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Abstract: Cellular and subcellular spatial colocalization of structures and molecules in biological 
specimens is an important indicator of their co-compartmentalization and interaction. Presently, 
colocalization in biomedical images is addressed with visual inspection and quantified by co-occur-
rence and correlation coefficients. However, such measures alone cannot capture the complexity of 
the interactions, which does not limit itself to signal intensity. On top of the previously developed 
density distribution maps (DDMs), here, we present a method for advancing current colocalization 
analysis by introducing co-density distribution maps (cDDMs), which, uniquely, provide infor-
mation about molecules absolute and relative position and local abundance. We exemplify the ben-
efits of our method by developing cDDMs-integrated pipelines for the analysis of molecules pairs 
co-distribution in three different real-case image datasets. First, cDDMs are shown to be indicators 
of colocalization and degree, able to increase the reliability of correlation coefficients currently used 
to detect the presence of colocalization. In addition, they provide a simultaneously visual and quan-
titative support, which opens for new investigation paths and biomedical considerations. Finally, 
thanks to the coDDMaker software we developed, cDDMs become an enabling tool for the quasi real 
time monitoring of experiments and a potential improvement for a large number of biomedical 
studies. 

Keywords: local density; local co-density; co-occurrence; correlation; colocalization quantification; 
data visualization; fluorescence microscopy; subcellular local image analysis; cancer cell 
 

1. Introduction 
In a biological context, colocalization is defined as the presence of two or more dif-

ferent molecules residing at the same physical location in a specimen. Subcellular spatial 
colocalization analysis is fundamental for determining whether molecules are located in 

Citation: De Santis, I.; Lorenzini, L.; 

Moretti, M.; Martella, E.; Lucarelli, 

E.; Calzà, L.; Bevilacqua, A.  

Co-Density Distribution Maps for 

Advanced Molecule Colocalization 

and Co-Distribution Analysis.  

Sensors 2021, 21, 6385. 

https://doi.org/10.3390/s21196385 

Academic Editors: Sheryl Berlin 

Brahnam, Loris Nanni, Rick Brattin 

Received: 28 July 2021 

Accepted: 21 September 2021 

Published: 24 September 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Sensors 2021, 21, 6385 2 of 18 
 

 

sites where they can interact with each other, especially when their reciprocal interaction 
and reaction cannot be assessed directly. The molecules’ location can be easily and effi-
ciently addressed by confocal fluorescence microscopy [1]: while fluorescent probes allow 
the selective visualization of specifically marked molecules [2], the confocality of acquisi-
tion allows the investigation of their distribution in the whole cellular volume, while re-
ducing the out-of-focus contributions to probe’s signal [3,4] and avoiding image blurring 
accordingly, which can introduce false positives. A first common method to analyze col-
ocalization of fluorescent signals is image superposition (i.e., merging or, more techni-
cally, fusion) for visual inspection [5,6]. However, such a method is subject to perceptive 
errors and bias [7], cannot discriminate between random and potentially functional colo-
calization [8] and is poorly quantitative [9]. Accordingly, several methods for quantifying 
colocalization have been developed through years. A first discrimination occurs between 
pixel-based and object-based methods [10,11]. As for many other applications, the former 
is based solely on the intensity information in each pixel, while the latter is based on in-
formation from a set of semantically coherent pixels, called the object. Therefore, object-
based methods are more appropriate for super-resolution microscopy, which is more suit-
able for accurately separating interacting molecules in adjacent pixels and discerning ob-
jects boundaries [12,13], while the application of pixel-based methods is quite independ-
ent of microscopy resolution. Pixel-based methods conventionally regard colocalization 
as quantifiable by two components [14]: co-occurrence, i.e., the simple spatial overlap of 
two signals, and correlation, which quantifies the direction and indicate the magnitude of 
the relation between markers’ signal intensities [13,15]. This approach has given rise to a 
large number of different correlation coefficients [8,16–20], first of all, Pearson’s [21] and 
Manders’ [6] coefficients, for their ease of implementation [22] and their capability to pro-
vide, respectively, a quantification of correlation and co-occurrence, when used in pair 
[6,7,13]. The derived forms of these coefficients have been progressively introduced to 
overcome their main drawbacks, such as noise dependency [23], lack of linearity [14] and 
absence of spatial informativeness [20]. However, their adoption is still limited by their 
shared inadequacy to provide an intuitive and effective representation of colocalization 
that could really help researchers in the biological interpretation of results. In addition, 
none of them can provide information about the stoichiometry of colocalization [3], which 
is still approximated from the pixel intensities scatterplot as the slope of the fitting line 
assuming, a priori, a linear relation between the two signals intensities [8,24,25]. 

All methods exploiting pixel intensities neglect information regarding pixel intercon-
nections that, if considered, could permit the enforcement of colocalization information. 
In fact, co-localized pixels, by definition, must appear with the same connecting pattern 
in both channels. Based on this assumption, we developed the concept of density distri-
bution maps (DDMs) [26], which qualitatively and quantitatively describe the subcellular 
molecules’ absolute and relative locations. As a natural extension, here, we introduce the 
co-density distribution map (cDDM), a novel tool to automatedly and quantitatively im-
prove colocalization analysis in biomedical images by firstly introducing information 
about molecules local density and co-density. Consequently, cDDMs borrow all of the 
advantages of DDMs, including the capability to increase the confidence of colocalization 
when this is not achievable by increasing the image resolution; the capability to speed-up 
routine, large-scale and follow-up experiments; and the applicability to any resolution 
study. Working on densities, cDDMs introduce an additional constraint that makes the 
overall colocalization assessment more reliable, becoming a tool for the refinement of cor-
relation coefficients computation, when these coefficients are chosen as quantifiers of col-
ocalization. In practice, cDDMs provide a more reliable indication than intensity alone 
about the location and extent of colocalization (that is by definition a spatial information, 
as local density). In addition, being representative of markers’ local co-density, cDDMs 
offer a visual support preserving the spatial information and making the biological inter-
pretation of results easier. After presenting the cDDMs’ creation method and discussing 
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its main implications, here, we exemplify the effectiveness of cDDMs through their appli-
cation to two more real image datasets acquired by fluorescence microscopy, which prove 
how cDDMs can advance the actual colocalization analysis framework, provide infor-
mation about markers’ density and degree of colocalization and, thus, open to the formu-
lation of new biological considerations. Finally, we supply an updated version of the soft-
ware program DDMaker [26], coDDMaker and its Graphical User Interface (GUI), to sup-
port researchers in building and analyzing the DDMs and cDDMs for their own experi-
ments. 

2. Materials and Methods 
Three datasets are used to exemplify cDDMs’ benefits to biomedical colocalization 

and co-distribution studies: (1) the SYP-VGLUT1 dataset is used to present cDDM utiliza-
tion and main implications (results for the SYP-VGLUT1 dataset are also reported in the 
Supplementary Table S1); (2) the Lamp-1-Ce6 dataset is used to present a case of limited 
colocalization between differently dense markers, where the analysis is complemented by 
novel information from the cDDM, including indication on the degree of colocalization; 
(3) the NF200-FM dataset is used to present a case of cDDMs application at tissue level, 
where local co-density numerical and spatial information also permits new biological con-
siderations about sample’s heterogeneity. 

2.1. Sample Preparation and Image Acquisition 
(1) The 12 bit range images from rat brain immunostained for Synaptophysin (SYP, 

λEX = 488 nm, λEM = 525 nm) and vesicular glutamate transporter 1 (VGLUT1, λEX = 561 nm, 
λEM = 595 nm), as described in [27], were sequentially acquired with a Nikon Ti-E A1R 
laser confocal fluorescence microscope (Nikon, Tokyo, Japan), equipped with a Plan Apo 
60x/1.4 objective at a resolution of 512 × 512 × 9 pixels with a pixel size (XYZ) of 0.1 × 0.1 × 
0.25 µm3 (Pinhole size = 39.59 µm). (2) The 12 bit range images of human osteosarcoma 
MG-63 cells exposed to Keratin-based nanoparticles (PTX-Ce6@kerag, λEX = 649 nm, λEM = 
700 nm) were sequentially acquired with a confocal fluorescence laser scanning micro-
scope Ti-E A1R (Nikon, Amsterdam, Netherlands), equipped with a 60×/NA 1.4 oil Plan-
Fluo at a resolution of 1024 × 1024 × 19 pixels with a pixel size (XYZ) of 0.2 × 0.2 × 0.25 µm3 
(Pinhole size = 24.27 µm). MG-63 cells were indirectly immunostained against the Lyso-
somal-associated membrane protein 1 (Lamp-1, λEX = 563 nm, λEM = 595 nm) as described 
in [28]. 3) The 8 bit range images from rat spinal cord immunostained for neurofilaments 
(NFs, primary antibody: mouse anti-NF200, 1:800, Sigma Aldrich Saint Louis, MO; sec-
ondary antibody: Rhodamine Red™-X, 1:100, Jackson Immuno Research, Cambridge-
shire, UK, λEX = 570 nm, λEM = 590 nm) and stained for myelin with FITC-Fluoromyelin™ 
(FM, Thermo Fisher, λEX = 479 nm, λEM = 598 nm) were acquired with a Nikon Eclipse E600 
(Q Imaging, Surrey, BC, Canada), equipped with a Plan Apo 10x/0.4 objective and Q Im-
aging RETIGA-2000RV camera. For each sample, 10 images were acquired and stitched 
into a single mosaic (resolution: 3532 × 2384 pixels, pixel size: 0.74 × 0.74 µm2) with Pho-
toshop (Adobe Suite, release 22.4.2). 

2.2. Image Segmentation 
All the following procedures are implemented in MATLAB® (R2019a v.9.7.0, The 

MathWorks, Natick, MA, USA). SYP and VGLUT1 signals are segmented by Isodata 
thresholding. Lamp-1 and Ce6 signals and NF200 and FM signals are segmented by Otsu 
method. 

2.3. Local Distribution and Co-Distribution Analysis, DDM and cDDM 
Starting from pairs of input grey level images, the cDDM is computed from single 

DDMs (Figure 1a). 
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Figure 1. Flowchart of cDDM creation pipeline for a couple of markers. (a) The acquired images are segmented in binary 
masks and their pixel connectivity separately explored by local density analysis for the two pseudo-color DDMs building. 
Then, the cDDM is built through local co-density analysis, by comparing the single markers DDMs pixelwise. (b) Details 
of local density (blue boxes) and co-density (orange boxes) analyses: after setting the search (moving) windows size, each 
foreground (FG) pixel of each binary mask is assigned a number representing the amount of FG pixels in its locality, this 
constituting the input to build the pseudo-color DDM (here shown with no “saturated” densities). Then, the local co-
density analysis is performed by pixelwise subtraction of the two DDMs. 

As schematized in Figure 1b, distribution analysis is performed by firstly computing 
the local density indices (LDIs) and DDM of each imaged marker, as described in [26], 
after setting the search (moving) Windows Size (WS), which can differ for the two mark-
ers. Then, for each pair of markers, the co-distribution analysis is performed by computing 
the co-density distribution map (cDDM), by subtracting the two markers’ DDMs pix-
elwise. Consequently, the resulting cDDM’s values (i.e., local co-density indices, cLDIs) 
can be only computed inside the markers’ co-occurrence region, resulting from ANDing 
the two markers’ masks and can range from −(WS2 − 1) to +(WS2 − 1). Different LDI couples 
can result in the same cLDI (Figure 1b, red and green arrows). Negative cLDI values indi-
cate pixels where the first marker signal is locally denser than the second one, the opposite 
holds for positive values. A cLDI equal to zero indicates pixels where the two markers are 
equally dense, hence defining the equi-density region, where the signals are in a 1:1 ratio. 
However, non-zero cLDIs cannot be considered indicators of a specific ratio, but rather, 
of a specific difference in the markers’ abundance that is, by definition, a more correct 
indication of the degree of colocalization than of pixel intensities correlation. Finally, map-
ping cLDIs back to the image domain in pseudo-colors also allows us to gain information 
about the markers’ spatial co-distribution. 

2.4. Pixel Density as A Measure of Colocalization 
An established requirement for signals colocalization is their co-occurrence. Co-oc-

curring pixels can either be isolated (i.e., they have no neighboring pixels) or not. If we 
assume that isolated pixels as the result of spurious co-occurrences, colocalization is, 
hence, defined by the presence of at least two adjacent co-occurring pixels. This means 
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that colocalization presents itself in patterns, in their turn defined by connections between 
pixels. As a consequence, there is the necessity to also quantify colocalization with a meas-
ure of pixel connectivity (i.e., our local co-density), rather than using an intensity-based 
measure alone. Assuming that the objects of interest to be imaged are larger than single 
pixels, the 3 × 3 search window (i.e., WS = 3) is the smallest window to analyze pixel con-
nectivities and, hence, local densities. Such an assumption is fundamental to determine 
whether the local co-density information carried by cDDMs also brings information about 
objects colocalization. Indeed, when imaging single-pixel objects, cLDI cannot be indica-
tive of colocalization, being unable to discriminate between a real overlap and a close 
proximity, since non-overlapping single-pixel objects can fall within a single pixel. In such 
cases, more information about colocalization can be drawn from pixel-based correlation 
coefficients, under the assumption of proportionality between marker intensity and mol-
ecule number. Such an assumption is not exploited in our method, which relies on a more 
straightforward measure of the marked objects abundance based on local density. 

Hence, co-density is a measure of colocalization when the search window has a size 
that is, at most, the same as that of the imaged objects. In such cases, a cLDI value of zero 
indicates the presence of co-occurring and co-dense objects, thus identifying those pixels 
where two signals colocalize not only because they co-occur (and perhaps correlate), but 
also because they do it by sharing the same pattern density. 

2.5. Colocalization Analysis 
In this work, we implement a colocalization analysis framework according to the 

most common methods in the biomedical literature. Specifically, we quantify the signals 
overlap by Manders’ coefficients MOC, M1 and M2, and signals correlation by Pearson’s 
(ρ) and Spearman’s (ρs) [29] coefficients. Of note, MOC’s informativeness as a co-occur-
rence estimator is actually an ongoing topic of discussion [4,30–33] and the MOC values 
reported hereafter should be carefully interpreted accordingly. The formulae and descrip-
tion for the mentioned coefficients can be found in Appendix A. In addition, we also eval-
uate: 
• The markers overlap region through our co-occurrence maps (cOMs) built on top of 

segmented signals, highlighting in four different pseudo-colors the pixels where: (1) 
both markers are absent, (2) only the first marker is present, (3) only the second 
marker is present and (4) both markers are present (co-occurrence region). 

• The local density and co-density of marked structures, by DDMs and cDDMs com-
putation and analysis. 

2.6. Assessment of Results 
We first verify the appropriateness of cLDI as a colocalization indicator by assessing 

the degree of an order relation between cLDI and correlation coefficient values. Hence, 
we apply a cLDI-based refinement of classical coefficients computation, which consists in 
restricting its domain from the co-occurrence region to the equi-density region. 

For each image, each marker’s signal is binarized in a mask representing its own oc-
curring region. Then, the two masks are ANDed to identify the signals’ co-occurrence re-
gion. Finally, the cDDM analyzes the co-occurrence region, restricting it to the co-density 
region. Correlation (by ρ and ρs) and overlap (by MOC, M1 and M2) are calculated for both 
the signals’ intensities (i.e., between the pixel values in the two markers’ images) and the 
signals’ local density (i.e., between the pixel values in the two markers’ DDMs) to assess 
to what extent density and intensity are comparable descriptors of colocalization. The sig-
nals’ intensity correlation (and MOC) is calculated in three increasingly narrowed do-
mains: the entire image, the co-occurrence region and the co-density region. As expected, 
the first narrowing, from the entire image to the co-occurrence region, always decreases 
the correlation coefficients value, excluding the random colocalization of the background 
(data not shown). M1 and M2 coefficients are calculated for signals’ intensity with respect 



Sensors 2021, 21, 6385 6 of 18 
 

 

to both the co-occurrence and the co-density regions, according to equations (3) and (4) of 
Appendix A, where the “colocalizing” pixels at the numerators are the co-occurring and 
the co-dense pixels, respectively. The signals’ density correlation and co-occurrence are 
calculated only for the co-occurrence region. Indeed, density computation is theoretically 
impossible before the co-occurrence region definition, whilst inside the co-density region, 
the coefficients values would be biased by the density-based nature of the refinement itself 
(i.e., all coefficients value would be set to 1). 

In addition, we also compare our cDDM-based method to binary erosion for the re-
striction of the co-occurrence region, using 4-connected and 8(full)-connected kernels. How-
ever, considering full-connection for comparison is probably fairer, since cDDMs also ex-
plore full connectivity. The comparison regards the number of pixels and objects in the 
masks, as well as the correlation coefficients (ρ and ρs) value, before and after pixel re-
moving by erosion and pixel selection by cDDMs. 

More benefits and the effectiveness of cDDMs are then discussed in three examples. 

3. Results and Discussion 
3.1. Functional Implication of cDDMs 

Colocalization can be defined as the functional and non-spurious co-presence of mol-
ecules, most commonly at the single-pixel level. While co-presence can be easily assessed, 
its functionality must be inferred by other measures, such as signal correlation. However, 
correlation between coexistent signals does not prove, but only suggests, the presence of 
colocalization. Such a suggestion can be then corroborated by local co-density analysis 
that, working locally, improves the information of co-location and, being in an order rela-
tion with correlation coefficients, can serve to improve the specificity of colocalization 
analysis. The main functional implications of cDDMs are schematized in Figure 2. 

Colocalization is usually quantified by markers overlap and intensities in correlation 
coefficients within the co-occurrence region (Figure 2, ① and ②), defined by the inter-
section of the two markers (m1, m2) masks. cLDIs computation allows the region to be 
split into subregions of homogeneous co-density, each one consisting of the set of pixels 
at which LDIm1 − LDIm2 = n, where n is a specific cLDI value (Figure 2, ③). If we now 
compute the correlation coefficients (ρ and ρs) within each cLDI-defined subregion (Figure 
2, central scattergram), we can see that correlation between signals intensities increases as 
cLDI moves from the highest (in absolute terms, i.e., |cLDI| = 8) to the equi-density con-
dition (i.e., cLDI = 0). This proportionality confirms that cLDIs can serve as indicators of 
colocalization, just as ρ and ρs, at least when they hold. Then, cDDMs can be applied for a 
density-based refinement of colocalization quantification by correlation coefficients, 
namely, by restricting their computation from the co-occurrence region to the equi-density 
one (Figure 2, ④). Apparently, the same restriction of the computational domain could 
be obtained by a simply binary erosion. However, even under the additional assumption 
of negligible colocalization at the edge of the co-occurrence region, a refinement by ero-
sion would remove the outer pixels independently of their connection or the presence of 
colocalization. If this could produce a somewhat lightly divergent set of results when the 
co-occurrence region is dense (i.e., the edge pixels are a clear minority), the erosion would 
yield an increasingly invalid outcome as the border indentation of the co-occurrence re-
gion increases, or in the presence of small objects. Table 1 reports all of the results, from 
the initial whole co-occurrence mask to the final masks, achieved by erosions and cDDM, 
used to assess colocalization. Accordingly, the numbers of edge pixels are complementary 
(e.g., for NF200-FM the percentage of edge pixels is 34.65). 
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Figure 2. Functional implications of coDDM. Starting from a couple of marked images (m1 and m2), colocalization is 
usually quantified as a combination of markers overlap (by co-occurrence mask and Manders’ MOC, M1 and M2 coeffi-
cients computation, ①) and intensity correlation (primarily by ρ and ρs correlation coefficients, ②). By cLDIs computa-
tion, co-occurrence pixels can be further partitioned by their local co-density and resulting groups visualized in a pseudo-
color scattergram (③). When quantifying colocalization through markers’ intensity correlation, the analysis specificity 
can be increased by narrowing the computational domain from the co-occurrence to the equi-density region (i.e., made of 
pixels with cLDI = 0, ④). In addition, being based on density instead of intensity, cLDIs are more appropriate for estimat-
ing markers’ relative abundance(⑤). Finally, cDDM permits to preserve the spatiality of original images, additionally 
coding it with colors for the regional investigation of cLDI distribution (⑥). Details of presented scatterplot data in Sup-
plementary Figures S1A–C. 

Table 1. Comparison between binary erosion and co-density analysis in refining the correlation computation domain. 

MASKS NF200-FM SYP-VGLUT1 Lamp1-Ce6 

Co-occurrence
(before refinement)

Pixel nr (% 1) 1465036  (100) 9343 (100) 737 (100) 
Object nr (%) 19068  (100) 968 (100) 199 (100) 

ρ (ρs) 0.5535  (0.3760) 0.2406 (0.1286) 0.1666 (0.1656) 

Binary erosion 
refinement (4-conn) 2

Pixel nr (%) 957332  (65.35) 3011 (32.23) 88 (11.94) 
Object nr (%)

ρ (ρs) 
11244 (58.97) 244(25.21) 24(12.06) 
0.6170 (0.4456) 0.3353(0.2112) 0.1479(0.1459) 

Binary erosion 
refinement (8-conn) 2

Pixel nr (%) 810579  (55.33) 1865 (19.96) 31 (4.21) 
Object nr (%) 10162  (53.29) 158 (16.32) 9(4.52) 

ρ (ρs) 0.6416  (0.4736) 0.3707 (0.2536) 0.3454 (0.3288) 
cDDM Pixel nr (%) 851042  (58.09) 2394 (25.62) 99 (13.43) 
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refinement 3 Object nr (%) 16300  (85.48) 378 (39.05) 46 (23.12) 
ρ (ρs) 0.6508  (0.5031) 0.4824 (0.4635) 0.5156 (0.4353) 

1 Percentages refer to the co-occurrence region (pixel or object number) before its refinement. 2 3 × 3 structuring element. 3 
3 × 3 search window. 

The co-occurrence region’s border indentation is quantifiable by the number of edge 
(border) pixels. Therefore, eroding with 4-connectivity makes the effects of indentation 
decrease from the NF200-FM dataset (35% of co-occurring pixels are on the region’s bor-
der) to SYP-VGLUT1 (68%) and Lamp1-Ce6 (88%), which shows the smallest objects. As 
expected, this trend still holds when eroding by considering full connectivity of pixels, as 
cDDM does. We can also see that the masks achieved with 4-conn erosion are the widest 
ones (i.e., having the highest number of pixels), while showing the worst correlations 
(hence, the worst colocalization performances) over all datasets. This definitely improves 
with 8-conn, although the mask achieved yields correlation values that still are poor for 
SYP-VGLUT1 and Lamp1-Ce6. On the contrary, the masks achieved by cDDMs yield the 
best correlation coefficients, the only mask to bring fair correlations in the two aforemen-
tioned datasets. Of course, the best result is achieved with Lamp1-Ce6 because, having 
small objects, the effect of keeping (co-dense) edge pixels is emphasized. In practice, 
cDDMs preserve those edge pixels, removed by the erosion without distinction, deserving 
to be semantically retained instead, since contributing to the measured correlation, inde-
pendently of their position within the co-occurrence region. Therefore, cDDMs end in pre-
serving a greater number of meaningful pixels and objects than erosion, thus representing 
a tool for the more precise mapping of stronger colocalization regions. 

Let us now deepen the analysis of the results using cDDMs. We have seen that, ex-
ploiting pixels’ density, cDDMs can also provide information about the degree of colocal-
ization (Figure 2, ⑤). The markers’ stoichiometric ratio of interaction is sometimes in-
ferred from the slope of the fitting line in the intensity scattergram [22]. However, such an 
approach riskily depends on the assumption of linearity between the markers’ intensities, 
that is not the rule when working with biological samples. Instead, cLDI reflects markers’ 
density and is then, by definition, a more appropriate indicator of the markers’ relative 
abundance, even when not relying on linearity assumptions. 

Although, in the previous case, we used the co-density information at a global level, 
to compare it to current colocalization methods, we can exploit the locality nature of 
cDDMs to open for new investigation paths at the regional level (Figure 2, ⑥). Guided, 
for instance, by anatomical or functional motivations, co-densities distributions can be in-
vestigated in specific image subregions or, in the opposite way around, specific co-densi-
ties can be addressed one at a time and their distribution singularly investigated at each 
local level. As attested, especially by the last two datasets, cDDMs can more generally 
open for the formulation of new biological considerations, as they include spatial quanti-
tative information (neglected by most coefficients), which are also locally computed, to 
provide a more detailed and comprehensive overview of the investigated system. 

Finally, cDDMs borrow all of the advantages of DDMs: first, the capability to provide 
a more accurate estimation of molecules’ position and an increased robustness to resolu-
tion variations based on DDMs’ local density analysis [26]; second, cDDMs are easy and 
fast to build and apply to any study, independently of the specific resolution involved. 

3.2. cDDMs Disclose Information about the Degree of Colocalization 
The second analyzed dataset refers to a study of in vitro characterization of a drug 

delivery system, in which the authors verify the compartmentalization of the developed 
nanoparticles (PTX-Ce6@kerag) into late endosomes (marked by Lamp-1 staining) [29] 
(Figure 3a, top). 
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Figure 3. cDDM discloses information about the degree of colocalization. (a) Top: Exemplificative immunofluorescence 
(IF) images of MG-63 cells exposed to PTX-Ce6@kerag nanoparticles, marked against late endosomes (Lamp-1), with Ce6 
(NPs), or both (fusion). Middle: Lamp-1 and Ce6 signals’ binary masks (BW), whose combination produce the co-occur-
rence map (cOM). Bottom: Lamp-1 and Ce6 DDMs and cDDM. (b) Bar graph of co-occurrence region partitioning by co-
density, showing a prevalence of negative cLDI values that indicate NPs as generally denser than late endosomes. 

We find that 19% of Ce6 signal overlaps with 17% of the Lamp-1 signal, with com-
patible MOC of 0.16 and ρ of 0.17. Such low MOC and ρ values are explainable by the 
small and sparse nature of the marked structures, which can also explain the low correla-
tion values between markers’ local densities (Table 2, first and second columns). 

  



Sensors 2021, 21, 6385 10 of 18 
 

 

Table 2. Comparison between Lamp-1 and PTX-Ce6@kerag intensity and local density colocalization 
analysis, before and after refinement for local co-density. 

 Lamp1-Ce6 

 Co-Occurrence Region 
(n * = 737) 

Co-Density Region 
(n * = 99) 

 Intensity Density Intensity 
ρ 0.1666 0.1278 0.5156 
ρs 0.1656 0.1270 0.4353 

MOC 0.1564 0.1669 0.9059 
M1 0.1852 0.1662 0.0246 
M2 0.1712 0.1958 0.0275 

* n: sample size, or number of considered pixels. 

However, the fact that the co-density-based refinement increases the correlation co-
efficients values while decreasing the area of investigation (and consequently M1 and M2′s 
value) hints at the capability of our method to selectively retain the colocalization between 
signals, more so than with false positives. 

The cOM (Figure 3a) indicates the presence of signals overlap spots (Figure 3a, red 
spots in cOM magnification) enclosed in single-marker spots (Figure 3a, blue and yellow 
regions in cOM magnification), suggestive of NPs’ internalization into late endosomes. 
The cDDM (Figure 3a) further separates co-occurring pixels by cLDI, reporting co-densi-
ties dispersed across the cLDI range, with 11 out of 16 cLDIs capturing at least 5% of co-
occurring pixels and only 13% of co-occurring pixels being also equally dense (i.e., cLDI = 
0, Figure 3b). The similarity of all coefficients’ values between the first and second col-
umns of Table 2 indicates the local density as being an indicator of colocalization, at least 
as valid as pixel intensity. Restricting correlation analysis to pixels with cLDI = 0 strongly 
increases ρ and ρs values (Table 2, third column), suggesting the existence of a real, alt-
hough spatially limited, colocalization. Its detection by correlation coefficients is initially 
weakened by the scarcity of marked structures within the co-occurrence region, but sub-
sequently strengthened by coDDM-driven increase in analysis specificity. Moreover, co-
density analysis reveals that Ce6 signal tends to be locally denser than Lamp-1′s, as at-
tested by the prevalence of negative values in the cDDM (Figure 3b). This last finding, in 
agreement with expectedly denser NPs due to their nanoformulation [28], also suggests 
that NPs’ internalization into late endosomes could occur at a ratio higher than 1:1, with 
many NPs entering the same endosomes at once. On one hand, this is positive for the 
pharmacokinetic-improving function of the developed system, but on the other, it opens 
up to the possibility that a different nanoformulation, producing less dense NPs, could 
result in better colocalization values and NPs internalization. 

In summary, the local co-density analysis here improves colocalization quantification 
under different aspects. First, it advances the intensity correlation analysis, identifying the 
subregions where a stronger colocalization is likely to occur. Second, it provides indica-
tion about the degree of colocalization (here, the degree of internalization) that, in this 
case, is suggested to also occur at ratios different from 1:1. Finally, the cDDM also allows 
the formulation of new biological hypotheses, whose verification could lead to improve-
ments in the developed drug delivery system. 

3.3. cDDMs Open to The Formulation of New Biological Considerations 
The third dataset analyzed concerns the assessment of co-distribution of axons, vis-

ualized by NF-200 immunostaining (red), and the surrounding myelin sheaths, visualized 
by Fluomyelin (green) in rat spinal cord (Figure 4a, top). 
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Figure 4. cDDM opens to the formulation of new biological considerations. (a) Top: Exemplificative immunofluorescence 
(IF) images of rats’ spinal cord, marked against the axonal (NF200), the myelin (FM) components of the cord, or both 
(fusion). Middle: NF200 and FM signal binary masks (BW), whose combination produce the co-occurrence map (cOM). 
Bottom: NF200 and FM DDMs and cDDM. (b) Scattergram of NF200 and FM signals intensity color-coded by cLDI, show-
ing a clear prevalence of equi-density pixels (grey, cLDI = 0). (c) The line plot reports the cLDI values underlying the 
horizontal red arrow (x) inside the “motor pathway” magnification. The cLDI medio-lateral distribution is shown in func-
tion of the pixel distance (d, yellow line) from the dorsal median sulcus (DMS, white line), highlighting a progressive 
myelin thinning from spinal cord center to periphery. 

Both ascending and descending sensory and motor pathways run in the spinal cord 
and the quantitative evaluation of respective distribution in low-power micrographs 
would permit a rapid quantitative evaluation in physiological and pathological condi-
tions, for example, after spinal cord injury. The cOM (Figure 4a) well presents a dorsoven-
tral pattern, reasonably reflecting the distribution of sensory versus motor pathways. In 
fact, ascending sensory paths, localized in the dorsal funiculus and the external part of the 
lateral funiculus, reveal a different signals’ co-density compared to the other areas of the 
white matter, occupied by descending motor paths (Figure 4a, cOM, the two magnifica-
tions). Motor and sensory pathways are quite different under many aspects, such as ax-
onal density, myelin sheaths thickness and percentage of unmyelinated fibers [34]. In par-
ticular, axonal density and myelin sheath thickness are lowered in sensory paths. The 
cDDM (Figure 4a) further investigates the co-occurrence region, in which the intensity 
correlation is quite fair but the overlap is suspiciously high (ρ = 0.55, MOC = 0.57, Table 3, 
first column). 
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Table 3. Comparison between NF200 and FM intensity and local density colocalization analysis, 
before and after refinement for local co-density. 

 NF200-FM 

 Co-Occurrence Region 
(n * = 1,465,036) 

Co-Density Region 
(n * = 851,042) 

 Intensity Density Intensity 
ρ 0.5535 0.2064 0.6508 
ρs 0.3760 0.2520 0.5031 

MOC 0.5741 0.7221 0.9782 
M1 0.4909 0.5060 0.2983 
M2 0.6772 0.6601 0.4212 

* n: sample size, or number of considered co-occurring pixels. 

Such a MOC value could be read as an artifact of the offsets that seem to characterize 
the FM signal (shifted up, scatterplot Figure 4b), that have been proved to positively affect 
the MOC, especially when a scarce correlation between the intensities is found [30]. In this 
sense, a less biased measure of co-occurrence can be derived from the cOM and the M1 
and M2 coefficients. Most probably, these results Table 3, first and second columns) can 
be interpreted as an artifact of image resolution, which is not able to fully capture the 
concentric nature of the myelin signal, surrounding the axon, without overlapping. In any 
case, these results confirm the outcome of cDDM already seen in Lamp1-Ce6, where a 
reduction of the signals’ co-occurrence is coupled with a marked increase in correlation 
values (ρ and especially ρs value, Table 3, third column). In fact, the resolution problem 
seems to be alleviated by our approach, indeed reducing the signals’ overlap, quantified 
by M1 and M2 of about 40%. The increase in correlation coefficients also indicates that 
markers intensities should not be assumed a priori to linearly correlate, according to the 
functional heterogeneity of axons’ and myelin’s distribution in the tissue. Even though 
most of the co-occurring pixels are also equally dense (58%, cLDI = 0, Figure 4b), a remark-
able prevalence of positive values in cDDM indicates axons’ tendency to be denser than 
myelin, agreeing with the reduced myelin sheaths thickness observable for some path-
ways. Indeed, a lower myelin thickness reasonably reflects a lower local density of FM, 
but not of NF200 signal, therefore bringing higher cLDI values and decorrelating the two 
markers’ density (Table 3, second column). Moreover, by locally analyzing cDDM, we can 
see that the local density pattern depends on the nature of the anatomical pathway (Figure 
4a, cDDM left magnification), specifically being enriched in low values (hence, in myelin) 
in the proximity of the dorsal median sulcus (DMS) and in high values (hence, in less 
myelinated axons) away from it (Figure 4c, line plot of the pixel values underlying the red 
line in cDDM motor pathway magnification). In conclusion, in addition to also exempli-
fying its applicability at the tissue level, here, the cDDM provides new biological infor-
mation, revealing and mapping the spatial heterogeneity of the myelination pattern, 
which could not be derived from the original image. This makes the local co-density an 
effective indicator of the local degree of myelination and the cDDM a possible discrimi-
nator of neuronal pathways. 

3.4. GUI for cDDMs Creation 
To allow any user to work with coDDMs, here, we introduce coDDMaker, an up-

graded version of DDMaker, a software endowed with a user-friendly GUI, created with 
MATLAB® App Designer [26]. coDDMaker was conceived for the guided analysis of the 
distributions and co-distribution of marker pairs. Starting from RGB, greyscale or directly 
binary images and based on customed search window size, the software builds the mark-
ers’ DDMs, cDDM and cOM and tabulates their numerical content. With coDDMaker, we 
also introduce a module for the background correction of non-binary input images [35] 
and a module for their local segmentation to also be used as tools for image denoising. A 
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detailed description of coDDMaker functionalities is provided in Appendix B. The soft-
ware completes the colocalization analysis of a couple of images under standard setting 
(i.e., global image segmentation and WS = 3) in less than 30 s on entry-level computers, 
although the total elapsed time strongly depend on different factors (e.g., the size of the 
objects to be segmented), as exemplified in Supplementary Table S2. As much as 
DDMaker, or even more so, coDDMaker could serve as a checkpoint for long-lasting ex-
periments, follow-up and large-scale studies, that can be monitored on-line and adjusted 
on the basis of the software feedbacks, therefore, optimizing time and costs. coDDMaker 
is available as a public open-source software written in MATLAB® and as a 64-bit stand-
alone application (https://sourceforge.net/projects/coddmaker/ accessed on 10 September 
2021). 

4. Conclusions 
Image colocalization is commonly assessed by a combination of co-occurrence and 

correlation. However, all current methods exploiting pixel intensities neglect information 
regarding pixel interconnections that, if considered, could permit the enforcement of col-
ocalization information. In this perspective, we introduce the co-density distribution map, 
a novel tool for improving the actual colocalization analysis framework in biomedical im-
ages. Given two imaged markers and, having built their density distribution maps, the 
cDDM uniquely describes the distribution of the signals’ local densities, in terms of rela-
tive position and abundance of marked structures. When imaging objects above the pixel 
resolution, the cDDM also becomes a powerful indicator of colocalization, which can iden-
tify the image regions at which colocalization is stronger, adding reliability to the correla-
tion coefficients normally employed. The cDDM also provides information about the de-
gree of colocalization, which can complement and validate quantitation by other methods. 
Most importantly, cDDM’s information is, altogether, qualitative, quantitative and local, 
making it a powerful tool for the fast and comprehensive surveyance of imaged systems. 
Consequently, it can open the door to new biological considerations, both at the global 
and the regional level. Working locally, DDMs (and cDDMs consequently) can increase 
the confidence of colocalization when this is not achievable by increasing the acquisition 
resolution, thus enhancing the information regarding distributions. Notably, our maps 
can be applied to any resolution study. In addition, being easy to build, the cDDM can 
benefit routine, large-scale and follow-up experiments by providing a tool for near real-
time monitoring to be used for the adjustment and optimization of experiments. In prac-
tice, the cDDM we propose represents a fundamental tool to be integrated into each colo-
calization analysis framework, whether it is based on intensity correlation or not, to be 
used synergically with correlation analysis by masking the original images before com-
puting the different coefficients. Even though it provides only an indication and not a 
direct measure of the degree of colocalization and, at present, it only works for the colo-
calization of two signals, the cDDM can be used to answer a variety of biological questions 
involving protein–protein interactions or co-compartmentalization. As a future research 
direction, we are working on a stand-alone tool capable of providing a new indicator of 
colocalization merging the information from pixel intensity and density. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/s21196385/s1, Table S1: Comparison between SYP and VGLUT1 intensity and local den-
sity colocalization analysis, before and after refinement for local co-density, Figure S1A: Scatterplots 
of co-occurrence region partitioning by equi-density, Figure S1B: Scatterplots of co-occurrence re-
gion partitioning by cLDI sign, Figure S1C: Scatterplots of co-occurrence region partitioning by cLDI 
value, Table S2: coDDMaker time performance evaluation, Table S3: Abbreviations. 
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Appendix A 
Appendix A.1. Correlation and Co-Occurrence Coefficients 
Appendix A.1.1. Pearson’s Correlation Coefficient 

The Pearson’s correlation coefficient (ρ, r, or PCC), is defined as the quotient of co-
variance and standard deviation between two variables: ρ = ∑ (x୧ − xത) ∗ ∑ (y୧ − yത)୬୧୬୧ට∑ (x୧ − xത)୬୧ ଶ ∗ ∑ (y୧ − yത)୬୧ ଶ (A1)

When these two variables (x and y) describe the pixel intensity of two probes’ signals 
imaged in the same domain (i.e., the signals’ co-occurrence region, composed of n pixels), 
Equation (A1) can be used to quantify the extent of linear association between the signals 
intensities, as a measure of probes colocalization [6,21]. Many reviews discuss the coeffi-
cient history [36], meaning [15,36] and implications for image colocalization [4,8,13,24,30]. 

Appendix A.1.2. Spearman’s Correlation Coefficient 
The Spearman correlation coefficient (ρs, rs or SRCC) is defined as the Pearson’s cor-

relation coefficient between the rank variables [29] and it is then computed simply by re-
placing x and y intensity values with intensity ranks of values in Equation (A1). By work-
ing on ranks, ρs assesses how well the relationship between two variables can be described 
using a monotonic function, disregarding any assumption of linearity [37]. 

Appendix A.1.3. Mander’s Coefficients 
In 1993 Manders introduced the overlap coefficient to supply the lack of interpreta-

bility for Pearson’s coefficients negative values [6]: MOC = ∑ x୧ ∗ ∑ y୧୬୧୬୧ට∑ (x୧)୬୧ ଶ ∗ ∑ (y୧)୬୧ ଶ (A2)

By simply removing the average subtraction from the intensity values, the coefficient 
is claimed to become “insensitive to differences in signal intensities between the compo-
nents of an imaged caused by different labelling with fluorochromes, photo-bleaching, or 
different settings of the amplifiers”. However, to increase the coefficient interpretability, 
Manders further introduces the M1 and M2 coefficients: Mଵ = ∑ ୶౟,ౙ౥ౢ౥ౙ౤౟ ∑ ୶౟౤౟    ൜x୧,ୡ୭୪୭ୡ = x୧, if y୧ > 0x୧,ୡ୭୪୭ୡ = 0, if y୧ = 0  (A3)Mଶ = ∑ ୷౟,ౙ౥ౢ౥ౙ౤౟ ∑ ୷౟౤౟     ൜y୧,ୡ୭୪୭ୡ = y୧, if x୧ > 0y୧,ୡ୭୪୭ୡ = 0, if x୧ = 0  (A4)
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M1 and M2 separate the fluorophores contribution to colocalization, by calculating for 
each fluorophore the fraction of the total intensity that co-occurs. 
Manders’ M1 and M2 coefficients have since then been widely used to quantify signals co-
occurrence in intensity images. However, doubts on the suitability of the MOC coefficient 
to the quantification of unbiased co-occurrence have been casted [30] and its use along 
with M1 and M2 coefficients is currently a topic under heavy discussion [4,31–33]. 

Appendix B 
coDDMaker: GUI Description 
To enable users to build customizable DDMs and cDDMs, we realized coDDMaker (Figure 
A1), a software program endowed with a user-friendly GUI created with MATLAB® App 
Designer. 

 
Figure A1. Main GUI of coDDMaker. The main window is divided into five sections: (1) Input: to select the input images’ 
folders; (2) Segmentation: to select the thresholding method, its locality of application and to eventually perform back-
ground correction before threshold calculation and image binarization; (3) DDM: to select the size of the search window 
for local density analysis and, to allow user creating and binarizing DDMs after setting the colorbar for pseudo-color 
DDMs visualization and the percentile for DDMs thresholding; (4) cDDM: to allow user creating and binarizing cDDMs 
after setting, the colorbar for pseudo-color cDDMs visualization and the tolerance for equi-density region segmentation; 
(5) Output: to visualize and save intermediates and outputs. From left to right: markers binary masks, cOM, pseudo-color 
DDMs, pseudo-color cDDM. 
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The software was conceived as an upgrade of the DDMaker software [26] and permits 
the performance of a density-including colocalization analysis of two markers’ co-distri-
bution. As before, the software does not require any training or expertise before use. Pre-
serving the original design, we added new modules for: (1) background correction for 
uneven illumination [35], (2) local image segmentation, (3) cDDM and cOM building and 
(4) saving of all numerical and visual outputs of the analysis for further investigation. 

First, the user is required to select the two folders (i.e., one for each marker to be 
analyzed) where the input images to be processed are located. Images can either be RGB 
color, grey level or binary, in the MATLAB-supported formats [38]. The user can binarize 
RGB and grey level images by choosing among ISODATA or Otsu thresholding method. 
With coDDMaker, the user can now also decide to apply the thresholding algorithm lo-
cally, by specifying the locality dimension. The Triangle method is also supplied for global 
image thresholding, where it can serve outliers removal in heavy-tailed histograms. In 
addition, images can now be pre-processed for the correction of uneven illumination that 
may result from vignetting distortion, inaccurate image acquisition or noise [35]. Binary 
masks, resulting from thresholding or already provided by the user, serve as the input for 
building the DDMs, cDDM and cOM. Local density analysis is performed using a default 
search window of 3 × 3 pixels, chosen assuming that the target structures of interest in the 
images are of few pixels, thus enabling the detection of small aggregation events and sin-
gle particles as well. However, users can customize the search window size, besides the 
color bar for maps visualization. The resulting DDMs can be binarized by percentile 
thresholding, while the equi-density region, identified in the cDDM by cLDI = 0, can be 
binarized by setting a co-density tolerance (e.g., a tolerance of two identifies as co-dense 
pixels with cLDI ranging from 0 − 2 to 0 + 2). To help the user in finding the best parameter 
setting for its analysis, coDDMaker also displays the last binary mask for each marker and 
the derived DDMs, cDDM and cOM. When satisfied with the setting, the user can save all 
the intermediate and final outputs of the analysis, which include all the generated images 
and maps and the numerical data associated to DDMs and cDDMs. The images are saved 
in uncompressed TIFF format, while other analyses’ outputs are saved as portable csv and 
excel files. A detailed explanation of coDDMaker utilization can be found in the software 
documentation (https://sourceforge.net/projects/coddmaker/ accessed on 10 September 
2021). 
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