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Abstract: Recently, deep convolutional neural networks (CNN) with inception modules have at-
tracted much attention due to their excellent performances on diverse domains. Nevertheless, the
basic CNN can only capture a univariate feature, which is essentially linear. It leads to a weak ability
in feature expression, further resulting in insufficient feature mining. In view of this issue, researchers
incessantly deepened the network, bringing parameter redundancy and model over-fitting. Hence,
whether we can employ this efficient deep neural network architecture to improve CNN and enhance
the capacity of image recognition task still remains unknown. In this paper, we introduce spike-and-
slab units to the modified inception module, enabling our model to capture dual latent variables and
the average and covariance information. This operation further enhances the robustness of our model
to variations of image intensity without increasing the model parameters. The results of several
tasks demonstrated that dual variable operations can be well-integrated into inception modules, and
excellent results have been achieved.

Keywords: convolutional neural networks; inception module; spike-and-slab units; dual variable operations

1. Introduction

The convolution neural network (CNN) significantly enhances the ability of image
recognition by simulating the human brain. Traditional methods that mainly rely on
artificial features result in a weak capacity to learn advanced feature information from
the image. In contrast, CNN owns a powerful expression and generalization ability in
analyzing and interpreting data. How to robustly learn effective representations from
complex images of different sizes still remains unsolved. The research of image recognition
based on CNN can significantly facilitate the development of artificial intelligence (AI)
technology.

GoogLeNets [1], consisting of multiple inception modules, are typical and successful
CNN in diverse applications [2–4]. It can generally be regarded as the initial tendency
of the increasing width in the CNN. On the basis of the initial version, several well-
known variants of the inception module soon appeared, such as inceptionv2/v3 [5] and
inceptionv4 [6]. The above outcomes force insight into deep discriminative models. The
question is whether we can improve the inception module to strengthen the capacity in the
image recognition task, which has a wide prevalence in computer vision [7–9].

As a basic component for deep belief network (DBN) constructing, the restricted
Boltzmann machine (RBM) has attracted much attention [10]. The capacity of the RBM
will greatly affect the ability of deep probabilistic graphical models. How to improve
their ability of representation learning has been studied extensively. The adoption of
auxiliary variables can strengthen its ability to a certain extent, such as ssRBM [11–13]. In
particular, the transition from RBM to ssRBM is like a transition from a conventional CNN
to “Network in Network” in a deep discriminative model. Regarding further studying,
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how to utilize the mechanism of the transition from RBM to ssRBM for the modification of
CNN models becomes a meaningful problem to be solved.

The ssRBM is characterized by the spike-and-slab units associated with each neuron
in the hidden units. The slab variable is a real-valued vector obeying Gaussian distribution,
while the spike variable is a binary variable obeying Binomial distribution. This strategy is
efficient in capturing covariance information in image patches. This gives us inspiration
to explore the application in CNN structures. In this paper, we introduce the spike-
and-slab neurons to the modified inception module motivated by the operation in the
ssRBM. In detail, we induced an element multiplication operation between the slab units
and spike units in the convolutional layer, enabling our model to capture the average
and covariance information simultaneously, further enhancing the capacity in learning
hierarchical representations in the receptive field.

In this paper, we present two variants based on spike-and-slab variables with the in-
ception module. First, we apply the spike-and-slab variables into a naive inception module
referred to as origin ssIncep module. Secondly, we further explore the ssIncep module with
dimensionality reduction, resulting in a novel block referred to as the proposed ssIncep
module. It can also serve as the basic block for building deeper models. Finally, we built a
different slab-and-spike inception network for diverse tasks by using the proposed ssIncep
module, proving its superiority over the current-state-of-the-art models.

The remaining parts are organized as follows. Section 2 reviews the related work.
Section 3 presents the details of our innovations. Section 4 is the experiments part. Further
discussions are provided in Section 5. Section 4 is the conclusion.

2. Related Works

Deep discriminative models have witnessed impressive progress in the improvement
of the model capacity and the applications in many domains in recent years. The major
contributions are forced on the CNN variants from two perspectives. We highly discuss
the related works associated with this aspect.

1. More powerful model capacity

One feasible approach to strengthening the capacity of the model is to increase the
model complexity via deepening the models. Since LeNet5 [14] achieved excellent conse-
quences in image recognition, researchers have proposed various prominent CNN models.
The typical and influential networks are AlexNet [15], VGG [16], GoogleNet [1], ResNet [17],
ShuffleNet [18], DenseNet [19] and SENet [20]. The network tends to be deeper for the
purpose of learning abstract representations. The CNN models have developed to be
particularly effective in image recognition. However, the basic module of existing CNNs
is designed to capture single variable features, which are essentially linear features. This
learning mechanism leads to a weak ability in feature expression, which further leads to
insufficient feature mining. Researchers have solved this defect by deepening the network.
The proposal of VGG proves that deepening the network is an effective means to improve
the ability of feature expression. However, a deeper network easily leads to gradient
dispersion, making the network not converge. When the number of layers is increased
to 20 or more, the effect will be worse. In addition, the deep networks lead to parameter
redundancy and overfitting, which leaves a great burden on training and reasoning. ResNet
is evaluated to be an efficient network in alleviating gradient disappearances by tersely
adding a shortcut edge during specific layers. However, the evaluation results showed that
the improvement of precision achieved by deepening the network is getting smaller and
smaller. All these efforts are aimed at increasing the structure of a model and obtaining a
more powerful capacity.

2. Fewer computing requirements

Another method is to greatly reduce the model parameters and make the model tend
to be lightweight. This greatly reduces the computing resources. The DenseNet similarly
introduces shortcut mechanisms into the network structure, enabling information to flow
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during adjoining and specific disconnected layers. Furthermore, the DenseNet excellently
reduces the scale of the model parameters by feature reusing and significantly alleviates the
gradient vanishing. ShuffleNet utilizes the mechanism of sparse connection. By limiting
the input of the convolution operation to each group, the computational burden of the
model is significantly reduced. SENet uses global information to selectively enhance the
beneficial feature channels and suppress useless feature channels, further improving the
ability of feature learning.

Although the above-referred works focused on promoting the ability of feature learn-
ing and optimizing network configuration, how to learn robust representation and hierar-
chical representation from complex images is still unsolved.

In this paper, we selected the inception module derived from GoogLeNet as the basic
structure for further modification. This scheme aimed at increasing the width of the net-
work module, allowing each layer to learn abundant features, such as texture features with
different directions and frequencies. The inception modules are closely related to grouping
and multiscale strategies. In the naive version, we can regard the inception module as
a special kind of multiscale learning. In the latter version of inception, the main contri-
bution is the introduction of a 1 × 1 convolution operation. Furthermore, we introduce
spike-and-slab variables into the inception module in order to capture the average and co-
variance information, promoting the performance of learning hierarchical representations
excellently. This scheme can significantly promote the quality of learning representations
while keeping the model parameters constant, thus maximizing the potential of the model
capability. The modified inception module is an excellent candidate as a building block for
developing more sophisticated models.

3. Materials and Methods
3.1. Motivations

Reviewing the relationship between the innovation process of the probabilistic graphi-
cal model and the discriminative model is conducive to understanding the motivation of
this paper. First, we discuss the relationship between the RBM and single-layer perceptron,
as shown in Figure 1. The RBM is an undirected graph that owns a powerful modeling
ability for any probability distribution. It is easy to infer given the input through forward
propagation and updating the trainable parameters, they need negative samples through
backward propagation. Considering the single-layer perceptron, it is a simple forward
network that is easy to infer by forward propagation and updating the trainable parameters
through backward propagation
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When tracking with two-dimension images, the fully connected models such as RBM
and single-layer perceptron are faced with huge parameter increments. This brings trouble
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in the modeling data. Then, a convolution operation is applied to the forward network. The
basis of the CNNs is a convolutional layer that consists of diverse kernels and slides these
kernels with a fixed stride to perform element-wise multiplication between the pixels and
trainable kernel parameters. Motivated by this strategy, Lee [21] proposed the convolution
restricted Boltzmann machine (CRBM) through inserting convolution operations into
conventional RBM. As shown in Figure 2, this indicates the close relationship between the
CRBM layer and convolution layer.
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Figure 2. The relationship between the CRBM and convolutional layer. 

3.2. ssRBM Reviewed 
A typical RBM is a Markov random field with an undirected graph structure. In par-

ticular, the model consists of two layers with different characteristics. The visible layer 
owns binary variables representing the data, while the hidden layer consists of potential 
binary variables. For the purpose of modeling covariance structures existing in image 
patches, the ssRBM adopted Gaussian distribution in the units connected with binary 
spike variables and induced element-wise multiplication between two distinct variables 
[16]. The structure of the ssRBM is shown in Figure 3. 
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Figure 2. The relationship between the CRBM and convolutional layer.

Generally, the traditional convolution layer has drawbacks and is incapable of model-
ing covariance patterns. Lin viewed the traditional convolutional layer as a generalized
linear model (GLM) [22], resulting in the poor performance of nonlinearly separated data.
In addition, the traditional convolutional layer cannot model covariance patterns reflecting
the local stationary characteristics of each patch. In this case, ssRBM provides a pioneering
thought by introducing slab-and-spike units to a deep neural network. It inspires us to
modify the traditional convolution layer by combining a convolution operation with the
spike-and-slab units. After reviewing the relationships between the probabilistic graphical
models and the discriminative models, our motivation of this paper is clear to understand.
We attempt to create a more powerful discrimination model by combining inception models
with spike-and-slab units.

3.2. ssRBM Reviewed

A typical RBM is a Markov random field with an undirected graph structure. In
particular, the model consists of two layers with different characteristics. The visible layer
owns binary variables representing the data, while the hidden layer consists of potential
binary variables. For the purpose of modeling covariance structures existing in image
patches, the ssRBM adopted Gaussian distribution in the units connected with binary spike
variables and induced element-wise multiplication between two distinct variables [16].
The structure of the ssRBM is shown in Figure 3.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 19 
 

 

Figure 1. The relationship between the RBM and single-layer perceptron. 

When tracking with two-dimension images, the fully connected models such as RBM 
and single-layer perceptron are faced with huge parameter increments. This brings trou-
ble in the modeling data. Then, a convolution operation is applied to the forward network. 
The basis of the CNNs is a convolutional layer that consists of diverse kernels and slides 
these kernels with a fixed stride to perform element-wise multiplication between the pix-
els and trainable kernel parameters. Motivated by this strategy, Lee [21] proposed the 
convolution restricted Boltzmann machine (CRBM) through inserting convolution opera-
tions into conventional RBM. As shown in Figure 2, this indicates the close relationship 
between the CRBM layer and convolution layer. 

Generally, the traditional convolution layer has drawbacks and is incapable of mod-
eling covariance patterns. Lin viewed the traditional convolutional layer as a generalized 
linear model (GLM) [22], resulting in the poor performance of nonlinearly separated data. 
In addition, the traditional convolutional layer cannot model covariance patterns reflect-
ing the local stationary characteristics of each patch. In this case, ssRBM provides a pio-
neering thought by introducing slab-and-spike units to a deep neural network. It inspires 
us to modify the traditional convolution layer by combining a convolution operation with 
the spike-and-slab units. After reviewing the relationships between the probabilistic 
graphical models and the discriminative models, our motivation of this paper is clear to 
understand. We attempt to create a more powerful discrimination model by combining 
inception models with spike-and-slab units. 

V

k
ijh

k
aP

kw

vhN

vwN

whN

wwN

hhN

hwN

pwN
phN

1
11w

1
12w 1

13w

1
31w

1
21w 1

22w
1
23w
1
33w

1
32w

11
kw 12

kw 13
kw

31
kw
21
kw 22

kw 23
kw
33
kw32

kw

Θ

1
11h

11
kh

23v
31v 33v32v

11v
22v
12v

21v
13v

 
Figure 2. The relationship between the CRBM and convolutional layer. 

3.2. ssRBM Reviewed 
A typical RBM is a Markov random field with an undirected graph structure. In par-

ticular, the model consists of two layers with different characteristics. The visible layer 
owns binary variables representing the data, while the hidden layer consists of potential 
binary variables. For the purpose of modeling covariance structures existing in image 
patches, the ssRBM adopted Gaussian distribution in the units connected with binary 
spike variables and induced element-wise multiplication between two distinct variables 
[16]. The structure of the ssRBM is shown in Figure 3. 

 
Figure 3. The structure of the ssRBM. Figure 3. The structure of the ssRBM.



Sensors 2021, 21, 6382 5 of 19

The study of the probability graph model can evolve into an exploration of the energy
function. Therefore, we simply provided the energy function of ssRBM, as shown in
Equation (1).

E(v, s, h) =
1
2

vTΛv−
N

∑
j=1

vTWjsjhj +
1
2

N

∑
j=1

sjajsj −
N

∑
j=1

hjbj (1)

where v = [v1, v2, . . . , vNv ]
T ∈ RNv is a vector with Nv dimensions, Λ is a diagonal matrix

for penalizing large values, N depicts the number of neurons in the hidden layer, Wj refers
to the j−th matrix weighting connection between the input layer and hidden layer with
a size of Nv × N, s = [s1, s2, . . . , sN ]

T ∈ RN and h = [h1, h2, . . . , hN ]
T ∈ {0, 1}N represent

the slab variables and spike variables, respectively, and the aj is a real value penalizing a
large value on sj.

Through the reasoning of the energy function above, we can define the probability
distribution of the ssRBM given v, h and s. The detailed formulations are shown in
Equations (2)–(4).

p(h|v) =
N

∏
j=1

p(hi = 1|v) =
N

∏
j=1

σ(
1
2

vTWja−1
j Wj

Tv + bj) (2)

p(s|v, h) =
N

∏
j=1

p(sj|v, h) =
N

∏
j=1

N(1
2

hja−1
j Wj

Tv + bj, a−1
j ) (3)

p(v|s, h) =
Nv

∏
i=1

p(vi|s, h) =
Nv

∏
i=1

N(Λ−1
N

∑
i=1

Wisihi, Λ−1
i ) (4)

where N(a, b) represent the Gaussian distribution with a as the mean value and b as the
variance value. Furthermore, we can infer the conditional distribution p(v|h) illustrated as
follows.

p(v|h) = N(0, (Λ−
N

∑
i=1

Wisia−1
i WT

i )

−1

) (5)

Equation (5) depicts the conditional matrix Gaussian distribution of v, while h is given.
From this, we can infer that the ssRBM owns an ability to capture the covariance structure
between observations.

Through the utilizing of dual latent variables, the ssRBM demonstrates a wondrous
performance in data representation learning. In References [11–13], several vision tasks
further proved the excellent robustness of the ssRBM to variations in the image intensity.

3.3. The Spike-and-Slab Inception Network Description

It retains great potential in promoting the robustness and the feature learning quality
of the CNN model. In this paper, we proposed an improved inception module to explore
the strategy of constructing an optimal local sparse architecture of a CNN by utilizing the
available dense modules.

Our goal is to build an improved neuron network, supplemented by the available
convolution blocks. Our assignment was to devise an optimal local module and apply
it to construct an integrated CNN structure, further preventing overfitting and reducing
the use of computing resources. Arora [23] proposed a layer-by-layer architecture, which
pays attention to the statistical correlation in the last layer and then performs clustering
operations to obtain unit clusters with large correlations. Up to now, this structure has been
regarded as a powerful module for building a CNN. This operation constructs the neurons
of the next layer by connecting with the neurons of the previous layer. Assuming that the
neurons in the previous layer correspond to the relevant areas of the original image, these
neurons are regarded as filter banks. In the shallow layers, the related neurons tend to
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gather in partial areas. In this case, we can obtain a number of groups gathered in a unitary
region, and then, we construct a 1 × 1 convolution layer and connect it to the current layer
to cover them. Moreover, it can be inferred that, when the convolution is performed on
a larger piece, a plurality of groups with larger spatial expansion characteristics would
be covered, further leading to a decrease in the number of patches over larger and larger
regions. To avoid patch alignment problems, the filter size of typical inception architecture
is set to 1 × 1, 3 × 3 and 5 × 5, as shown in Figure 4.
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Figure 4. The naive version of the inception module.

The above design methodology is considered to be more convenient than necessary. It
indicates that the advised structure is an association of all these layers, and the filter banks
of each layer are finally concatenated into a single output vector, which further constitutes
the input of the continuous module. In addition, the pooling mechanism has been proved
to be a necessary operation for maintaining the effective performance of CNNs. It should be
efficacious to design an alternative parallel channel with a pooling operation and apply it to
each module. In view of the fact that “inception modules” are stacked and connected in a series,
the output-related statistics of each module will definitely change, which leads to a decrease of
the spatial concentration, which is mainly due to representations of higher abstractions learned
by higher layers. This suggests an increase in the ratio of 3 × 3 and 5 × 5 convolutions while
focusing on deeper layers. However, the naïve version of the inception module would face the
heavy burden of dealing with too many parameters due to the multichannel filters.

In Figure 5, it describes the inception module with dimension reduction, which
employs 1× 1 convolution to reduce the dimensionality wisely for the purpose of reducing
the demand of the computing resource. In our method, we adopted the inception module
with dimensionality reduction to assist our network.
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Furthermore, we also introduced transition mechanisms from the RBM to ssRBM
to improve our inception architecture. In order to characterize a convolution operation,
we considered binary variable spike units and real-valued slab units in the hidden layers.
We applied binary variables and real-valued units to the convolution kernel instead of
the original activation functions, such as ReLU and Sigmoid. Generally, the conventional
convolution operation is described in Equation (6):

Conv_out = g(y) = g

(
∑

i
(α ∗ wi) + bi

)
(6)

where α denotes the input of the current convolution layer, wi denotes the weight matrix
of kernel i, bk represents the bias variable, ∗ denotes the convolution operation and g
represents the nonlinear activation function, which could be ReLU or Sigmoid.

Here, we provide the operation process of a spike-and-slab operation based on conven-
tional convolution operation. Equation (7) depicts the acquirement of the binary variable
spike value represented by h_ f eature, where sigm represents a logical sigmoid.

h_ f eature = sigm

(
1
2 ∑

i
(α ∗ wi)·∑

i
(α ∗ wi) + bi

)
(7)

Thus, we can obtain a real-valued slab represented by s_ f eature, illustrated in Equation (8):

s_ f eature = ∑
i
(α ∗ wi)·h_ f eature (8)

Finally, the output of spike-and-slab convolution layer can be obtained through an
element multiplication operation between the slab units and spike units.

Figure 6 shows the graphic representation of the local structure enhanced by two
variables (h∗s) without dimension reduction. This operation greatly enhances the capability
of feature learning in image patches, enabling our model to capture the average and co-
variance information simultaneously. In this paper, our proposed spike-and-slab inception
network contains several modules of the type depicted in Figure 6 that are assisted by a
1∗1 convolution operation for dimensionality reduction, and the modules are stacked upon
each other in sequence. We stacked the spike-and-slab modules in the deeper layers, and
the shallower layers consisted of a spike-and-slab convolution layer and pooling operation.
It is worth noting that we designed the spike-and-slab inception network with different
structures for various version classification tasks, and the details of the specific network
configuration will be depicted in Section 4.

Moreover, the training of our proposed model might encounter an internal covariate
shift due to the output data characteristic of spike-and-slab units being hard to optimize.
Therefore, we introduced batch normalization into our module, which enabled us to adopt
higher learning rates and pay less attention to network initialization in the training process.
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4. Results

In this part, we mainly evaluate the advanced nature of our proposed spike-and-
slab inception network (ssIncep-Net) by conducting a series of experiments qualitatively
and quantitatively. Various kinds of representative datasets, including the fashion-mnist
dataset, ILSVRC2012 classification dataset, CIFAR-10 dataset, CIFAR-100 dataset, Caltech-
101 dataset and Caltech-256 dataset, were selected for model performance detection. The
experiments were specifically divided into two broad categories, of which the first part was
to validate the model performance through classification tasks on the dataset above, while
the other part explored the quality and robustness of the learned features in the variations
of input through the feature visualization exhibition.

Finally, our experiments were performed in the Ubuntu 16.04 system. In addition,
we adopted two GTX2080 GPUs to accelerate computing platforms, and our codes were
written by Pylearn3 based on Tensorflow [24].

4.1. Classification Tasks for Quantitatively Analysis
4.1.1. Caltech-101 and Caltech-256 Classification

Caltech-101 and Caltech-256 were adopted in this experiment to quantitatively in-
vestigate the superiority of our proposed method on the learning of hierarchical repre-
sentations. Caltech-101 is an authoritative public dataset that is mainly selected from the
Google Image Dataset. It is composed of 9146 object pictures belonging to 102 categories
(one background). Caltech-256 was evolved and enhanced by Caltech-101. Inconsistent
categories were manually removed. There are 30,607 images belonging to 257 image cat-
egories (one background) existing in the dataset, and each category contains more than
80 images. During our research, images of both datasets were resized to 200*200 resolution
before the training. It should be pointed out that, for Caltech-101, we randomly select
30 images for training in each class and up to 50 images for verification in each class, which
is consistent with the authoritative approach. In addition, we randomly select 60 images
for training and verification in each class at Caltech-256.

In this part, we propose our specific ssIncep-Net by improving and optimizing
the structure of Inception-V1 (GoogLeNet). The configuration of ssIncep-Net used for
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Caltech-101 and Caltech-256 classification is shown in Table 1. From Table 1, we can dis-
cover that the network is mainly composed of two convolution layers and seven spike-and-
slab inception blocks named ssinception 3a, ssinception 3b, ssinception 4a, ssinception 4b,
ssinception 4c, ssinception 5a and ssinception 5b, with the convolution layers assisted by a
dual variable mechanism and batch normalization.

Table 1. The configuration of ssIncep-Net used for Caltech-101 and Caltech-256 classification.

Layers Configuration for Each Layer

The First Convolutional Layer size of kernels (64,15,15) with a stride of 2

Pooling Layer size of pooling (3,3) with a stride of 2

The Second Convolutional Layer size of kernels (64,3,3) with a stride of 1

Pooling Layer size of pooling (3,3) with a stride of 2

The ssInception 3a block size of kernels (64,1,1), (128,3,3) and (32,5,5)
and size of pooling (3,3)

The ssInception 3b block size of kernels (128,1,1), (192,3,3) and (96,5,5)
and size of pooling (3,3)

Pooling Layer size of pooling (3,3) with a stride of 2

The ssInception 4a block size of kernels (192,1,1), (208,3,3) and (48,5,5)
and size of pooling(3,3)

The ssInception 4b block size of kernels (128,1,1), (192,3,3) and (96,5,5)
and size of pooling(3,3)

The ssInception 4c block size of kernels (246,1,1), (320,3,3) and (96,5,5)
and size of pooling(3,3)

Pooling Layer size of pooling (3,3) with a stride of 2

The ssInception 5a block size of kernels (128,1,1), (192,3,3) and (96,5,5)
and size of pooling(3,3)

The ssInception 5b block size of kernels (192,1,1), (256,3,3) and (128,5,5)
and size of pooling(3,3)

Pooling Layer size of pooling (3,3) with a stride of 2

Linear Layer 4096 units

Linear Layer 4096 units

softmax 102 or 257 units

The classification tasks in Caltch-101 and Caltech-256 were performed by ssIncep-Net
with the same specific structure and different hyperparameter. The details of the training
parameters are illustrated as follows. The batch sizes of the Caltch-101 and Caltech-256
recognition tasks were set to 24 and 32, respectively. We utilized momentum as the training
model optimizer with epochs of 300 for the whole network. The weight decay of Caltch-101
and Caltech-256 recognition tasks was 0.0001 and 0.0003, respectively. The learning rate of
both tasks was set to 0.001.

We evaluated the property of our proposed model compared with several baseline
methods. Specifically, Incep-Net and our ssIncep-Net share consistent structures, except
that Incep-Net employs a conventional convolution operation. Recognition accuracy of
the Caltech-101 and Caltech-256 is depicted in Tables 2 and 3, from which we can observe
that ssIncep-Net is superior to Incep-Net in the classification accuracy of both datasets,
indicating that ssIncep-Net owns a more effective ability in extracting abstract features
compared with Incep-Net. This can be explained by the particularity of our model in
capturing covariance features and learning hierarchical representations from the image
patch. Furthermore, several state-of-the-art methods were selected in experiments for the
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purpose of verifying the advancement of our method. The results showed that ssIncep-Net
performs better than general convolution networks.

Table 2. Recognition accuracy on the Caltech-101.

Method P. Li [25] Bo L [26] Li [27] Chao [28] Zeiler [29] IncepNet ssIncep-Net

Accuracy 78.46% 81.4% 83.0% 84.3% 86.5% 85.31% 88.67%

Table 3. Recognition accuracy on the Caltech-256.

Method Li [27] Lei [30] Zhou [31] Zheng [32] Zeiler [29] Incep-Net ssIncep-Net

Accuracy 51.9% 58.17% 65.1% 64.06% 72.7% 69.58% 74.82%

4.1.2. Classification on ILSVRC2012

In this part, we verify our proposed model by performing the classification tasks on
the ILSVRC2012 classification challenge dataset. The dataset involves the task of classifying
images from a dataset of 1000 classes in which 1.2 million images were used for training
and another 150 thousand images were used for validation and testing.

In our experiment, our ssIncep-Net is based on the standard Inception-V4. In view
of the huge scale owned by ILSVRC2012 and the tremendous requirement of computing
the resources, an efficient method has been adopted for facilitating the experiment and
convenient verification on our model. In general, ssIncep-Net can be regarded as a specific
structure that shares the same configuration network with Incep-Net, except that ssIncep-
Net is assisted by the dual variables mechanism. Therefore, we utilized the pretraining
model of Inception-V4 on ILSVRC2012, which is an open source on Github, and upgrade
Inception-V4 with a dual variable mechanism to build our specific ssIncep-Net. The
updated model shares the same parameters and structure with the original Inception-V4.
We performed training and validating on the two models. Furthermore, a fine-tuning
operation was also carried out in order to optimize the parameters of ssIncep-Net, making
it more suitable for a spike-and-slab operation in the convolution kernel. We randomly
selected 500 images per class from ILSVRC2012 for fine-tuning; all of them were resized to
224*224.

The Top-5 and Top-1 accuracies were adopted as the evaluation indicators, and the
results are shown in Table 4. It demonstrates that ssIncep-Net owns better performances
than the original Inception-V4 and achieved 1.05% and 0.37% improvement of Top-1 and
Top-5, respectively. It reveals the effective ability of ssIncep-Net in learning covariance
information and hierarchical representations in the image patches. Furthermore, several
competitive methods were selected in the experiment for the purpose of verifying the
advancement of our method. It is worth noting that we introduced SENet, which is one
of the advanced CNN models, achieving ILSVRC2017. We adopted SENet-154 for further
verification on the modern architecture. In detail, we introduced spike-and-slab units to
SENet-154 and verified the validity of the dual-variable mechanism in the new model.
Similar with the pretraining process conducted in ssIncep-Net, we acquired the pretraining
model of SENet-154 on Github and took it as the initialization parameters for SENet-154
with spike-and-slab units. Then, we fine-tuned the model using the methods described
above.

From Table 4, we can infer that SENet-154 with spike-and-slab is slightly superior
to the original SENet-154 and achieved 0.56% and 0.19% improvement of Top-1 and
Top-5, respectively. This further verified the superiority of SENet-154 with spike-and-slab,
demonstrating that the spike-and-slab mechanism and considering more about high-
dimensional robustness features. It is worth noting that the performance of SENet-154
is better than that of ssIncep-Net due to the inherent limitations of inception modules,
which are not effective compared with the squeeze-and-excitation blocks in SENet. In
conclusion, despite the fact that improvements of the error rates were subtle, it can still
prove the validity of the innovation in CNNs. Furthermore, our intention was to explore a
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new perspective to enhance the ability of CNNs and provide researchers with a new idea
to improve the latest models.

Table 4. Recognition error rates on ILSVRC2012.

Method
Error Rate (%)

Top-1 Top-5

Krizhevsky [15] 40.7 18.2
Sermanet [33] 35.74 14.18
Howard [34] 37.0 15.8

Zeiler [29] 37.5 16.0
Inception-V4 [6] 20.0 5.0

ssIncep-Net 18.95 4.63
SENet-154 [20] 18.68 4.47

SENet-154 with spike-and-slab 18.12 4.28

4.1.3. Classification on Fashion MNIST Variants

This part evaluates our proposed method for classification tasks in Fashion MNIST and
its variation datasets, further confirming the preponderance of ssIncep-Net quantitatively.
The Fashion MNIST dataset is a dataset containing 10 categories of fashion products, which
is composed of 60,000 training images and 10,000 test images. The resolution of each image
is 28 × 28. The raising of this dataset is to replace the original MNIST dataset, further
benchmarking the machine learning and relevant algorithms.

Further, we created three variants by corrupting the Fashion MNIST dataset in the
corresponding strategy of model verification. Our idea on variations generating was
deeply affected by Reference [35]. In detail, the dataset variations contain Fashion-mnist-
back, Fashion-mnist-rot-back and Fashion-mnist-back-rand, all of which are depicted in
Figure 7a–c and described as follows.
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Fashion-mnist-back: utilizing random black and white images as the background for
original Fashion MNIST data.

Fashion-mnist-rot-back: adding rotating operations with a random angle for Fashion-
mnist-back data.

Fashion-mnist-back-rand: adding random Gaussian noise as the background for
original Fashion MNIST data.

For each variant, 60,000 images were obtained, of which 46,000 samples were desig-
nated for training. Thus, we can conduct comprehensive experiments belonging to different
difficulty levels, arguing the excellent performance of our method persuasively.

In this task, the configuration of our particular ssIncep-Net is shown in Table 5. As a
baseline method, the Incep-Net shares the same structure with ssIncep-Net. Both Incep-Net
and ssIncep-Net are assisted with batch normalization. In addition, we built several models
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as related baseline methods and performed them in this task. The detailed framework and
network parameters of the baseline methods are described as follows:

Table 5. Configuration of ssIncep-Net for the classification of Fashion MNIST and its variants.

Layers Configuration for Each Layers

The First Convolutional Layer size of kernels (64,3,3) with a stride of 1

The Second Convolutional Layer size of kernels (128,3,3) with a stride of 1

Pooling Layer size of pooling (2,2) with a stride of 1

The ssInception 3a block size of kernels (64,1,1), (128,3,3) and (96,5,5)
and size of pooling (3,3)

The ssInception 3b block size of kernels (128,1,1), (192,3,3) and (96,5,5)
and size of pooling (3,3)

Pooling Layer size of pooling (3,3) with a stride of 2

The ssInception 4a block size of kernels (192,1,1), (208,3,3) and (48,5,5)
and size of pooling (3,3)

The ssInception 4b block size of kernels (128,1,1), (192,3,3) and (96,5,5)
and size of pooling (3,3)

The ssInception 4c block size of kernels (246,1,1), (320,3,3) and (96,5,5)
and size of pooling (3,3)

Pooling Layer size of pooling (2,2) with a stride of 1

Linear Layer 4096 units

Linear Layer 4096 units

softmax 10 units

DBN-3: We stacked four RBMs to construct a DBN model in which a Gaussian-Binary
RBM is utilized as the first layer for the purpose of capturing a continuous value in the
images while two binary RBMs are selected to construct the remaining two layers, with
512, 512 and 128 neurons existing in each layer to perform an excellent performance. In
addition, we concatenate a SoftMax layer to the last hidden layer to make a final prediction.
We applied a pretraining strategy to the DBN model, which can enable the model to
optimize the initial network parameter toward the optimum values. In order to overcome
the overfitting, we adopted a batch stochastic gradient descent to fine-tune the DBN-3 with
the assistance of L2 regularization. The specific architecture of DBN-3 keeps consistent
with the default in Reference [35].

GDBM-2: GDBM is proposed by Reference [36] based on DBM. In this paper, we
utilized a GDBM-2 model with the same hyperparameter setting as the model in Refer-
ence [36].

NIN: The structure of NIN adopted in this paper kept consistent with that adopted in
Reference [21] on the cifar-10 classification task. In addition, we utilized the specific setting
of the model parameters, which are open access and exist in the caffe model zoo.

ResNet-10: ResNet is a well-performed model in the domain of image classifica-
tion [17]. The application structure in this paper owned three basic blocks. Each block
consisted of 3 × 3 “same” convolutions, 3 × 3 “same” convolutions and 1 × 1 convolutions
followed by 2 × 2 max pooling.

Table 6 lists the recognition error rates of our methods compared with Incep-Net and
other state-of-the-art methods. We can reveal that ssIncep-Net surpassed the comparable
methods and achieved the best performance on the classification task of the Fashion-
MNIST variations. This indicates that our proposed method is more robust with the
different variations between the datasets. Summarizing the reasons, it is mainly due to
the mechanisms of the spike-and-slab variables adopted in our model. The innovation
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efficiently improves the performance of ssIncep-Net in learning hierarchical representations
existing in the variations.

Table 6. Recognition error rates of the Fashion-MNIST variants.

Method
Dataset

Fashion-MNIST-Back-Rand (%) Fashion-MNIST-Back (%) Fashion-MNIST-Rot-Back (%)

DBN-3 13.77 17.38 55.27
GDBM-2 12.46 19.24 58.33

NIN 10.79 16.83 48.71
ResNet-10 9.64 13.19 46.02
Incep-Net 7.93 12.50 41.83

ssIncep-Net 6.15 9.97 35.74

4.1.4. Classification Task on CIFAR-10 and CIFAR-100

In this part, we quantitatively evaluate the performance of ssIncep-Net using the
CIFAR-10 and CIFAR-100 datasets. The reason why we chose these datasets is that they
have proven to be more complex and involve various features compared with Fashion
MNIST, thus verifying our method more scientifically. The structures of the ssIncep-Net
and baseline Incep-Net applied in this section are the same as that in the classification task
of the Fashion MNIST variants. We also specified DBN-3 and ResNet-10 as the additional
baseline methods, and their detailed structures are shown above.

Table 7 describes the recognition error rates on CIFAR-10 and CIFAR-100, which
indicates that ssIncep-Net outperforms other methods on these two datasets. We can
conclude that ssIncep-Net is more effective in modeling abstract features and covariance
information.

Table 7. Recognition error rates on CIFAR-10 and CIFAR-100.

Method
Dataset

Cifar-10 Cifar-100

DBN-3 14.32 47.53
ResNet-10 9.36 42.46

HighwayNet [37] 10.84 32.40
Guoan Yang [38] 8.44 35.41
Benteng Ma [39] 10.68 33.23

Incep-Net 8.12 30.84
ssIncep-Net 5.91 28.60

4.2. Visualization Verification for Qualitatively Analysis
4.2.1. Learning Hierarchical Representations from Caltech-256

For further investigation, a visualized operation was adopted to qualitatively ex-
plore how our model operated. In this part, we conducted a visualized operation on the
well-trained ssIncep-Net and Incep-Net obtained from the previous classification task
on Caltech-256. The object category of the airplanes was utilized for the visualization of
hierarchical features. Before visualization, the selected image was resized to 200∗200. Our
visualization operation was carried out in two diverse aspects.

First, we visualized the feature maps generated by a specific layer. Figure 8 shows
the visualization results. The feature maps generated from the first convolution layer of
Incep-Net are illustrated in Figure 8a, while Figure 8b–d shows the learned hybrid feature
maps (element-wise multiplication between the slab features and spike feature maps), slab
feature maps and spike feature maps obtained from the first modified convolutional layer
of ssIncep-Net, respectively.
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Figure 8b–d shows that our model can extract more details of airplanes than Incep-Net
in Figure 8a. The feature maps of the airplanes shown in Figure 8b–d present more detailed
features of the image edge significantly and reveal more distinct objects. However, the fea-
ture maps in Figure 8a are obviously blurry and lack details, and some objects in Figure 8a
are even mixed up with the background and cannot be distinguished. This demonstrates
the remarkable ability owned by our model in learning more detailed representations of
image edges and object parts. In addition, it is worth noting that the learned spike features
can blur partial structures of images to a certain extent, further resulting in fuzzy areas in
feature maps, as shown in Figure 8c, despite the fact that the spike features of ssIncep-Net
facilitate the integration of effective information and contribute to extracting slab features.

Our model utilized dual variable max-pooling to replace the classic pooling operations
and implemented the new mechanism in the first pooling layer of our model, through which
we obtained the corresponding pooling feature maps depicted in Figure 9. Figure 9b–d
exhibits different types of pooling feature maps, containing a hybrid feature, slab feature
and spike feature, respectively. Compared with the pooling feature maps obtained from the
first pooling layer of the Incep-Net depicted in Figure 9a, the feature maps in Figure 9b–d
present more detailed features of objects that are clearer. This is mainly due to the fact
that the specific dual variables strategy can extract more abstract features. It further
demonstrates that our model can learn more effective representations and pay more
attention to translation-invariant features.
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Furthermore, we visualize the feature maps generated by ssInception 3a and Inception 3a
shown in Figure 10. These operations mainly verify the availability of the dual variable
mechanism combined with the inception module. From Figure 10, we can conclude that
the features extracted from the deeper layer become sparser. As shown in Figure 10b–d,
the edge information of airplanes is well-preserved by ssIncep-Net, while the information
in Figure 10a is extremely fuzzy or even gone. This strongly proves the effectiveness of the
dual variable mechanism combined with the inception module. It further reveals that our
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proposed method is more efficient in learning abstract features and extracting hierarchical
invariant representations compared with Incep-Net.
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Secondly, we visualized the learned convolution kernels in the first convolution layer
of ssIncep-Net and IncepNet; both owned 15*15 convolution kernels in 64 channels. In
order to visualize the convolution kernel more intuitively, filters with much larger sizes
were utilized. The results are illustrated in Figure 11.
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Figure 11a–d depicts the general convolution kernels, hybrid convolution kernels,
slab convolution kernels and spike convolution kernels, respectively. It can be inferred
from Figure 11 that the training convolution kernels in the visualization layer mainly
reflect the selective lineaments, feature angles and the surface margin of the image. The
visualized convolution kernels shown in Figure 8b present more detailed features of the
edge and angles information. However, almost all of the visualized convolution kernels in
Figure 11a are blurry and lack detailed information. This demonstrates that our model can
learn more edge and angles information compared with the general convolution kernels
in Figure 11a, which is mainly due to the ability of the slab hidden units in extracting
covariance information in the image patches. This further proves that a dual variable
mechanism efficiently promotes the performance of Incep-Net.

4.2.2. Visualization on Embedding Representations Learned from Cifar-10

Moreover, we conducted a series of visualization operations on embedding represen-
tations, qualitatively verifying the performances of the specific layers existing in our model.
We selected Cifar-10 for visualization due to two factors: Cifar-10 is more complex than
Fashion MNIST, involving various features. It contains 10 categories, which is a suitable
proportion for visualizing the distribution of each category compared with Cifar-100. Simi-
lar to the previous section, we visualized hierarchical representations of the well-trained
Incep-Net and ssIncep-Net obtained from the previous classification task in Cifar-10.
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By utilizing dimensionality reduction algorithms, the high-dimensional representation
learned from specific layers of Incep-Net and ssIncep-Net is embedded into the two-
dimensional space, thus qualitatively verifying the robustness of our model. In this paper,
we adopted t-SNE to perform dimensionality reduction, which was proven to be an efficient
visualization tool compared with PCA. High-dimensional data was gathered from the
output of specific layers. We revealed inherent attributes of the network through a layer-
by-layer analysis.

The embedding results of Incep-Net and ssIncep-Net are depicted in Figures 12a–c and 13a–c,
respectively. In detail, Figure 12a–c represented the output of the second convolutional layer,
Inception 3b block and SoftMax existed in Incep-Net, while Figure 13a–c represented the out-
put of the second convolutional layer, ssInception 3b block and SoftMax existed in ssIncep-Net,
respectively.
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of the second convolutional layer, ssInception 3b block and SoftMax, respectively.

Through the observations between Figures 12a,b and 13a,b, we can infer that our
ssIncep-Net achieved a better performance in the corresponding layer compared with
Incep-Net, mainly due to the spike-and-slab operation adopted in our proposed model.
The comparison between Figures 12c and 13c revealed that ssIncep-Net is efficient in
classification and recognition by stacking a specific ssIncep module. The representations
acquired by deeper layers turned out to be more abstract and discriminated compared with
the shallower layers, further verifying the efficiency of the proposed ssIncep-Net in dealing
with the version classification task.

5. Discussion

In this paper, we explored an improved CNN structure with an inception module,
which can perform better in feature mining without increasing the computational bur-
den. We conducted the experiment in two aspects, classification tasks for a quantitative
analysis and visualization verification for a qualitative analysis. Based on the results of a
series of classification tasks on various datasets, the quantitative analysis tasks efficiently
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explained the progress of our proposed ssIncep-Net from the view of recognition accu-
racy. Furthermore, the qualitative analysis was devoted to exploring the interpretability
of our improvement on the inception module using visualized manipulation. Compared
with References [36–38], the integration of the two aspects in this paper comprehensively
proved the effectiveness and interpretability of our model. In addition, the reviewing of
the relationships between the innovation process of the probabilistic graphical models and
discriminative models led to better interpretability in theory for our innovation. Through
the ingenious operation of spike-and-slab units, we finally demonstrated the extraordinary
performance of ssIncep-Net in learning hierarchical representations from images.

Furthermore, we conducted a complexity analysis to better discuss ssIncep-Net. Con-

sidering the whole model, the complexity of ssIncep-Net is (
D
∑

l=1
M2

l ·K
2
l ·Cl−1 ·Cl), in which

l denotes the lth layer of the model, D denotes the number of convolution kernels that
the model owns, M and K indicate the side length of the feature maps and convolution
kernels, respectively. Cl−1 and Cl denote the number of input channels and output channels
in each layer, respectively. It revealed that the complexity of our model was the same
as that of Incep-Net. Our model showed better performance under the premise of the
same complexity, further indicating the advancement of our model. Compared with the
conventional network, ssIncep-Net can achieve the same performance with fewer network
layers, proving the advantages of the network in computing and memory. However, our
approach encountered difficulties in training, specifically reflected in harder convergence
and larger training epochs. This was mainly due to the output information characteristic of
spike-and-slab units being difficult to optimize. Batch normalization partially solved this
problem, but it was not perfect. Considering that the optimize inception structure is an
inherent problem, we need to observe the problems existing in the gradient transmission
of the model. We suggest researching further improvements of the regularization schemes
to optimize the training mechanism and energy function, making the distribution of the
energy function flatter in higher dimensional spaces. This also provides a research direc-
tion for us and other researchers to study. On all accounts, the spike-and-slab inception
module proposed by us is a remarkable candidate and can be utilized as a building block
for researching more sophisticated models. We look forward to building more advanced
CNN architecture based on this work, further exploring a better strategy for solving the
confrontation problem.

6. Conclusions

In this paper, we introduced a novel deep discriminative model by the improvement
of deep convolutional neural networks (CNN) with an inception module for image recog-
nition tasks. Our proposed ssIncep-Net consists of two parts, including an improved
discriminative deep convolution inception module and dual variable operations, which
further enable it to be well-performed. Our model was more efficient compared with the
conventional model due to the spike-and-slab features embedded in the convolution, which
can capture higher-order and hierarchical features. In addition, our work is different from
other works, since we seriously control the size of the model and number of parameters
to overcome overfitting. This operation further enhances the robustness of our model for
variations in image intensity.

The experiment results compared with several other methods indicated that spike-and-
slab units can be well-integrated into inception modules and reach excellent achievements.
Furthermore, this work will help to explain the superiority of the inception module from
the view of improving the activation function and guiding the researchers to design new
structures.
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