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Abstract: Precise navigation is essential for autonomous underwater vehicles (AUVs). The measure-
ment deviation of the navigation sensors, especially the microelectromechanical systems (MEMS)
sensors, is a crucial factor that affects the localization accuracy. Deep learning is a novel method to
solve this problem. However, the calculation cycle and robustness of the deep learning method may
be insufficient in practical application. This paper proposes an adaptive navigation algorithm with
deep learning to address these questions and realize accurate navigation. Firstly, this algorithm uses
deep learning to generate low-frequency position information to correct the error accumulation of
the navigation system. Secondly, the χ2 rule is selected to judge if the Doppler velocity log (DVL)
measurement fails, which could avoid interference from DVL outliers. Thirdly, the adaptive filter,
based on the variational Bayesian (VB) method, is employed to estimate the navigation information
simultaneous with the measurement covariance, improving navigation accuracy even more. The
experimental results, based on AUV field data, show that the proposed algorithm could realize robust
navigation performance and significantly improve position accuracy.

Keywords: autonomous underwater vehicle; navigation algorithm; deep learning; variational Bayesian

1. Introduction

The autonomous underwater vehicle (AUV) is an essential equipment for ocean explo-
ration and has been widely applied in recent years. By collecting information from various
relevant sensors, the navigation system could estimate the position, velocity, and other nav-
igation information of the AUV [1,2]. Therefore, AUV navigation technology is an essential
prerequisite for ocean exploration. Because the global positioning system (GPS) is invalid
when the AUV operates underwater, it is necessary to develop underwater autonomous
navigation technology. The main navigation methods at present include inertial naviga-
tion [3,4], acoustic navigation [5,6], simultaneous localization and mapping (SLAM) [7,8],
geophysical map-based navigation [9], and integrated navigation [10]. Among the above
methods, integrated navigation is the most widely used navigation method for AUVs.

Considering the cost and convenience, the integrated navigation system for the small-
scale AUV, which works in shallow seas and lakes, mainly relays on the Doppler velocity
log (DVL) and the attitude and heading reference system (AHRS). Based on the kinematics
equation, the dead-reckoning method can be used to calculate the location of AUVs [11,12].
However, the measurement error, which could be considered Gaussian white noise, would
cause the position error accumulation. The navigation system needs to use the filter to
reduce the interference of measurement error. The regularly used filters include extended
the Kalman filter (EKF) [13,14], and the unscented Kalman filter (UKF) [15,16]. EKF is the
most commonly used nonlinear filtering method for AUV navigation. By intercepting
the first-order Taylor series, it could approximate the nonlinear transformation process,
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but the EKF neglects the higher-order terms, which leads to the system model error. The
Gauss-Newton is an optimized method that could reduce the nonlinear model error to
a certain extent [17]. Optimized methods, such as genetic algorithm [18] and particle
filter [19], could also be used to improve the performance of EKF. UKF uses an unscented
transformation to sample and estimate the state by calculating the covariance of the system
state and the observed state, which could achieve a higher estimation accuracy than EKF.
However, in practical application, the computational complexity of UKF is high, and it is
easy to introduce the problem of nonpositive covariance, which also affects the robustness
of the navigation system.

To achieve the state estimation, accurate error covariance is necessary. Because of
the influence of environmental factors and sensor characteristics, the measurement noise
covariance is uncertain, even time-varying, and it is difficult to obtain precise noise errors
in engineering applications. The existing solution assumes the noise satisfies the white
Gaussian noise distribution and realizes the state estimation through an adaptive filter.
Sage Husa [20,21], H∞ filter [22], the maximum likelihood estimation method [23,24], and
variational Bayesian (VB) [25,26] are the primary adaptive algorithms at present. The
adaptive filter could obtain the state estimation with approximate error covariance.

The adaptive filter could effectively estimate the error distribution in the case of white
noise. However, due to the magnetic sensitivity of the external ferromagnetic material and
the electromagnetic wave of AUVs, the data of AHRS may have a deviation from the true
value, which could be treated as a color noise. The color noise could not be addressed
by the conventional method and it is still a challenging issue in practical applications.
Deep learning [27] has developed rapidly in recent years and has been applied in image
processing [28], language translation [29], pattern recognition [30], and other engineering
fields [31]. Since the neural network method could approach the optimal solution, this
method could effectively improve the navigation accuracy when the sensor has a large
deviation. However, according to our research, the positioning accuracy of the neural
network method is unsatisfactory compared to that of the traditional navigation method
when the sensor accuracy is high [32]. Additionally, the navigation information frequency
of the deep learning method is low since the calculation cycle of the deep learning method
needs data from a duration time, which would cause this method to be insufficient in some
missions.

This paper proposes an adaptive navigation algorithm with deep learning, which
could be employed to the integration of AHRS and DVL. Firstly, the method employs the
VB method to adapt the covariance of the measurement of noise covariance. Subsequently,
when the calculation cycle of deep learning is finished, the neural network would obtain a
relatively precise position, and the measurement model of the filter uses this position, and
the data from AHRS and DVL, to correct the system state. Otherwise, the measurement
value includes the data of AHRS and DVL. During the impact from the environment and
AUV motion, the DVL measurement may fail [33,34]. To avoid the impact of DVL outliers
on the filter estimate, the χ2 rule is employed to evaluate the DVL measurement [35,36].
When the DVL measurement fails, the observation will remove the data from the DVL.
The proposed method is evaluated by the AUV field data, and experimental results show
that the algorithm proposed in this paper could significantly improve the accuracy and the
robustness of the navigation system.

The remainder of this paper is organized as follows: Section 2 introduces the naviga-
tion system of the platform and the conventional EKF navigation method. The details of
the proposed method are presented in Section 3. Section 4 presents the performance of
different navigation methods and the experimental results analysis. Finally, the conclusion
of this work is in Section 5.
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2. Navigation System
2.1. Equipment and Sensors

Figure 1 is the structure of the Sailfish AUV. The Sailfish AUV includes the propulsion
system, communication system, environmental perception system, and navigation system.
The propulsion system includes the propeller, rudder, and their related control units, which
provide the power of AUV motion. The communication system aims to provide stable
information interaction between the AUV and the offshore control unit. The environmental
perception system uses sensors to obtain environmental information that can be used for
mission performance and obstacle avoidance. Among them, the navigation system could
provide navigation information for other systems, so it is the fundamental function of
AUVs. To realize the navigation state estimation, the AUV is equipped with various sensors
and equipment. The navigation system is integrated in the middle cable of the whole AUV.
The related sensors and equipment include a GPS, DVL, AHRS, and a depth meter (DM).
Each sensor and equipment will be introduced in the following parts. The specification of
part sensors and equipment could refer to our previous work [37].
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Figure 1. Structure of the Sailfish autonomous underwater vehicle (AUV).

As a piece of passive positioning equipment, the GPS could obtain an accurate position
when the AUV floats on the surface. The GPS calculates its localization by receiving the
signal of the satellite, and the position information has no error accumulation. However,
because of the interference from the wind and waves, the GPS navigation information may
have outliers. A filter is needed before the GPS information can used in the navigation
system. Table 1 presents the specifications of the GPS.

Table 1. Specification of GPS used on the AUV platform.

Equipment Type GPS

Position Accuracy 3 m (CEP50)
Velocity Accuracy 0.05 m/s

Update Rate 5 Hz (Max)

The DVL is aimed at measuring the linear velocity of the AUV. When the DVL works, a
short sound pulse with a fixed frequency will be transmitted and reflected by the bottom of
the seafloor. The transducer of the DVL calculates the linear velocity based on the frequency
change of the echo. The sound echo would be interference with environment and the AUV
motion state, which caused the DVL measurement to fail in practical application. When the
DVL operates normally, the measurement error is considered to be the white noise. Table 2
presents the specifications of the DVL.
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Table 2. Specification of DVL used on the AUV platform.

Scheme 600 DVL

Sound frequency 600 KHz
Velocity accuracy 1%

Operational height 0.3–110 m

The AHRS, which includes a three-axial gyroscope, accelerometer, and magnetic
compass, could directly measure the linear acceleration, angular velocity, and magnetic
intensity. The above data would be a fusion with a Kalman filter to get a stable heading and
attitude. However, due to the magnetic sensitivity of the external ferromagnetic material
and the electromagnetic wave of AUV, the information of AHRS, especially the yaw data,
may have a deviation from the true value, which could not be treated as white noise.
Table 3 presents the specifications of AHRS.

Table 3. Specification of AHRS used on the AUV platform.

Sensor Type AHRS

Yaw accuracy 1◦

Pitch/Roll accuracy 0.3◦

Output frequency Up to 2 kHz
Bias stability (Gyroscopes) 10◦/h

Bias stability (Accelerometor) 15 µg

The DM is an essential sensor that can provide AUV depth during vehicle operation in
the water. The core component of the DM is a pressure sensor that can obtain the intensity
of pressure. The micro process unit of the DM uses the pressure, fluid density, and constant
of gravitation to calculate the depth of the AUV. The data from DMs are relatively accurate
and can be employed directly in AUV navigation. Therefore, the main challenge in our
AUV navigation is to achieve a position estimation in the horizontal coordinate. Table 4
presents the specifications of the DM.

Table 4. Specification of DM used on the AUV platform.

Sensor Type DM

Resolution 0.001% range
Accuracy 0.01% range

Update Rate 5 Hz
Response Time 1 millisecond

2.2. Conventional EKF Navigation Algorithm

The conventional navigation algorithm of the AUV platform is EKF. EKF can be
divided into two parts: time update and measurement update. In the time update stage,
the system employs the kinematics equation to predict the system state, and the Jacobin
matrix of the system update function is used to forecast the covariance of system noise.
Equations (1) and (2) represent the system propagate process:

Xk|k−1 = f (Xk−1) (1)

Pk|k−1 = FkPk−1FT
k + Q (2)

where X is the system state, f is the system update function based on the kinematics
equation, P is the system error covariance, Q is the covariance of the system noise, and F is
the system noise transition matrix.

In the measurement update stage, the system state and covariance would be corrected
by the measurement value. The Kalman gain, which is determined by the covariance of
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system noise and measurement noise, represents the degree of correction. The measurement
update process is shown in the following equations:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

(3)

Xk = Xk|k−1 + Kk(Zk − h(Xk|k−1)) (4)

Pk = (I − Kk Hk)Pk|k−1 (5)

where K is the Kalman gain, Z is the measurement vector, h is the measurement function, H
is the Jacobin matrix of measurement function, and R is the measurement noise covariance
matrix.

In the AUV navigation modeling process, the kinematics equation of AUV navigation
is represented as Equation (6):

x
y
ψ
u
v
au
av
ω


k

=



x + (ut + 0.5aut2) cos(ψ)− (vt + 0.5avt2) sin(ψ) + nx
y + (ut + 0.5aut2) sin(ψ) + (vt + 0.5avt2) cos(ψ) + ny

ψ + ωt + nψ

u + aut + nu
v + avt + nv

au + nau
av + nav
ω + nω


k−1

(6)

where x and y are the positions along the north and east axis, Ψ is the heading of AUV, u
and v are the longitudinal and transverse velocities in horizontal coordinates, au and av
are the related acceleration, ω is the angular velocity of heading, and t is the time interval.
Since the error propagation is a complex coupled process, to simplify the calculations,
the system noise is assumed as the white Gaussian noise. The system noise is shown as
Equation (7).

n = [ nx ny nψ nu nv nau nav nw ]
T (7)

As the system update function is nonlinear, the system noise transition function, which
is shown in Equation (8), is the Jacobin matrix of the system update function.

F =



1 0 −(ut + 0.5aut2) sin(ψ)− (vt + 0.5avt2) cos(ψ) t cos(ψ) −t sin(ψ) 0.5t2 cos(ψ) −0.5t2 sin(ψ) 0
0 1 (ut + 0.5aut2) cos(ψ)− (vt + 0.5avt2) sin(ψ) t sin(ψ) t cos(ψ) 0.5t2 sin(ψ) 0.5t2 cos(ψ) 0
0 0 1 0 0 0 0 t
0 0 0 1 0 t 0 0
0 0 0 0 1 0 t 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(8)

The measurement state includes the velocity, acceleration, heading, and angular
velocity and is shown in Equation (9):

Z =
[

ψ u v au av w
]T (9)

As the measurement state has a linear relationship to the system state, the measure-
ment transition matrix is easy to express:

H =
[

06×2 I6×6
]

(10)

According to the above navigation system modeling, the navigation information of
the AUV can be calculated in real-time by using the EKF algorithm. However, the data
of the AHRS is vulnerable to the external ferromagnetic material and the electromagnetic
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waves of the AUV. In the actual AUV application, the noise of the heading is colored noise
and difficult to estimate, which is the main reason that affects the positioning accuracy of
the navigation system. The velocity measurement error of the DVL is another factor that
affects navigation accuracy.

3. Adaptive Navigation Algorithm with Deep Learning

This paper proposed an adaptive navigation algorithm with deep learning to address
sensor noise in the navigation system. Figure 2 is the flowchart of the developed method.
The algorithm is based on the EKF method, and regular observation contains the data of
the DVL and AHRS. When the deep learning calculation cycle is finished, the position
calculated by deep learning would be added to the observation ZD. To avoid interference
from DVL outliers, the observation ZA would remove the data of DVL when it fails. The
VB method is employed in the EKF to adjust the covariance of noise.
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3.1. Deep Learning Navigation Method

The yaw data of AHRS includes colored noise, which is hard to estimate by the
conventional method. Therefore, we employed a hybrid recurrent neural networks (RNNs)
framework to realize AUV position estimation. Since the training process uses the GPS
movement as the label, and the raw data of the sensors as the input, the trained framework
could include the interference from yaw error [32]. Figure 3 presents the structure of hybrid
RNNs. This framework uses unidirectional and bidirectional long short-term memory
(LSTM) to handle different sensor data. The calculation process of LSTM is as follows [38].
Figure 4 is the structure of LSTM.

f gt = σf

(
W f [hlt−1, Xst] + b f

)
(11)
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igt = σi(Wi[hlt−1, Xst] + bi) (12)

Ct = f gt ◦ Ct−1 + igt ◦ tanh(Wc[hlt−1, Xst] + bc) (13)

ogt = σo(Wo[hlt−1, Xst] + bo) (14)

hlt = ogt ◦ tanh(Ct) (15)

where Xs is the sequence input of data, the W and b are the weight and bias, the fg is the
forgetting gate, ig is the input gate, C is the cell state, Og is the output gate, and hl is the
hidden layer. The activation function σ uses the sigmoid. The ◦ represents the point-wise
product operation.
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The RNN structure is used to preprocess the raw data of the DVL and AHRS. Then
the output of different RNNs and the time interval are used as the input to transform
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the displacement by a fully connected layer [39]. The GPS trajectory is smoothed by an
adaptive fault-tolerance filter and separated into segments to generate labels for training.
In this network, root mean square error (RMSE) is selected to calculate the loss between
the label and prediction. The RMSE calculation process is shown in Equation (16).

ξ =

√
1
m

m

∑
i=1

(χi − Xdi)
2 (16)

where m is the number of train datasets, χ is the label, and Xd is the predicted value of
deep learning.

To improve the training efficiency of the network, the activation function in the
fully connected layers employs the rectified linear unit (ReLu) to overcome the vanishing
gradient problem. According to our experiments, the learning rate should be reduced
during the training process, so the adaptive gradient (AdaGrad) is selected to adjust the
learning rate, and AdaGard could effectively decrease training cycles. The trained network
could achieve AUV position estimation.

Deep learning is an end-to-end navigation method and does not need to handle
various complex matrix operations. Therefore, it is easy to implement. Since the neural
network method could approximate the optimal solution, it could obtain relatively precise
localization when the raw data has a large deviation. However, the performance is relatively
weak when the raw data is accurate. The calculation cycle of the deep learning method
needs data from a duration time, which causes the deep learning method to only obtain
navigation information with a low frequency. In this work, the position information of deep
learning is used as the element in the observation to correct the navigation information.
Here the measurement vector Zd includes the deep learning output and the data from
the DVL and AHRS. The RMSE of deep learning describes the deviation degree from
truth value, and the square of RMSE is mean square error (MSE), which is the same
as the meaning of measurement variance. Hence, we use the MSE as an approximate
measurement variance of the neural network position estimation. The measurement noise
covariance matrix Rd concludes the MSE of deep learning and the measurement noise.
Because the variance obtained by the MSE is still not accurate, it needs to be corrected by
the VB method.

3.2. DVL Fault Diagnosis

When AUVs cruise in the water, the motion state is interfered with by the waves and
surge, which may have an adverse impact on the DVL measurement. The moving objects
near the DVL, or a rapid change in the terrain, is another factor for DVL accuracy.

To restrain the above impact, the χ2 rule is selected to judge if the DVL measurement
fails [35,36]. The innovation of DVL measurement is satisfied with white noise when the
data of DVL is available.

rDVL ∼ (0, NDVL) (17)

In our navigation system, the covariance matrix NDVL is expressed as follows:

NDVL = [HPk|k−1HT + R]
2:3,2:3

(18)

The fault detection criterion is defined as Equation (19).

CDVL = rDVL
T(NDVL)

−1rDVL (19)

If CDVL is above the threshold, we consider the DVL measurement to have failed, and
the DVL measurement is removed from the observation matrix Za. The measurement noise
covariance matrix Ra only contains the measurement noise of AHRS. The χ2 rule is suitable
for mutant fault detection, which could effectively avoid the impact of DVL measurement
failure in navigation.
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3.3. Variational Bayesian Method

The accuracy of the covariance estimation is significant to the performance of the
Kalman filter. Since the system covariance is the inherent characteristics, and approximate
estimation could maintain the stability of the filter, the measurement covariance is the main
factor that affects the accuracy of the state estimation. In our navigation algorithm, the
measurement includes position, yaw angle, and velocity. Among them, the covariance of
position is obtained by deep learning, which is an approximate value, and the covariance
of the DVL would be affected by the environment. The VB method is introduced to the
state estimation to simultaneously estimate the measurement covariance to address this
question.

The VB method aims to obtain the conditional probability density of joint distribution
p(Xk, Rk|Zk). To simplify the calculation process, the joint distribution is approximate to
the product of two independent probability densities, as shown in Equation (20).

p(Xk, Rk|Zk) ≈ q(Xk)q(Rk) (20)

According to the VB theory, the approximate probability density can be obtained by
minimizing the Kullback-Leibler divergence from the actual probability density. Since
the measurement follows the law of normal distribution, the covariance of covariance is
assumed to satisfy the inverse Wishart distribution [37]. The VB method can be concluded
as follows.

In the time update process, the VB method is similar to the standard Kalman filter. In
addition, the parameter initialization is as Equation (21).{

αk|k−1 = ρ(αk−1 −m− 1) + m + 1
βk|k−1 = ρβk−1

(21)

where α and β are the elements in the probabilistic distribution of measurement covariance,
m is the degree of the observation matrix, and ρ is the factor that approximates the posterior
of the measurement covariance.

The measurement update is an iterative process. The calculation is expressed in
Equation (22).

α
(i+1)
k = α

(i)
k + 1

β
(i+1)
k = β

(i)
k + (Zk − HX(i)

k )
T
(Zk − HX(i)

k ) + HPk|k−1HT

R(i+1)
k =

[
(α(i+1) −m− 1)/β(i+1)

]−1

K(i+1) = Pk|k−1HT(HPk|k−1HT + R(i+1)
k )

−1

X(i+1)
k = Xk|k−1 + K(i+1)(Zk − HXk|k−1)

P(i+1)
k = Pk|k−1 − K(i+1)HPk|k−1

(22)

where i represents the number of iterations. After the iteration is finished, the last system
state and measurement covariance are the estimations of the VB method.

In the proposed navigation algorithm, the covariance of measurement is uncertain,
which could seriously impact navigation accuracy. The VB method could simultaneously
estimate the measurement noise covariance and system state, which could reduce the
interference from imprecise covariance.

For simplicity, the notation of the AUV model and the developed algorithm is re-
grouped for clarity in Table 5.
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Table 5. AUV model and developed algorithm notation.

Variable Description

X State vector
f State predict function
F State predict transition matrix (Jacohian matrix of f )
Z Measurement vector (data of DVL and AHRS)
h Measurement function
H Measurement transition matrix (Jacohian matrix of h)
n White Gaussian noise.
R Measurement noise covariance matrix
K Kalman gain
Xs Sequence data input of RNN

W, b Weight and bias of neural cell
fg Forgetting gate
ig Input gate
Og Output gate
hl Hidden layer
σ Activation function (sigmoid function usually)

Zd Measurement vector includes deep learning data
Rd Measurement noise covariance matrix includes deep learning
Za Measurement vector of AHRS
Ra Measurement noise covariance matrix of AHRS

4. Experiments and Analysis

In this section, a series of experiments based on the AUV field data is carried out.
To evaluate the performance of different navigation methods, a truth value, such as GPS
position, is necessary for the experiment platform. As the AUV could not obtain a GPS
position while immersed underwater, the field data were collected when the AUV was
cruising on the surface. Moreover, the GPS-smoothed trajectories could be generated as the
labels to train the deep learning network. Figure 5 is the Sailfish AUV during the Tuandao
Bay experiments. The scene is the Sailfish cruising on the surface.
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The field data of our experiments were acquired from different places, such as the
Menlou Reservoir, Jiaozhou Bay, and Tuandao Bay. Table 6 depicts the details of the
experimental data. The field data of four groups covers straight lines, turns, and cycles,
which represent almost all of the motion modes of AUVs. Additionally, the experimental
environment in different places is varied. The winds and waves in bay and coastal waters
are more intense than those in the reservoir.
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Table 6. Details of AUV field data used in experiments.

No. Start Point End Point Distance

Test1 120.34096◦ E,
36.16952◦ N

120.34219◦ E,
36.16920◦ N 751 m

Test2 121.20101◦ E,
37.40701◦ N

121.20509◦ E,
36.40629◦ N 316 m

Test3 120.29453◦ E,
36.05187◦ N

120.29454◦ E,
36.05187◦ N 260 m

Test4 120.29362◦ E,
36.05155◦ N

120.29351◦ E,
36.05159◦ N 224 m

In our experiments, the conventional EKF, pure deep learning, and the proposed
algorithm were employed to generate the AUV trajectory. Figure 6 shows the paths
produced by various algorithms. Since the GPS data frequency in our platform is 1 Hz,
the GPS trajectory is divided into movements per second. Therefore, the navigation data
frequency of deep learning is 1 Hz, while the conventional method and the proposed
method are 10 Hz.
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Figure 6. Four experimental results of the ground truth trajectory and the trajectories obtained using different methods
based on field data.

In Figure 6, black lines represent the smoothed GPS trajectories that are considered as
the ground truth, red lines represent the conventional EKF trajectories, blue lines represent
pure deep learning trajectories, and violet lines represent the proposed method. According to
our previous research, the performance of the deep learning method would be better than
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the conventional EKF algorithm in most cases. However, the EKF trajectory would be closer
to the ground truth when the accuracy of navigation sensors is high, which caused the pure
deep learning in Test1 to be worse than the EKF. The proposed method could adaptively
fuse the data from sensors and the deep learning method by the VB method. Therefore, the
navigation accuracy in Test1 can be improved more than other methods. In Test2, DVL raw
data has a jump that causes the EKF to deviate from the expected trajectory. The deep learning
method is robust to the outliers and could effectively avoid interference. In the proposed
method, the DVL fault diagnosis method detects the measurement fails and removes the
velocity data from the observation, so the proposed method could maintain the robustness
towards the measurement outliers. Test3 and Test4 show that the proposed method could
effectively improve navigation accuracy more than the conventional EKF method.

Figure 7 shows the position errors between the ground truth and different algorithms.
The position errors are the distance between the GPS and the estimation results of different
methods. In Figure 7a, because of the slight sensor deviation and the data fusion strategy,
the performance of the proposed method is better than other methods. Figure 7b shows
the error of Test2. Since the DVL measurement has outliers, the deep learning method
could significantly improve the navigation accuracy. The proposed method, with a fault
diagnosis function leading to the algorithm, has positive fault tolerance ability to the DVL
measurement fails. Figure 7c,d show that the proposed method could improve the position
accuracy compared to the conventional EKF method, and the accuracy is close to the deep
learning method. Table 7 summarizes the RMSE of all the above algorithms during the
four experiments. The RMSE results evidence that, although the proposed algorithm is
insufficient compared to deep learning in most cases, it could achieve norm frequency and
robust navigation, and improve accuracy to a larger extent than the conventional method.
A number of experimental tests verify that the RMSE could improve by at least 14.4%.

Table 7. Root mean square error (RMSE) of position in different navigation methods.

No. EKF Deep Learning Proposed Method

Test1 10.6899 13.0804 9.3048
Test2 33.6729 10.8476 13.1595
Test3 7.2525 4.0369 5.3061
Test4 7.6301 2.9252 4.0130
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5. Conclusions

In this work, we developed an adaptive navigation algorithm based on deep learning.
Firstly, this algorithm uses deep learning to generate low-frequency position information
to correct the navigation error. Secondly, the χ2 rule is selected to judge if the DVL
measurement fails, which could avoid the interference from DVL outliers. Thirdly, the
adaptive filter based on the VB method is employed to estimate navigation information
simultaneous to the measurement covariance, improving navigation accuracy even more.

Different from the pure deep learning navigation method, this work could achieve
robustness and high accuracy navigation with a normal frequency, which could be satisfied
by the requirements of various missions. The experimental results based on AUV field data
verified that even the performance of the proposed algorithm is slightly worse than pure
deep learning. However, it has good robustness and could effectively improve navigation
accuracy compared to the conventional navigation algorithms. In the future, we will carry
on more complex integrated navigation system design, such as the integration of different
acoustic equipment, and investigate the performance of the proposed algorithm.
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