in one burst, the 1st one) corre-
sponds to the end of precipitation (except for the type II forms), corresponding to
point 7 on Figure 2;

- The exponential decrease in the γ-background after the maximum means that the
radioactive decay of 214Bi and 214Pb radon decay products deposited on the ground has
begun, so after about 3 h, their activity decreases by more than 2 orders of magnitude;

- If after reaching the maximum we observe a flat (small dip and continued growth) or
bell shape, this clearly indicates that the rain continues with a variable low intensity
with respect to the previous interval, which is well illustrated in Figure 1d;

- If we can detect a weak decrease in the γ-background after reaching the maximum, as
shown in Figure 1c, but there are no clearly marked 2nd and subsequent maximums,
this means that almost immediately after the 1st, the 2nd rain began (the rain did not
end but continued with a lower intensity, which is still considered the same event);

- If the subsequent precipitation events start before 214Bi and 214Pb have completely
decayed, we will see 2 or more maxima in the γ-background response, depending on
the number of events and precipitation characteristics (intensity, amount, duration,
etc.), as seen in Figure 1;

- Precipitation lasting for about half an hour usually results in “sharp” peaks in the
γ-background;

- Double-humped or wave-shaped response forms are caused by two or more con-
secutive precipitation events. The time between the end of the previous event and
the beginning of the next one is shorter than the time of radioactive equilibrium
restoration between radon and its daughter decay products in the atmosphere (less
than 3 h);
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- The toothed form is characteristic for series of short duration rain showers with a
periodicity of more than 3 h.

High- and moderate-intensity rains usually have an average duration of 15 min, but
not more than 30 min, and lead to a response in the γ-background with a shape close to
the “classical” (Figures 1a and 2). If the duration of rainfall is more than 1 h, the average
intensity of such rain is usually less than 10 mm/h.

Let us consider in detail how to determine the start and end times of precipitation as
well as the number of bursts in the intensity spectrum forming a single event. The excess
of γ-radiation dose rate over the background value at the maximum is defined as the value
of Ḣ at point 7 minus Ḣ at point 1 (Figure 2a) or the value of Ḣ at point 4 minus point 1
(Figure 2b). The current value and the change in the intensity of rain is determined by the

derivative dḢ(t)
dt .

The beginning of the rain on 19 August (Figure 2a) is accompanied by an increase in
γ-background (segment 1–2 in Figure 2a), and then the intensity decreases, which leads
to a change in the slope angle (decrease in the derivative), which is shown in segment
2–3. Then, the derivative increases (segment 3–4), which corresponds to the 2nd peak of
rain. Segment 4–5 shows a decrease in intensity as the slope angle decreases in this plot.
Segment 5–6 corresponds to the 3rd increase in intensity of this rain event. After point 6,
the intensity begins to decrease; point 7 can be considered the time of the rain’s end, which
is followed by the radioactive decay of 214Pb and 214Bi, according to the exponential law.
Small drizzling precipitation contributes perturbations to the exponential decrease in the
γ-background decay (segments 8–9 and 10–11 in Figure 2a).

To determine the average precipitation intensity per event I(t), we take segments 1–7.
The higher the intensity of precipitation, the easier it is to interpret the spectrum of

its intensity, which is well seen in Figure 2b. By analogy, we analyze the case in Figure 2b.
Point 1 corresponds to the beginning of precipitation, while point 4 corresponds to the end
of precipitation. Points 2 and 3 are the change in intensity. The dynamics of the derivative
dḢ(t)

dt is discussed in detail in Section 4.3 and later.
As a result, long-term experiment on investigation of influence of heavy precipitation

on surface atmosphere radiation background allowed to reveal that current precipitation
intensity I(t) is determined exactly by the increase in speed of the γ-radiation dose rate

growth, which is characterized by derivative dḢ(t)
dt . The obtained analysis results formed

the basis for the GammaRain method of precipitation intensity and amount determination
by atmospheric γ-background.

4. GammaRain Method for Determining the Intensity and Amount of Precipitation by
Atmospheric γ-Background

In this work, only the process of washout of daughter radon decay products by
precipitation “from under the cloud” is considered. We also assume that the γ-radiation
dose rate burst is caused by γ-radiation of 214Pb and 214Bi, short-lived daughter radon
decay products deposited on the ground surface, as the main contributors to the total dose
rate, compared to the rest of the radon and thoron decay products.

The method for estimating the mean values of the amount and intensity of liquid
atmospheric precipitation per event was developed based on a set of values that we can
realistically measure or estimate from known geophysical data and nuclear constants.
Apart from the measured dose rate of γ radiation, everyone can measure radon flux density
from the soil surface or estimate it on the basis of 226Ra content in the soil, according to
known models. Figure 3 shows an algorithm (scheme) of GammaRain method imple-
mentation to determine the intensity (time spectrum) and amount of precipitation on the
atmospheric γ-radiation background, which is divided into two separate tasks. Task 1 is to
determine the form of the precipitation intensity spectrum by calculating the time deriva-

tive dḢ(t)
dt with a given step, using γ-background monitoring data (described in detail in

Section 4.3). As studies have shown, the derivative dḢ(t)
dt determines the form of the pre-
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cipitation intensity spectrum. Task 2 is to determine the average value of rain intensity
for one event; for this purpose, the model γR2P described in Section 4.1 was developed.
It is possible to reconstruct the spectrum of rain intensity only when we know both the
average intensity and the γ radiation dose rate derivative spectrum. The spectrum recon-

struction is performed by equating the area under the curve dḢ(t)
dt for the delta t interval

to the calculated value of the average precipitation amount (or using average intensity)
and determining the constant by which the result is multiplied to obtain the correct total
precipitation amount.

Figure 3. Algorithm (scheme) of GammaRain method implementation.

4.1. γR2P Model to Determine the Average Per-Event Intensity of Precipitation

The estimation of average values of intensity and amount of precipitation per one
event is made by monitoring the data of the γ-radiation dose rate. For this purpose, let us
write down the initial equality as follows:

∆Ḣmeasured = ∆Ḣestimated (1)

where ∆Ḣmeasured and ∆Ḣestimated are the values of the burst (excess over the background
value at the maximum) of γ-radiation dose rate measured and calculated, respectively, µSv/h.

The value ∆Ḣmeasured can be determined from experimental data as follows:

∆Ḣmeasured = Ḣend − Ḣ0, (2)

where Ḣ0 is value of γ-radiation dose rate at the moment t0 corresponding to the beginning
of liquid atmospheric precipitation, which is defined as a point after which continuous
growth of dose rate is observed during time tend up to maximum value Ḣend, µSv/h
(according to Figure 2); Ḣend is maximum value of the γ-radiation dose rate in “burst”,
µSv/h (according to Figure 2).

The analysis of both the experimental data and theoretical material from the field of
nuclear physics and interaction of ionizing radiation with the substance allows to assert
that the value of the γ-radiation dose rate burst ∆Ḣ, µSv/h is proportional to the deposited
on the soil surface radionuclide activity at the end of the precipitation; additionally, each
j-th radionuclide of unit activity makes a constant contribution Ḣ1Bq

j to the total dose rate
of γ-radiation of the surface atmosphere at a unit distance from the soil surface, which
depends on the nuclear and physical characteristics of the radionuclide.

If the activity of the radionuclides deposited on the soil surface by rainfall As
j (t = tend),

Bq/m2 is known, at the precipitation end time tend and the dose coefficients at unit activity
for these radionuclides, we can write down the exact equality between the measured value
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of the γ-radiation dose rate burst (excess) and the activity of the deposited on the soil
surface radionuclides:

∆Ḣestimated =
n

∑
j=1

(Ḣ1Bq
j · As

j (t = tend)), µSv/h (3)

where j is a radionuclide, and n is the number of deposited radionuclides.
The dose rate of γ-radiation created at the distance R from the soil surface (source)

by a certain j-th radionuclide of unit activity is defined by constant value Ḣ1Bq
j [17]. The

quantity Ḣ1Bq
j (R) is equal to the equivalent dose rate produced by the j-th radionuclide of

unit activity at a certain distance R from an emitting object of arbitrary geometric shape;
it can be calculated using the gamma constant of a radionuclide by equivalent dose rate
(SGRDC) [17] from equations described in [18–20], and with GEANT4.

In this work, the dose coefficients for 214Pb and 214Bi were calculated using GEANT4 [21]
at the height R = 1 m from the ground surface for a disk source with a radius of 500 m,
taking into account the lower threshold of γ-radiation registration by BDKG-03 detectors,
equal to 50 keV. The standard set of physical processes QGSP_BIC_HP embedded in
GEANT4 was used with some modification for our problem, similar to the example
“extended/radioactivedecay/rdecay02” from the GEANT4 library. The statistics comprised
20 billion events for each individual calculation (radionuclide). The dose coefficients are
as follows:

Ḣ1Bq
Pb−214 = 8.48 · 10−7, (µSv/h)/(Bq/m2);

Ḣ1Bq
Bi−214 = 4.86 · 10−6, (µSv/h)/(Bq/m2).

Next, we search for the unknown value As
j (t = tend) by making the assumption that

the activity of radon decay products 214Pb and 214Bi in clouds is negligible, or they have
almost decayed during the motion of the cloud and they can be neglected. In this case, the
activity of lead and bismuth deposited on the soil surface As

Pb−214(t) and As
Bi−214(t) is a

function of time and is determined by their total activity in the atmosphere, the intensity
and duration of precipitation, or the amount of precipitation.

It is practically impossible to measure the activity dynamics of 214Pb and 214Bi radon
decay products precipitated on the ground surface or their activity at the moment of
precipitation termination as well as the total activity of these radionuclides in the near
ground atmosphere. In the equilibrium state, when the activities of radon and its decay
products are equal, in the absence of rain, and when h→ ∞, Ah

Pb−214 and Ah
Bi−214 can be

determined from the value of radon flux density from the ground surface qRn, Bq m−2 s−1,
from the simple equation as follows:

Ah
Rn−222(t = 0) = Ah

Po−218(t = 0) = Ah
Pb−214(t = 0) = Ah

Bi−214(t = 0) =
qRn

λRn
(4)

where λRn is radon radioactive decay constant 222Rn, s−1; Ah
Rn−222, Ah

Po−218, Ah
Pb−214 and

Ah
Bi−214 are the integral values of volumetric activities of 222Rn and its short-lived decay

products 218Po, 214Pb and 214Bi in an atmospheric column with a unit base and height
h, Bq/m2.

During the period of precipitation, the integral values of the activity of radionuclides
in a column of height h can be determined by solving the following system of equations:



Sensors 2021, 21, 6411 9 of 16



dAh
Rn(t)
dt

= qRn − λRn · Ah
Rn(t),

dAh
Po(t)
dt

= λPo · Ah
Rn(t)− (λPo + L(t)) · Ah

Po(t),

dAh
Pb(t)
dt

= λPb · Ah
Po(t)− (λPb + L(t)) · Ah

Pb(t),

dAh
Bi(t)
dt

= λBi · Ah
Pb(t)− (λBi + L(t)) · Ah

Bi(t),

(5)

where λPo, λPb and λBi are the constants of the radioactive decay of isotopes 218Po, 214Pb,
214Bi, measured in s−1; L(t) = I(t) · k1 · k2 is a function of the washout coefficient versus
time, measured in s−1; where I(t) is the precipitation intensity function versus time;
k1 = 10−5 (h/(mm·s)) is the absolute washout ability coefficient; and k2 is relative washout
ability coefficient.

The activity functions of radionuclides deposited on the soil surface by precipitation
as a function of time can be determined from the expressions obtained by solving the
Equations (5) and (6). The equations take into account such physical processes as radioac-
tive decay of short-lived radon decay products in the atmosphere and on the soil surface
during precipitation, as well as atmospheric clearance of radionuclides.

dAs
Po(t)
dt

= L(t) · Ah
Po(t)− λPo · As

Po(t),
dAs

Pb(t)
dt

= L(t) · Ah
Pb(t) + λPb · As

Po(t)− λPb · As
Pb(t),

dAs
Bi(t)
dt

= L(t) · Ah
Bi(t) + λBi · As

Pb(t)− λBi · As
Bi(t).

(6)

We make this complicated pathway much easier by representing As
Pb−214(t) and

As
Bi−214(t) as follows:

As
Pb−214(t) = Ah

Pb−214(t = 0)− Ah
Pb−214(t) =

qRn

λRn
− Ah

Pb−214(t), Bq/m2;

As
Bi−214(t) = Ah

Bi−214(t = 0)− Ah
Bi−214(t) =

qRn

λRn
− Ah

Bi−214(t), Bq/m2;

Such a representation became possible after analyzing the dynamics of radon activity
in the atmospheric column and on the ground surface during precipitation (Figure 4) ob-
tained by solving Equations (5) and (6). It can be seen that the activities of radon deposited
on the soil surface by precipitation daughter decay products change symmetrically together
with the activities of these radionuclides in the atmosphere.

Then, we obtain the analytical solution only for system (5) of differential equations
with constant coefficients and initial conditions (4). We obtained the solution (7) of equa-
tions of system (5) in the assumption that the intensity of precipitation is a constant value
during one event, because by not having experimental data of the precipitation gauge in
advance, it is impossible to assume the spectrum (dynamics) of intensity. As a result, one
can determine Ah

Pb−214(t) and Ah
Bi−214(t) from Equation (7). For convenience in presenting

the solution, we replace indexes 222Rn, 218Po, 214Pb and 214Bi with 1, 2, 3 and 4, respectively.
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Ah
3(t) =

qe−t(L+λ2)(Lλ2et(λ2−λ3)(L + λ2) + λ2λ3et(L+λ2)(λ2 − λ3)− Lλ3(L + λ3))

λ1(L + λ2)(L + λ3)(λ2 − λ3)

X = −Lλ2λ3et(λ2+λ3)(L + λ2)(λ2 − λ3)(L + λ3)

Y = −λ2λ3λ4et(L+λ2+λ3+λ4)(λ2 − λ3)(λ2 − λ4)(λ3 − λ4)

Z = Lλ2λ4et(λ2+λ4)(L + λ2)(λ2 − λ4)(L + λ4)

W = −Lλ3λ4et(λ3+λ4)(L + λ3)(λ3 − λ4)(L + λ4)

Ah
4(t) =

qe−t(L+λ2+λ3+λ4)(X + Y + Z + W)

λ1(L + λ2)(L + λ3)(L + λ4)(λ2 − λ3)(λ2 − λ4)(−λ3 + λ4)

(7)

where L is the coefficient of aerosol washout by precipitation, equal to L = I · k1 · k2,
where k1 is the coefficient of absolute washout ability of precipitation, equal to 36 m−1

(10−5 h/(mm·s)) [22]; k2 is the coefficient of relative washout ability of precipitation, rel.
units, equal to 1 for rain [22]; I is an average intensity of precipitation during the event, m/s.

Let us substitute solutions (7) into Equation (3) and rewrite initial equality (1) as follows:

∆Ḣmeasured =
qRn

λRn

(
Ḣ1Bq

Pb−214 + Ḣ1Bq
Bi−214

)
− Ḣ1Bq

Pb−214 · A
h
3(tend)− Ḣ1Bq

Bi−214 · A
h
4(tend) (8)

where tend is duration of precipitation, s.
We numerically solve Equation (8) with respect to L, provided that L > 0, and obtain

the event-average precipitation intensity I, and multiplied by tend we obtain the event-
average precipitation Q.

Figure 4. Dynamics of radon daughter decay products activity in the atmosphere and on the soil surface during the
precipitation period on 11 June 2017.

So our model (8) is called γR2P because it allows to turn data on γ-Radiation To
Precipitation for estimating average quantity and intensity.

4.2. Correction for Radon Flux Density from the Ground Surface

As a rule, during the warm period of the year, radon flux density (RFD) experiences
diurnal variations, which, depending on weather conditions, can change by 5–30 % or
more [23], with a maximum at ≈6:00 a.m. and a minimum at ≈6:00 p.m. If we consider
how the activity in the air column varies with this, we obtain a time shift in the onset
of maxima and minima by 6 h (Figure 5). Radon activity dynamics in air column was
simulated using the 1st equation of system (5), assuming q(t) = q0 · (1 + A · sin( 2π

T ));
here, A is the amplitude of variation, T is the period of variations, and q0 is the average
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value of RFD. Variations of the RFD up to 30% (Figure 5b) result in insignificant changes,
which can be neglected in the calculations. Nevertheless, if the RFD value changes many
times, then for implementation of the GammaRain method, it is recommended to take RFD
values measured 6 h before the beginning of rainfall. This will reduce the inaccuracy of the
estimates of the intensity and the amount of precipitation.

With very heavy rainfall, when rainwater has no time to be absorbed by the soil, a
“water layer” may occur for some time, blocking the radon output. However, this will not
significantly affect the total activity of radon under the cloud since the half-life of 222Rn is
3.8 days, in addition, radon gas is not washed out of the atmosphere by precipitation. Let
us consider as an example the case of an intense rain of 30 min duration, which presumably
will reduce radon flux density to zero (which in reality is impossible, since radon diffuses
even through water). If RFD = 55 mBq/(m2s) before heavy rain and then decreases sharply
to zero, the total radon activity in the air column will decrease by less than 0.3% during
30 min of precipitation.

Figure 5. Dynamics of radon flux density from the soil surface and integrated radon activity in the atmosphere during 2
days at deviation of RFD from the average value: (a) by 10%; (b) by 30%.

4.3. Reconstruction of the Rain Intensity Spectrum

The spectrum reconstruction is performed by the asserting equality of total precipita-
tion amount between estimation of average (calculated using Task 1) and unknown one,

which we have as time spectrum. So we know that dḢ(t)
dt ∼ I(t) =⇒ I(t) = c · dḢ(t)

dt
and then we can integrate this equation to get precipitation amount. That is also true

for average intensity, as the result
∫ tend

0
Ḣ′t(t)

∆t dt · c = I (average), finding constant in this
equation allows us to use dose rate derivative for reconstruction of rain intensity spectrum.
This principle is used for calculations and shown on Figure 6c and later.

Figure 6. Cont.
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Figure 6. Dynamics of the measured precipitation intensity (blue) and time derivative of the measured dose rate (red)
without smoothing (a), with smoothing by moving average (b), with averaging over 2 min (c), gamma dose rate (pink) (d).

5. Experimental Verification of the GammaRain Method

Next, we will discuss the implementation of the GammaRain method on several cases
of rain.

Consider the rain that occurred on 25 June 2017 at 16:19 h, its duration was 42 min.
The average 1-min intensity value changed to a maximum of 120 mm/h. The intensity
spectrum is shown in blue in Figure 6a. The average measured value of radon flux density
from the soil surface was 52 mBq/(m2s).

The dynamics of time derivative of gamma-radiation dose rate dḢmeasured(t)
dt calculated

from the radiation monitoring data is shown in red. Figure 6a shows the spectrum of
the derivative calculated from the original data measured at a sampling rate of 1 min.
For the measurement conditions described in Section 2, the statistical error of the gamma
monitoring data was 4–10%.

Due to the fact that the scatter of γ-background data (Figure 6d, pink) is quite large,
we see in Figure 6a a discrepancy between the shape of the derivative spectrum (red) and
the shape of the intensity spectrum (blue). When smoothing by “moving average” over the

5 values, we obtain an acceptable agreement of the spectra shapes of the dḢmeasured(t)
dt and

Imeasured(t) from onset of the intense phase of rain (Figure 6b).
The spectrum Ireconstructed(t) reconstructed by the GammaRain method (red) is shown

in Figure 6c. The values of the calculated and reconstructed rainfall intensities are averaged
over 2 min. The shapes of the calculated and original precipitation intensity spectra agree
well, except for the initial section. This may be due to the error in intensity measurement
using the shuttle gauge at the initial moment of rainfall.

Calculated by the γR2P model using Wolfram Mathematica, the average per-event
rainfall intensity was 12.84 mm/h, and the average measured intensity was 11.7 mm/h.

Next consider the rainfall that occurred on 30 June 2017 at 16:57, which was 15 min in
duration. The average value of intensity changed to a maximum of 168 mm/h in 1 min.
The mean measured radon flux density from the ground surface was about 45 mBq/(m2s).

Figure 7a shows the derivative dḢmeasured(t)
dt spectrum (red) calculated from the original

gamma monitoring data measured at a sampling rate of 1 min, and the precipitation

intensity (blue) averaged over 1 min. Figure 7b shows the derivative spectrum dḢmeasured(t)
dt

and Imeasured(t) both averaged over 2 min. The time-varying derivative of the measured
dose rate agrees well with the dynamics of the measured precipitation intensity.

The average value of the measured intensity for the case was 70.4 mm/h, while the
one calculated using the γR2P model was 70.6 mm/h.

Figure 8 shows the results of comparing the shapes of the measured intensity and time
derivative dose rate spectra for the rain that occurred on 11 June 2017 at 18:15. The rain
duration was 30 min, the average 1 min intensity value changed to a maximum of 48 mm/h
The average measured radon flux density from the ground surface was 47 mBq/(m2s).
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Figure 7. Dynamics of the intensity of precipitation on 30 June (blue) and the time derivative of the measured dose rate
(red): (a) original data for 1 min; (b) averaging of 2 min.

Figure 8. Dynamics of the time derivative of the measured dose rate (red) and intensity of precipitation on 11 June (blue)
with averaging: (a) 1 min; (b) 2 min.

The shapes of the derivative and intensity spectrum are satisfactorily similar at av-
eraging of 1 and 2 min. The average value of the measured intensity for the case was
11.6 mm/h, and the value calculated by the model γR2P was 11.0 mm/h.

Let us also give the results of the analysis of a rain of complex shape, having 3 intense
phases in one event, with a spectrum resembling a “corona” in shape (Figure 9). This rain
occurred on 30 July 2017 at 11:53, its duration was 48 min. The average 1-min intensity
value changed to a maximum of 55.7 mm/h, the intensity spectrum is shown in blue in
Figure 9. Average measured value of radon flux density from the soil surface averaged
36 mBq/(m2s).

Dynamics of time derivative of gamma-radiation dose rate calculated from gamma-
background monitoring data are shown in red. In spite of the larger scatter of gamma-
background data (Figure 9d, pink, dots), compared to the rain in Figure 6d, the derivative
in Figure 9b follows the rain spectrum shape quite well.

The spectrum reconstructed using the GammaRain method is shown in Figure 6c
(red). In the absolute value, the reconstructed intensity values are slightly underestimated
compared to the measured values.

The average measured intensity per case was 10.1 mm/h, while the calculated one
was 7.8 mm/h.

Analysis of the results of rainfall spectra reconstruction by gamma-background as
well as estimation of average per event precipitation intensities showed the following:

(1) The developed method gives a good matching of the reconstructed and measured
intensity spectra shapes;
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(2) The event-averaged rainfall intensity calculated using the γR2P model agrees perfectly
with the measured value for rainfall with the form of type I spectrum, and for complex
spectra, the error may reach 25%.

Figure 9. Dynamics of the measured precipitation intensity (blue) and time derivative of the measured dose rate (red)
without smoothing (a), with smoothing by moving average (b), with averaging over 2 min (c), gamma radiation dose rate
(pink) (d).

Reducing the sampling rate of the radiation monitoring data will increase the error in
the estimates of precipitation characteristics. In order to obtain higher temporal resolution
while keeping the error at the same level, or smaller, it is necessary to select more sensitive
sensors (for example, larger size of NaI(Tl) scintillator sensitive volume). This will allow in
the dynamics of γ-background to distinguish more precisely the areas with different rate
of rise (angle of slope of derivative).

6. Conclusions

Analysis of the results of long-term experiment on investigation of features of atmo-
spheric γ-background response to liquid atmospheric precipitation allowed to establish

that the time derivative of the dose rate dḢ(t)
dt follows well the intensity spectrum of liquid

atmospheric precipitation. Analysis of the γ-background response to rains of different
intensity and duration allowed the following:

- To state that it has rained;
- To formulate distinctive features by which we can determine the time of the beginning

and end of precipitation, changes in the intensity of precipitation and the number of
single (individual) events that form one burst in the γ-background;

- To determine the average intensity (quantity) of rainfall;
- To reconstruct the spectrum of rain intensity.

The γR2P model was developed to estimate the average values of intensity and
quantity of rainfall per single event, using the experimental data on the dynamics of the
γ-radiation dose rate. This model takes into account radioactive decay products of radon
decay in the atmosphere and on the soil surface during precipitation, as well as atmospheric
clearance from radionuclides.
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Experimental verification of the developed GammaRain method of rain intensity
spectrum reconstruction using the measured γ-background showed satisfactory agreement
between the restored and measured rain intensity spectra.
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