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Abstract: Hand gesture recognition technology plays an important role in human-computer inter-
action and in-vehicle entertainment. Under in-vehicle conditions, it is a great challenge to design
gesture recognition systems due to variable driving conditions, complex backgrounds, and diversi-
fied gestures. In this paper, we propose a gesture recognition system based on frequency-modulated
continuous-wave (FMCW) radar and transformer for an in-vehicle environment. Firstly, the original
range-Doppler maps (RDMs), range-azimuth maps (RAMs), and range-elevation maps (REMs) of
the time sequence of each gesture are obtained by radar signal processing. Then we preprocess the
obtained data frames by region of interest (ROI) extraction, vibration removal algorithm, background
removal algorithm, and standardization. We propose a transformer-based radar gesture recognition
network named RGTNet. It fully extracts and fuses the spatial-temporal information of radar feature
maps to complete the classification of various gestures. The experimental results show that our
method can better complete the eight gesture classification tasks in the in-vehicle environment. The
recognition accuracy is 97.56%.

Keywords: gesture recognition; human-computer interaction; FMCW radar; deep learning; transformer

1. Introduction

In recent years, with the development of electronic technology and artificial intelli-
gence [1], human–computer interaction technology has received much attention. Among
them, gesture recognition is one of the most important branches in the field of human-
computer interaction [2]. It has been widely used in industrial production [3,4], including
smart homes, virtual reality, and intelligent cockpits.

According to the source of gesture signals, gesture recognition is mainly classified
into visual-based signals, biological-based signals, inertial sensor-based signals and radar-
based signals. The first is gesture recognition methods based on visual signals. In [5], the
authors proposed a part-based gesture recognition system with some robustness using
Kinect as a sensor. Using the new metric, namely Finger-Earth Mover’s Distance, the
accuracy rate of gesture recognition reached more than 90%. In [6], the authors collect
continuous multi-frame images of dynamic gestures and use three-dimension separable
convolution for gesture recognition. Dhingra et al. [7] applied the attention mechanism in
the three-dimension convolutional neural networks (3DCNN) model and learned features
at different scales to obtain good classification results. Coelho et al. [8] used convolutional
neural networks to extract and classify images through the acquired RGB and depth maps
to accomplish gesture recognition.

The next is gesture recognition methods based on biological signals. It is mainly used
to capture original signals through human wearable devices, mainly around electromyog-
raphy (EMG) [9]. Chen et al. [10] selected 30 designed muscle activation patterns of finger
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joints, elbow joints and wrist joints to train a classifier to complete gesture recognition by
extracting the relevant features from the collected EMG. Matsubara et al. [11] proposed
a bilinear model of EMG signals consisting of user dependence and motion dependence.
After detecting the EMG signal, the model decomposes it into user dependence and motion
dependence to achieve classification and recognition of different gestures from multiple
users with an accuracy of 73%. Lu et al. [12] used a combination of EMG and accelerometer
to identify the 19 gestures that were designed by capturing the difference between the two
signals during different hand movements. Zhang et al. [13] obtained gesture information
from accelerometers and multi-channel EMG sensors attached to the human hand and then
combined the Markov model and decision tree model to obtain the results.

In terms of inertial sensor-based signals, the Samsung Research Institute [14] proposed
a gesture recognition system using accelerometers and gyroscopes. It obtained the trajec-
tory of the hand in the two-dimensional plane by the angular velocity and acceleration
of the user’s hand in three-dimensional space during its movement. Subsequently, it
used Bayesian networks to model and match the gestures. Danial et al. [15] designed a
smartwatch for text input through gestures. The features corresponding to the gestures
of 26 English letters were extracted by the accelerometer added inside the watch. The
recognition accuracy was only 71% since some of the letters were extracted with similar
features, and the overall number of letters was large.

This paper considers gesture recognition in the in-vehicle environment, which belongs
to the field of in-vehicle entertainment and intelligent cockpit. The gesture recognition
application under an in-vehicle environment can improve driving safety and prevent the
driver from being distracted by operating the vehicle screen. It can also increase the fun of
driving and the intelligence of the vehicle. For example, through the effective recognition
of gestures, users can switch songs, adjust the volume, control the vehicle windows and
other functions.

Gesture recognition based on biological signals and inertial sensor signals mainly
adopts wearable devices and multiple sensors, which is unsuitable for practicability and
convenience. The accuracy of the gesture recognition system based on visual signals,
such as Volkswagen Golf, is reduced due to poor lighting and illumination in the vehicle.
On the other hand, radar has low requirements for light and intense penetration and
can protect users’ privacy, making it more suitable for use in the vehicle and different
environments. [16]. Therefore, gesture recognition schemes based on radar signals have
begun to emerge in recent years. Gao et al. [17] used 2.4 GHz Doppler radar as a sensor
to extract the zero-crossing features of radar baseband signals corresponding to different
gestures and then perform subsequent processing to achieve gesture classification. In [18],
the 24 GHz millimetre-wave (MMW) radar was used to recognize the three gestures.
The predictive classification was achieved by training a convolutional neural network.
Kim et al. [19] collected data of eight gestures by Doppler radar. They obtained Doppler
spectrograms by short-time Fourier transform to extract features. Finally, They fed them
into a convolutional neural network (CNN) for training and prediction. Smith et al. [20]
developed an in-vehicle entertainment gesture recognition system based on Google soli
radar [21]. The system used a random forest classifier to recognize six preset gestures.
Doppler radar can only obtain velocity information of the measured object and cannot
obtain specific position-distance information [22]. Therefore, FMCW radar is widely used,
which can return radial velocity, range and angle information of the measured target
and thus have more characteristic representations for different gestures. In [23], a two-
dimensional fast Fourier transform (FFT) was used to generate a range-Doppler map (RDM)
to extract gesture features. However, it does not consider the angle information, resulting in
poor gesture recognition for horizontal and vertical movements. The literature [22,24] used
CNN and Long Short-Term Memory (LSTM) to learn gesture features on time sequences
using temporal RDMs and RAMs as inputs. They used the continuous frame information
and the extracted time-domain information, respectively. Zhang et al. [25] proposed an
MMW radar gesture recognition system named latern, which was trained end-to-end by



Sensors 2021, 21, 6368 3 of 20

3DCNN combined with LSTM. It also performed different dynamic gesture recognition by
Connectionist Temporal Classification (CTC) algorithm with an accuracy of 96%. In [26], the
authors generated features for gesture classification from range-Doppler maps of FMCW
radar. A wrapper-based feature selection algorithm combined with a quantum-inspired
evolutionary algorithm (QEA) was used to extract highly relevant features. The algorithm
improves the gesture recognition accuracy of the radar system. In [27], the authors used
principal component analysis (PCA) and t-distributed stochastic neighbour embedding
(t-SNE) algorithm, combined with machine learning techniques, to implement people’s
way of walking based on radar spectrograms and range-Doppler maps. Wang et al. [28]
constructed a range-time map (RTM), Doppler-time map (DTM) and angle-time map
(ATM) based on FMCW radar. The k-means algorithm was used to cluster the central
time-frequency trajectory of each gesture spectrum, and the Fusion Dynamic Time Warping
(FDTW) algorithm was used for gesture classification.

Recently, Transformer [29] has shown great success in the field of natural language
processing (NLP) [30,31], computer vision [32,33] and point cloud [34,35]. In this paper, we
propose a transformer-based framework for radar gesture recognition, namely RGTNet.
It fully extracts the spatial and temporal information of the input radar features to better
guide the gesture recognition task. Experimental results show that our proposed method
achieves the highest classification accuracy.

Our contributions are summarized as follows.

(1) We collected and made a gesture recognition dataset based on MMW radar in an
in-vehicle environment. Based on the FMCW radar, we carried out gesture acquisi-
tion under actual driving conditions. By radar signal processing, we converted the
original continuous IF signals into time-sequenced RDMs, RAMs, and REMs. Then
we preprocessed the radar feature maps through ROI extraction, vibration removal
algorithm, background removal algorithm and standardization to obtain cleaner data.
Finally, we obtained a total of 5318 samples containing eight types of gestures. Each
sample contains eight continuous frames of the processed RDMs, RAMs, and REMs.

(2) We propose a transformer-based network architecture for radar gesture recogni-
tion, RGTNet. The spatial feature extraction and spatial feature fusion modules are
designed to embed the input of the time-sequenced radar feature maps. We take
the temporal information between frames into account by positional encoding. A
transformer encoder based on VIT [32] is used to extract the deep temporal feature
associations between different frames. Finally, the probability prediction is completed
by the fully connected layer and softmax operation.

(3) The experimental results show that our proposed method can better extract radar
spatial-temporal features and get a high level of accuracy.

The gesture recognition system proposed in this paper mainly contains three parts:
data acquisition, signal processing and dataset generation, and gesture recognition algo-
rithm, as shown in Figure 1. We design several typical gestures in the in-vehicle environ-
ment for data acquisition. Then, we use radar signal processing and data preprocessing to
obtain our dataset, which includes RDMs, RAMs, and REMs of different gestures. In the
recognition stage, we train the proposed RGTNet to complete the gesture classification.

The remainder of this paper is organized as follows. Section 2 describes the production
of the radar gesture recognition dataset, including data acquisition, radar signal processing,
and data preprocessing. Section 3 describes our RGTNet architecture and the components
of each module. Section 4 conducts experiments and results analysis. Finally, in Section 5,
we give conclusions and some future research.
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Table 1. The key parameters of the radar. 
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Start Frequency 60 GHz 
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Figure 1. The overview of the proposed gesture recognition system.

2. Dataset Production
2.1. Experimental Equipment and Data Acquisition

The IWR6843AOP [36] from Texas Instruments was chosen for the hardware part of
the system designed in this paper for data acquisition. The radar is a 60 GHz MMW radar
with a bandwidth of 4 GHz, thus facilitating the data acquisition and accurate recognition
of subtle motion. With four receivers and three transmitters, the radar can measure the
range of multiple objects, Doppler information, and calculate the azimuth and elevation of
objects. The appearance diagram and parameter list of the radar are shown in Figure 2 and
Table 1, respectively.
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Figure 2. IWR6843AOP appearance diagram.

Table 1. The key parameters of the radar.

Parameters Value

Start Frequency 60 GHz
Bandwidth 4 GHz

Frequency Slope 100 MHz/µs
Chirps per frame 96
Maximum range 2.4 m
Range resolution 0.0469 m
Maximum angle −80◦–80◦

Angle resolution 29◦

Maximum velocity 0.7120 m/s
Velocity resolution 0.0445 m/s

Antennas 3 × TX, 4 × RX

We collected raw data in the in-vehicle environment, as shown in Figure 3. The radar
was fixed above the centre console. The in-vehicle environment is quite different compared
to other environments, such as laboratory environments. First of all, the space inside
the vehicle is very narrow. In order to ensure the accuracy and efficiency of the gesture
recognition algorithm, we need to select the useful regions in the radar feature map, which
is shown in Figure 3. Secondly, variable driving conditions will produce different degrees
of vibration, such as acceleration, deceleration and idling, which has a greater impact on
the Doppler feature of the radar. However, most environmental settings do not consider
vibration. Finally, the closed space inside the vehicle has a more complex background than
other environments, including handles, centre boxes, various metal objects and seats of the
vehicle. Therefore, for the gesture recognition system under an in-vehicle environment,
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we need to obtain signals in the useful regions and effectively suppress the effects of
background and vibration.
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Figure 3. Experiment environment.

In this paper, we design eight types of hand gestures: ToLeft, ToRight, ToClose, away,
ToUp, ToDown, PullPush, and PushPull, as shown in Figure 4. We had a total of six subjects,
each in a group of two, in the driver’s and co-driver’s seats for data collection. During
data acquisition, we ensured that each gesture was made complete, and the speed of each
gesture was moderate. Each gesture was completed in about 2 s, with the speed range of
0.1 m/s–0.5 m/s and the distance from hand to the radar of between 0.1–0.9 m.
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All raw data were read through the serial port. We resolved the RDM, RAM and REM
for each frame through radar signal processing, as described in Section 2.2. The data were
collected under in-vehicle conditions, and the overall status of the vehicle included static
and motion. When the vehicle was in motion, it mainly included acceleration, deceleration,
uniform speed or turning conditions. In contrast, the static state mainly included stopping
or idling. In the motion status, we acquired continuous data streams and recorded the
whole procedure synchronously with the camera to label the gestures. We recorded eight
frames of gesture data in a fixed two seconds each time and labelled them in the static case.

To obtain the corresponding gesture sequence from a large amount of data stream
under the motion conditions, we need to know the start and end frames of each gesture. We
used the Gaussian mixture model [37] and support vector machine [38] to filter out frames
with pure background and interfering actions to find the starting frame of each gesture.
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Then, since each gesture lasted about two seconds, we intercepted eight consecutive frames
from the starting frame as the entire gesture sequence. The whole process is similar to the
process of intercepting a sequence in a sliding window. This part is not the focus of this
paper, so it is not be repeated.

We initially obtained 5318 gesture samples, each containing eight consecutive RDMs,
RAMs, and REMs. To minimize the impact of complex background and noise vibration on
recognition, we performed subsequent preprocessing on the obtained samples described
in Section 2.3.

2.2. Radar Signal Processing

The MMW radar signal processing includes two processes: analogue-to-digital conver-
sion and digital signal processing [39]. First, the radar transmits the chirp signal through
three transmitting antennas. The transmitted signal is expressed as

sT(t) = AT cos(2π fct + 2π
∫ t

0
fT(τ)dτ) (1)

where AT represents the transmitted signal amplitude, fc is the carrier frequency,
fT(τ) = τB/T is the transmit frequency as a linear function of time, B is the bandwidth,
and T is the time duration.

The received signal can be expressed as

sR(t) = AR cos(2π fc(t− td) + 2π
∫ t

0
fR(τ)dτ) (2)

where AR is the received signal amplitude, td is the delayed time, and fR(τ) is the frequency
of the received signal. By mixing the transmitted and the received signals, we get the
intermediate frequency (IF) signal, which is forwarded to the low-pass filter and can be
expressed as

sIF(t) =
1
2

cos(2π fctd + 2π(
B
T

td − fd)t) (3)

where fd is the Doppler shift caused by the movement of gestures.
In signal processing, the IF signal is firstly transformed by the fast time dimension FFT

to obtain the one-dimensional range-Doppler sequence. The sequences contain the position
information of the gestures, which can be represented by the peak of the sequences. Then
the RDM is obtained by extracting the components of the same frequency of each pulse by
using the 2D FFT, as shown in Figure 5.
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The gesture trajectory has different azimuth and elevation angles, which can be
estimated by adding an angle FFT, as shown in Figure 6. Based on the RDM obtained
by two-dimension FFT, the Radar Data Cube consisting of Range-Doppler-Angle can be
obtained by adding the angle FFT transformation of the antenna dimension. We select
a specific static velocity slice to obtain the instantaneous static range angle map. The
multiple-input multiple-output (MIMO) virtual array technique and the FFT beamforming
direction of arrival (DOA) estimation algorithm [40] are used to get a higher resolution
range-angle map. For the RAM, the information of the horizontal antenna can be selected
for angle FFT; For the REM, the information of the vertical antenna can be selected for
angle FFT.
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2.3. Data Preprocessing

We further process the radar feature maps obtained by radar signal processing, includ-
ing the ROI extraction, vibration removal algorithm, background removal algorithm, and
standardization. Using the related algorithms, we get pure input data, thus ensuring the
accuracy and generalization of the recognition algorithm.

2.3.1. The ROI Extraction

To reduce the difficulty of network training and prevent interference from the
rear passengers and invalid regions, we crop off the redundant sizes of radar feature
maps to obtain the ROI. The gesture recognition considered in this paper is applied in
the vehicle, where the primary users are the driver and the co-driver. Therefore, the
maximum recognition range of the radar is selected as 0.9 m, which can cover the front
areas. Since the gesture speed is moderate and the whole gesture takes about 2 s, the
maximum radar recognition speed is selected as 0.54 m/s. As for the detection field
angle of radar, we empirically choose the horizontal angle and elevation angle to be
−48◦~48◦. Figure 7a–c are the original RDM, RAM, and REM of a frame belonging
to close gesture, respectively. The ROI extraction results of RDM, RAM, and REM are
shown in Figure 7d–f, respectively.

2.3.2. Vibration Removal Algorithm

Due to the mechanical parts jittering and road inequality, the vehicle will produce a
certain degree of vibration under driving or idling conditions. The vibration can affect
the intensity distribution of the range-Doppler map. In the range-Doppler map, the
vibration is mainly concentrated in the interval of −0.2–0.2 m/s, which mainly shows
the abnormal high-intensity regions caused by vibration. We should remove these
vibrational noises and micro-motions of static objects to prevent them from interfering
with gesture features.
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We define I(r, v, t) as the intensity value at range r and velocity v in the range-Doppler
map at the time t. The µ(r, v, t) and σ(r, v, t) are the defined mean and standard deviation
at the time t, respectively, where v ∈ [−0.2, 0.2] and r ∈ [0, 0.9]. The updating formula is
expressed as{

µ(r, v, t) = (1− α)µ(r, v, t− 1) + αI(r, v, t)

σ2(r, v, t) = (1− α)σ2(r, v, t− 1) + α[I(r, v, t)− µ(r, v, t− 1)]2
(4)

where α is the updating rate, which is related to the intensity variation rate δt, which can
be expressed as

δt =
I(r, v, t)− µ(r, v, t− 1)

µ(r, v, t− 1)
(5)

The updating rate α should increase with the intensity variation rate δt to remove the
localized high-intensity regions caused by vibration, which is modelled as

α =


eδt−e−δt

eδt+e−δt
, δt ≥ 0

0.5× ( e−δt−2−eδt+2

eδt+2+e−δt−2 + 1), δt < 0
(6)

Figure 8 shows the relationship curve of α with δt. The updating rate α increases
smoothly when the intensity variation rate δt increases, making the mean µ close to the
high-intensity vibration.

We set the mask matrix to be M, whose size is equal to the range-Doppler map,
i.e., 24 × 24. The value of M is 1 when |v| > 0.2, and the other values satisfy the
following equation.

M(r, v, t) =
{

0, |I(r, v, t)− µ(r, v, t)| ≤ σ(r, v, t)
1, |I(r, v, t)− µ(r, v, t)| > σ(r, v, t)

(7)
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with the mask matrix M, we can get the range-Doppler map after removing the vibration,
which is represented as IO.

Io(r, v, t) = M(r, v, t) · I(r, v, t) (8)
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Figure 9a,b shows the RDM before and after removing the vibration. Our algorithm
can retain the gesture region well and filter out the micro-vibration objects and local
anomaly regions for subsequent processing.
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2.3.3. Background Removal Algorithm

To remove the interference of cluttered background on gesture features, we use the
frame-difference method of dynamic thresholding to remove the background. We use a
unidirectional queue to save the sixteen background frames nearest the current time. Set
each background frame as B1, B2, . . . , B16. B is the mean value of the background, and its
dynamic update formula is as follows

B =
16× B′ − B16 + Bnew

16
(9)
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where Bnew is the newly added background frame, B′ is the mean value before the new
background frame is added. Bnew is added to the end of the queue and B16 is removed
from the head of the queue. The updating formula for the background queue is as follows

Bi =

{
Bi−1, i = 2, 3, . . . , 16

Bnew, i = 1
(10)

We set ∆I to be the frame difference between the mean of the system background and
the gesture frame I at the time t. It can be expressed as

∆I = I − B (11)

We construct the mask matrix IM with the same size as the input feature map, which
can be described as

IM(x, y, t) =
{

0, ∆I(x, y, t) < T
1, ∆I(x, y, t) ≥ T

(12)

where T is the threshold. The feature map after removing the background is IP, which is
calculated as

IP(x, y, t) = IM(x, y, t) · I(x, y, t) (13)

Since our experiment contains different subjects with different gestures and driving
conditions, it is unsuitable to take a fixed threshold T. Through the analysis of many
gesture frames, we find that most background regions unrelated to gestures can be filtered
out when the frame difference is retained in the top 10% of the feature map. It ensures the
feature completeness of the gesture regions. Therefore, the dynamic threshold is set as the
minimum value of the top 10% of ∆I.

We use the minimum heap to compute the threshold dynamically to reduce the time
complexity and space complexity. Figure 10a,b shows a REM before and after removing
the background.
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2.3.4. Standardization

To facilitate the training of the network, we normalized the feature maps. Set the cur-
rent feature map as I, and the width and height of the feature map as w and h, respectively.
Then the mean µ and variance σ2 are expressed as
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
µ =

w
∑

i=1

h
∑

j=1
I(x,y)

w×h

σ2 =

w
∑

i=1

h
∑

j=1
(I(x,y)−µ)2

w×h

(14)

The standardized feature map is Inew, which is expressed as

Inew(x, y) =
I(x, y)− µ

σ
(15)

Figure 11a–c shows the final RDM, RAM, REM of a frame, respectively.
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3. Proposed Method

Our network is based on the transformer, which we named RGTNet. The input of
the network consists of three branches, i.e., RDMs, RAMs and REMs. The network can
sufficiently extract the spatial-temporal features of the input data and finally output the
gesture prediction probability.

3.1. Network Architecture

The overall architecture of RGTNet is shown in Figure 12. There are three branches of
network input, which are RDMs, RAMs, and REMs. Each input branch consists of eight
consecutive frames stacked in a temporal sequence. The network first extracts the spatial
features through the convolution Layers1, convolution Layers2 and convolution Layers3
in Figure 12b and stacks them in time sequence to obtain the range-Doppler features
(RDF), range-azimuth features (RAF), and range-elevation features (REF). Then the three
features are fed into the spatial feature fusion module for feature fusion between different
modalities. The output FF is the fused spatial features stacked in a time sequence.

Inspired by transformer and VIT, we adapt the transformer structure with attention
mechanism as the core to further extract inter-frame information in the temporal dimension.
We regard FF as an embedded feature. Since there is temporal information between frames,
we add the position encoding and get AT0. We stack N transformer encoder modules to
extract the deep features between different frames fully. Finally, we use softmax operation
to process the features after full connection and output the predicted probability of each
gesture. The gesture corresponding to the maximum probability is the classification result
of the network.

3.2. Spatial Feature Extraction

The inputs of the spatial feature extraction module are RDMs, RAMs and REMs, where
RDMs ∈ Rt×cD×hD×wD , RAMs ∈ Rt×cA×hA×wA , REMs ∈ Rt×cE×hE×wE . Each modality is
consecutive t frames. For RDMs, each frame has a size of hD × wD with cD channels. The
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RAMs and REMs are similar. We use three independent convolution layers for spatial
feature extraction with a structure similar to VGGNet [41], i.e., a 3 × 3 convolution and
pooling layer with batch normalization and ReLU activation function. The Conv Layers2
and Conv Layers3 use the same structure since the RAMs and REMs are of the same size.
However, their parameters are not shared. Figure 13 shows the structure of Conv Layers1
(CL1), Conv Layers2 (CL2) and Conv Layers3 (CL3).
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flow of scaled dot-product attention.
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Formally, we express the whole process as
RDF = CL1(RDM1)⊕ CL1(RDM2)⊕ · · · ⊕ CL1(RDMt)

RAF = CL2(RAM1)⊕ CL2(RAM2)⊕ · · · ⊕ CL2(RAMt)

REF = CL3(REM1)⊕ CL3(REM2)⊕ · · · ⊕ CL3(REMt)

(16)

where RDMi, RAMi, REMi denotes the i-th (i ∈ {1, 2, . . . , t}) frame in RDMs, RAMs
and REMs. The ⊕ is the concatenation operation, which is to stack the extracted fea-
tures of each frame in a temporal sequence. In this way, we obtain the spatial features,
i.e., RDF ∈ Rt×c̃D×h̃D×w̃D , RAF ∈ Rt×c̃A×h̃A×w̃A and REF ∈ Rt×c̃E×h̃E×w̃E . In this paper,
the final number of extracted feature channels is 32, 64, 64, and the feature map size
is 12 × 12.

3.3. Spatial Feature Fusion

The spatial feature fusion module is shown in Figure 12a. In this module, we fuse the
spatial features of different modalities to obtain the feature representation of each frame
for further temporal analysis. Firstly, we concatenate the features of different modalities in
the channel dimension, i.e., Equation (5)

F1 = RDF⊕ RAF⊕ REF (17)

where F1 ∈ Rt×(c̃D+c̃A+c̃E)×h×w, and the size of the feature map h×w is 12 × 12 mentioned
above. Then, after averaging pooling and multi-layer perception machine, we obtain the
fused feature FF and can be expressed as

FF = MLP(AvgPooling(F1)) (18)

where AvgPooling(·) indicates the average pooling at each feature map. The MLP(·)
consists of two linear layers and a ReLU activation function for the final spatial feature
integration. FF ∈ Rt×l is the final fusion feature.

3.4. Transformer Encoder Module

The transformer has achieved great success in the NLP and CV fields. Inspired by it,
we use the transformer encoder to capture the feature association between different frames,
as shown in Figure 12c. In this paper, we regard the spatial fusion feature FF as the feature
after input embedding in transformer. Due to the strict sequential relationship between
different frames, just as with the sequential relationship between different words in NLP,
we need to encode the position of the input sequence feature. We use position encoding in
transformer, which is expressed as{

PE(pos, 2i) = sin(pos/10002i/dm)

PE(pos, 2i + 1) = cos(pos/100002i/dm)
(19)

where PE is the position encoding, pos represents the position while i represents the corre-
sponding dimension. The dm is the output dimensions of each transformer encoder, which
is also equal to the embedded feature dimension l. Our transformer encoder structure is as
described in VIT. Nevertheless, we use spatial fusion information as the input embedding,
and there is no additional learnable position encoding. The whole process is expressed as

AT0 = FF + PE, FF ∈ Rt×l , PE ∈ Rt×l

ATm = MHA(LN(ATm−1)) + ATm−1, m = 1, 2, . . . , N

ATm = MLP(LN(ATm)) + ATm, m = 1, 2, . . . , N

(20)
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where ATm ∈ Rt×dm is the intermediate result of the m-th transformer encoder, and
ATm ∈ Rt×dm is the output result of the m-th transformer encoder. The LN(·) represents
layer normalization and MHA(·) represents multi-head attention operation. The MLP(·)
consists of two linear layers and a GeLU activation function.

For the multi-head attention module, its structure is shown in Figure 12d. It enables
the model to learn and represent features in different subspaces. The core operation of
it is Scaled Dot-Product Attention (SA), as shown in Figure 12e. This operation can be
expressed as

MHA(Q, K, V) = (head1 ⊕ head2 ⊕ . . .⊕ headh)WO

headi = SAi(QWi
Q, KWK

i, VWV
i), i = 1, 2, . . . , h

SAi(QWi
Q, KWK

i, VWV
i) = so f tmax(QWi

Q(KWi
K)

T/
√

dk)VWV
i , i = 1, 2, . . . , h

(21)

where Q, K, V correspond to the output of the first layer norm in the Transformer
encoder, the linear projection matrices are WQ

i ∈ Rdm×dk , WK
i ∈ Rdm×dk , WV

i ∈ Rdm×dv ,
and Wo ∈ Rhdv×dm . We follow the transformer and add the scaling factor 1/

√
dk to the dot

product. In this paper, we take the number of heads as eight and dk = dv = dm/h = 16.

3.5. Full Connection Outhead

We use the max pooling for ATN obtained by the transformer encoder and feed the
obtained features into the fully connected layer for final classification. Our fully connected
classifier consists of two linear layers and a ReLU activation function. The number of
hidden units is 64. The softmax operation achieves the final probability prediction where
the gesture class corresponding to the probability maximum is the prediction result of
the network.

4. Experiment
4.1. Experimental Details and Evaluation Metrics

Our dataset contains a total of 5318 gesture samples, each of which contains eight
consecutive RDMs, RAMs, and REMs. We have performed the preprocessing according to
the method in Section 2.3. We randomly divide the data into a training set and a test set in
the ratio of 7:3.

Our implementation of RGTNet is based on PyTorch [42]. We use the Adam opti-
mizer [43] for end-to-end network training. Since gesture recognition is a multi-classification
task, we choose the cross-entropy loss function. Our batch size is set to 8, the initial learn-
ing rate is 0.001, and the weight decay is 0.0001. We train a total of 150 epochs, and all
experiments are conducted with a GeForce GTX 1080ti.

For multi-gesture classification tasks, overall precision, single-class precision and
confusion matrix are commonly used quantitative evaluation metrics. The overall accuracy
is the number of correctly predicted samples in the test set as a percentage of the total
number of samples in the test set. The single-class accuracy is the number of correctly
predicted samples for each class of gestures in the test set as a percentage of the total
number of samples for that class. It measures the classification effectiveness of the model
for each class. On the other hand, the confusion matrix counts the classes of correct and
incorrect gesture predictions for each gesture. It aggregates all of them into a table that is
used to represent the confusion between different classes. It gives a visual representation
of the specific performance of the model.

4.2. Experimental Results

To fully validate the effectiveness of our proposed algorithm, we compare different
advanced methods used in gesture recognition. To adapt the input features and sizes of
our dataset, we make some adaptations to the original network. In the 2DCNN-based
method [19], we preserve the three-branch 2DCNN of our method and use the spatial
fusion features FF as the final extracted features. In the CNN-LSTM-based method, we feed
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the spatial fusion features FF into the LSTM for temporal analysis. In the 3DCNN-based
method, we use a similar structure to C3D [44] with three branches for spatial-temporal
feature extraction. The rest of the training parameters are kept consistent. The overall
accuracy (OA) and single-class accuracy of the test set are shown in Table 2.

Table 2. Gesture classification results.

Method OA ToLeft ToRight ToClose Away ToUp ToDown PullPush PushPull

2DCNN-based 92.50% 92.34% 84.72% 92.99% 100% 97.13% 98.14% 87.04% 87.96%
CNN+LSTM 95.74% 92.79% 94.44% 93.46% 99.47% 95.69% 94.42% 95.83% 99.44%

3DCNN-based 95.21% 93.69% 95.37% 89.72% 98.93% 96.17% 94.42% 95.83% 97.69%

Ours 97.56% 96.85% 93.52% 99.57% 99.53% 97.13% 95.35% 99.07% 99.44%

It can be seen from the test results that the algorithm we proposed achieves the
best recognition accuracy of 97.56%. At the same time, the methods based on 2DCNN,
CNN-LSTM and 3DCNN are 92.50%, 95.76%, and 95.21%, respectively. For single-class
classification accuracy, our algorithm achieves optimal results on Toleft, ToClose, ToUp,
PullPush, and PushPull gestures, which fully demonstrates the effectiveness of the model.
For the 2DCNN-based method, the accuracy is low since it only extracts spatial information
and does not fully extract temporal features. Both CNN-LSTM-based and 3DCNN-based
methods can extract spatial-temporal features. However, in comparison, our Transformer-
based structure can better learn and represent the intrinsic association between frames and
better describe the features.

To illustrate the degree of confusion between different classes of our method, we plot
the confusion matrix as shown in Figure 14 and keep two decimal places for the results. As
we can see, the test results of our method are promising in most cases, but there are still
some confusing errors. The ToRight gesture is easily confused with ToUp and ToDown, as
well as between ToUp and ToDown. Intuitively, these gestures have certain similarities. For
example, when making a ToRight gesture in the vehicle, if the gesture is not kept perfectly
horizontal by vibration interference, there may be a tendency to down.
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5. Discussion
5.1. Impact of Different Input Modalities

To explore the effect of different input modalities on the classification results, we compare
the test results of each model under three different input combinations, shown in Figure 15.
The input combinations are RDM+REM, RDM+RAM, RDM+RAM+REM, respectively.
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We adjust the number of convolutional kernels to adapt to different input modalities,
ensuring the consistency of the extracted feature dimensions. As we can see, our method
achieves optimal results for all three different inputs, with overall accuracies of 95.5%,
96.4% and 97.6%, respectively. In general, when the input modality is RDM+REM, the
recognition accuracy of each method is low. It indicates that the Doppler information and
the elevation information do not adequately represent the gesture features, resulting in
worse classification results. Furthermore, when the input modalities are RDM+RAM and
RDM+REM+RAM, the 2DCNN-based method, CNN-LSTM-based method and 3DCNN-
based method achieve approximate results. These three methods can make full use of the
RDM and RAM information and are sufficient to see the importance of the two inputs
information. However, when the input modality of our method is RDM+RAM+REM, the
accuracy is still 1.2% higher than that of the input RDM+RAM. Therefore, the transformer-
based structure can use the information of the three input features and obtain the internal
correlation between frames to get the best classification results.

5.2. Impact of Numbers of Transformer Encoder

In our network, the number of transformer encoders N is an important parameter.
More encoders mean deeper feature extraction, but it brings more parameters and makes
the model more complex. We set the number of transformer encoders from 0 to 6. The
accuracy of the test set is shown in Figure 16. When there is no transformer encoder module
(i.e., only 2DCNN is used to extract features), the accuracy of the test set is low. As the
number of encoders increases, the accuracy of the test set gradually increases. When N
is 3, the accuracy is the highest, and then the accuracy does not increase. Therefore, the
prediction accuracy and complexity of the model reach a good balance when N is 3.
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5.3. Impact of the Size of the Train Set

To fully validate the effectiveness of the proposed method, we analyze the performance
of the proposed method under the different sizes of the train set. We train the network
using 25%, 50%, 75%, and 90% of the train set and compare the results with the previous
training using the entire dataset. The overall accuracy curve of the test set with the training
epoch is shown in Figure 17. We can see that the accuracy of the model quickly reaches
the bottleneck on the small training set, and the results are not very stable, with more
significant oscillations. With the increase of training data, the accuracy of the test set
increases. When the training set is 90%, the network performance is generally consistent
with the results obtained from the entire data set. It indicates that our network has good
expressiveness and generalization performance.
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6. Conclusions

In this paper, we proposed a gesture recognition algorithm, namely RGTNet, which is
based on FMCW radar and Transformer. Firstly, we collected eight typical dynamic gesture
data in an in-vehicle environment. Then we obtained a dataset containing continuous
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RDMs, RAMs and REMs by radar signal processing and data preprocessing. Finally, we
propose RGTNet, which contains a spatial feature extraction module, spatial feature fusion
module and transformer encoder modules. The RGTNet can fully present the spatial-
temporal information of the radar feature maps to accomplishing gesture recognition better.
Experimental results show that our algorithm achieves better results than the mainstream
methods, with an overall accuracy of 97.56%. We will investigate better models to improve
the accuracy further and consider more relevant in-vehicle applications in future research.
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