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Abstract: Rice quality assessment is essential for meeting high-quality standards and consumer de-

mands. However, challenges remain in developing cost-effective and rapid techniques to assess 

commercial rice grain quality traits. This paper presents the application of computer vision (CV) 

and machine learning (ML) to classify commercial rice samples based on dimensionless morpho-

metric parameters and color parameters extracted using CV algorithms from digital images ob-

tained from a smartphone camera. The artificial neural network (ANN) model was developed using 

nine morpho-colorimetric parameters to classify rice samples into 15 commercial rice types. Fur-

thermore, the ANN models were deployed and evaluated on a different imaging system to simulate 

their practical applications under different conditions. Results showed that the best classification 

accuracy was obtained using the Bayesian Regularization (BR) algorithm of the ANN with ten hid-

den neurons at 91.6% (MSE = <0.01) and 88.5% (MSE = 0.01) for the training and testing stages, 

respectively, with an overall accuracy of 90.7% (Model 2). Deployment also showed high accuracy 

(93.9%) in the classification of the rice samples. The adoption by the industry of rapid, reliable, and 

accurate methods, such as those presented here, may allow the incorporation of different morpho-

colorimetric traits in rice with consumer perception studies. 
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1. Introduction 

Commercial rice (Oryza sativa) is available in various grades to meet consumer needs 

according to price and consumer preferences. The diverse rice germplasm consumed 

worldwide has high variability in its quality traits and has been linked with the physico-

chemical properties of the rice grains [1–5]. These traits are related to consumer ac-

ceptance of size and shape, color, odor/aroma, purity, homogeneity, and texture [6]. Raw 

rice quality is commonly associated with consumer perception, mainly before purchasing 

the product. It is evaluated visually based on the appearance of the rice grains, which is 

considered an important factor affecting buying decisions [7,8]. For example, the length, 

uniformity of size and shape, color, chalkiness, and percentage of broken rice were among 

the traits used to evaluate consumer perception of rice quality [6–9]. Meanwhile, the ap-

pearance, taste, aroma, and texture were the main quality parameters affecting consumer 

perception of the cooked rice [6,10,11]. A study conducted by Jeesan and Seo [12] showed 

that the color cues of cooked rice elicited consumer perceptions of the aroma, affected 

acceptance, and evoked a range of emotional responses. 
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Rice-quality assessment is an essential routine in rice production to maintain high-

quality rice in the market and ensure high consumer acceptability. Standards for rice mill-

ing quality have been established to promote rice trading and marketing. According to 

the United States Standards for Milled Rice [13], rice is graded into categories considering 

(i) the maximum limits of the paddy kernel; (ii) the red rice; (ii) the chalky kernel; (iv) the 

broken kernel and other types of rice; (v) the color requirements of milled rice; and (vi) 

the minimum milling requirement. Besides, the Ministry of Agriculture in China estab-

lished the standard for milling quality (NY/T593-2013) to improve rice grain quality pro-

duction, emphasizing the standard requirements for different rice types such as indica and 

japonica rice [14]. 

Rice quality is commonly determined through visual inspections and manual meas-

urements [1]. However, this approach is time-consuming, subjective, and prone to human 

error. Currently, there are analytical instruments based on imaging techniques to auto-

mate rice quality assessment, such as the Image-Rice Grain Scanner (Selgron, Blumenau, 

Brazil) and the SeedCount SC5000 Image Analyzer (Next Instruments, Condell Park, City 

of Canterbury-Bankstown, NSW, Australia). The Image-Rice Grain Scanner (Selgron, Blu-

menau, Brazil) provides 39 outputs of rice grain traits, including grain size, chalkiness, 

grain defect, and milling quality based on three-dimensional measurement of the rice 

grain images obtained from a camera [15]. Hence, it enables the rice breeder to select the 

desired rice quality traits in a shorter time with high accuracy. Furthermore, the Seed-

Count SC5000 Image Analyzer was developed using a flatbed scanning system in reflec-

tance mode to obtain the individual rice sample images to measure the grain dimensions, 

chalkiness degree, and elongation [16]. For instance, it was used to determine the length, 

width, and length-to-width ratio of Australian wild rice [17] and chalkiness percentage in 

rice grains [18,19]. However, the lab-based instruments are costly and may hinder their 

application among small enterprises, especially in developing countries. Therefore, it is 

important to develop an alternative method using a rapid, reliable, cost-effective, and less 

complicated approach. 

Emerging technologies such as computer vision (CV) and machine learning (ML) 

techniques have been applied to classify images of rice varieties [20], whole and broken 

rice grains [21], chalky rice [22,23], and discolored rice [24]. This technique requires the 

image acquisition of rice samples and computer vision algorithms to pre-process, analyze, 

and extract valuable information from the images to develop the classification models. 

Software, such as Matlab (Mathworks, Inc. Natick, MA, USA) [25–27] and LabVIEW (Na-

tional Instruments, Austin, TX, USA) [28–30] and open-source libraries, such as OpenCV 

(Intel, Santa Clara, CA, USA) [31–33] and Python (Python Software Foundation, Wilming-

ton, DE, USA) [34] are some of the most popular used among researchers. The artificial 

neural networks (ANNs) for supervised ML are well-known for solving multiclass classi-

fications due to their ability to deal with non-linear data for pattern recognition to obtain 

high accuracy. For example, the ANN models were used in previous studies to classify 

mulberry fruit according to the ripeness levels [27], detect beer faults using the electronic 

nose [35], and classify aphid infestation levels using the electronic nose and near-infrared 

spectroscopy [36]. 

Rice from different cultivars differs in its physicochemical properties [4,37,38]. The 

morpho-colorimetric parameters, such as the grain’s major and minor axis length; aspect 

ratio; perimeter; eccentricity; roundness; red, green, and blue (RGB); and CIELab color 

spaces are key parameters that can be extracted using computer vision techniques. These 

have been used in previous studies, for example, to classify rice grains according to low-, 

medium-, and high-quality [39] and sound, broken, discolored, un-husked paddy, de-

formed, and withered grains [24]. Besides, the fractal dimension (FD) obtained by imple-

menting the box-counting method has been used in previous research to classify grape-

vine leaves of different cultivars [40], characterize pork loin, and salmon sliced tissue [41], 

and analyze the microstructure of baked food products [42]. Hence, the FD could also be 

used as a critical input parameter to classify rice grains morphometrically. Nevertheless, 
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the work on classifying rice using dimensionless parameters extracted automatically from 

digital images has not been much reported, especially for an extensive range of commer-

cial rice samples. Moreover, little work has been conducted to evaluate the deployment 

accuracy of different conditions based on the developed model, resulting in a robust clas-

sification model. 

Recent advancements in new-generation smartphones with high-resolution cameras, 

built-in sensors, powerful processors, and high-rate data transfer have enabled this tech-

nology adoption to be a cost-effective measurement and sensing tool. Hence, smartphone-

based applications with computer vision algorithms for agriculture and food sciences 

have gained attention among researchers. These kinds of applications include the Viti-

Canopy (The University of Adelaide, Adelaide, Australia), which allows winegrowers to 

estimate the canopy vigor and porosity of the grapevines [43]; Plantix (PEAT GmbH, Ber-

lin, Germany) used to diagnose pests, diseases, and nutritional deficiencies in 30 types of 

crops [44]; and FruitSize (Central Queensland University, Queensland, Australia), used to 

measure fruit size obtained from images captured from a smartphone camera [45]. More-

over, the smartphone has been used in previous studies to, for example, capture rice grain 

images for moisture content estimation for in-field application at harvest [46], detect milk 

adulteration [32], assess dietary information based on food and drink images [47], and 

estimate leaf area index (LAI) and plant height for canopy structures [48], which could be 

further developed into a smartphone app. Therefore, smartphone technology advance-

ment has great potential to enable on-site measurement and rapid analysis at a lower cost, 

especially for the agricultural and food industries. 

This study presents a smartphone-based imaging system as a tool to acquire images, 

semi-automated CV algorithms, and ML for rapid assessment techniques to classify com-

mercial rice grains. This study used 15 commercial rice images to extract the morpho-

colorimetric parameters using the customized CV algorithms written in Matlab® R2021a. 

The ML model based on pattern recognition of artificial neural networks (ANNs) was de-

veloped to classify the commercial rice samples using morpho-colorimetric parameters as 

inputs. The proposed method and the classification model were then retrained to deploy 

the model in a different imaging condition to simulate real-time application. The proposed 

method would form the foundation for a smartphone-based app as a viable alternative to 

the conventional approach, a mobile, cost-effective, and user-friendly tool for the rapid 

assessment of the rice quality traits associated with consumer perception. 

2. Materials and Methods 

2.1. Rice Samples 

In this study, 15 commercial rice grain types were obtained from local retailers in 

Australia (Table 1). The samples consisted of two main categories of rice on the market: 

the white rice produced from whole-grain rice by a milling process to remove the outer 

bran layer of the grain and whole-grain (unpolished) rice. For each sample, 2 g of whole 

kernels were selected from each packet in triplicates, corresponding to a different total 

number of rice grains per type. 

Table 1. Details of commercial rice samples, including class ID, product category, type, origin, abbreviation, and the num-

ber of grains per rice type in triplicates obtained using Lightbox 1. 

Class ID Product Category Type Origin Abbreviation Number of Grains  

1 

White rice 

(Polished rice)  

Khoshihikari a Japan KHO 243 

2 Sushi rice a Japan SRS 276 

3 Bomba a Spain BMB 210 

4 Calasparra a Spain CLP 263 

5 Arborio b Italy ARB 126 

6 Calrose b Australia CLS 230 

7 Long-grain c Thailand LGW 195 
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8 Jasmine c Thailand JAS 297 

9 Basmati c Pakistan BAS 330 

10 

Whole grain rice 

(Unpolished rice) 

Biodynamic rice b Australia BDM 224 

11 Medium grain b Australia MGB 212 

12 Medium-grain—organic b India MOB 274 

13 Doongara c Australia DGR 308 

14 Black rice c Thailand BKR 317 

15 Wild rice—organic c USA WRO 335 
a short-grain; b medium-grain; c long-grain. 

2.2. Image Acquisition 

The images of rice samples were acquired using the rear camera (12-megapixel; focal 

length, f = 26 mm; aperture = f/1.8) of an iPhone 11 (Apple Inc., Cupertino, CA, USA). The 

Lightbox 1, a foldable lightbox tent with (Unbranded, Unhobest, China; dimensions: 40 

cm × 40 cm × 40 cm), consisting of two daylight LED strips with 70 LEDs each, was used 

to acquire the images from the top opening at approximately 15 cm (Figure 1). The images 

were obtained via an Adobe Lightroom application (v6.1.0 Adobe Inc., San Jose, CA, USA) 

to allow a custom white balance using a white reference paper. A black background was 

used to capture the white and brown rice, and white background was used for the black 

and wild rice to provide good contrast between the foreground and background images. 

The rice samples were arranged in non-touching and random positions to minimize noise 

by touching and overlapping rice grains into the ANN modelling. However, the code in-

cludes watershed segmentation procedures for deployment to facilitate extraction of in-

dividual rice features even when touching each other or overlapping. 

 

Figure 1. Experimental setup for image acquisition consisting of (1) a lightbox; (2) 70 pieces of two 

LED light strips; (3) a platform; (4) cardboard to place the grain for image acquisition; (5) rice sam-

ples; (6) top opening of the lightbox used to acquire the images using a smartphone. LED = light-

emitting diode. 

Figure 2 shows images obtained from each set of rice samples using the experimental 

setup. The images were acquired at a 3024 × 4032 pixels resolution and saved in Joint Pho-

tographic Group (JPG) format. Images captured using the smartphone were uploaded to 

the Matlab Drive® through Matlab Mobile for further processing using Matlab® R2021a on 

a personal computer (PC). 
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Figure 2. Examples of the 15 commercial rice sample images used in the study. The details of the rice samples based on 

the labeled class ID correspond to the list in Table 1. Rice sample images shown in the figure were cropped for presentation 

purposes only. 

2.3. Image Pre-Processing, Segmentation and Extraction of Morpho-Colorimetric Features 

The individual rice kernels were automatically analyzed to extract morpho-colori-

metric features from the images using customized CV algorithms modified from previous 

work on leaf classification [25,40] in Matlab® R2021a. The overview of the process is pre-

sented in Figure 3; it consists of the following steps: (i) image capturing and reading; (ii) 

image pre-processing; (iii) image analysis; and (iv) feature extraction to retrieve the mor-

pho-colorimetric features of the rice grains. 

 

Figure 3. Flow diagram of the method used to extract the morpho-colorimetric features from the rice grain image. 
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2.4. Morpho-Colorimetric Parameters of Commercial Rice Grains 

Table 2 shows the five morphometric and four colorimetric parameters extracted 

from the individual rice grain image. Unitless morphometric parameters were included 

in the study to simplify the image-capturing step and allow the user to independently 

capture the rice images in the lightbox at any object distance. The identification of single 

rice seeds was based on blob analysis from binarized images, which identifies contours of 

blobs to automatically label each grain to extract statistical shape measurements using the 

regionprops function in Matlab® R2021a. From that analysis, automatic statistics are cal-

culated, such as centroid, the aspect ratio and the area-parameter ratio index, computed 

using the major and minor axis length, area (A), and perimeter (P) of the rice images. The 

fractal dimension (FD) of the rice grains was determined using the box-counting method 

based on previously published work to recognize and analyze grapevine leaves [40] and 

medicinal plant leaves to extract similar features [25]. The binarized image of rice grains 

was also used as a mask on the original image to extract automatically colorimetric pa-

rameters from each rice grain of CIELab and RGB color scales. The yellowness index was 

computed from color scale parameters to determine the yellowness degree of the rice 

grains based on the previous work conducted by Rhim et al. [49]. The extracted features 

from the individual rice grains were automatically saved in Microsoft Excel Binary File 

Format (.xls) and were used as inputs for ML model development to classify the 15 com-

mercial rice grains. 

Table 2. The adimensional morpho-colorimetric features and indices that were used to develop the ML (machine learning) 

model to classify 15 types of commercial rice grains. 

Parameters Abbreviation Description 

Fractal dimension FD Fractal dimension obtained from the box-counting method [40]. 

Circularity Cir 
Degree of object roundness, which returned the value between 

0 to 1. The value 1 indicates a perfect circle. 

Aspect ratio AR The ratio between major and minor axis length [50]. 

Extent Ext The ratio between the rice grain area and bounding box area. 

Area-Perimeter Ratio Index APIdx APIdx = [(A/P) − (A/P)min]/(A/P)max 

CIELab color scale L, a and b 
Lightness (L), red to green color range (a), and yellow to blue 

color range (b) [40]. 

Yellowness Index YI Degree of yellowness [49]. 

2.5. Statistical Analysis 

A one-way analysis of variance (ANOVA; p < 0.05) and Tukey’s Honestly Significant 

Difference (HSD) post hoc test (α = 0.05) were conducted using Minitab 19.1 (Minitab Inc., 

State College, PA, USA). It was performed to assess whether there were significant differ-

ences between the means of the morpho-colorimetric parameters of the commercial rice 

samples obtained using Lightbox 1. 

Multivariate data analysis based on the principal component analysis (PCA) and 

cluster analysis was conducted using a customized code written in Matlab® R2021a. The 

main use of the PCA in this study was to find relationships between variables and samples 

as they are constructed using covariance methods as a parameter engineering justification 

for the ANN modelling presented [51–55]. Besides, cluster analysis helps to visualize the 

relative grouping of commercial rice samples according to these parameters. This type of 

analysis to support parameter engineering has been used in several ANN works for food 

and beverage applications [56–58] and helps non-experts in AI or machine-learning un-

derstand better the relationships between different parameters from the physicochemical 

point of view. This type of multivariate data analysis also helps to clarify the “black-box” 

properties of supervised machine learning such as ANN and to visualize that ANN cor-

rectly estimates the targets and that they are not artifacts from non-related inputs. 
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2.6. Machine Learning Modeling 

The classification ML models were developed using the ANN algorithm for pattern 

recognition using a customized code written in Matlab® R2021a. The model was devel-

oped by testing 17 training algorithms (data not shown), which consisted of three types 

of main functions: (i) backpropagation with Jacobian derivatives; (ii) backpropagation 

with gradient derivatives; and (iii) supervised weight and bias training functions [59]. The 

optimum classification algorithm was then selected by assessing the accuracy and perfor-

mance of the model, indicated based on mean squared error (MSE); to assess any signs of 

under- or over-fitting, the MSE value for the training stage must be lower than the value 

for the testing stage. Furthermore, the number of inputs must be <70% of the number of 

samples to avoid over-fitting, which this model meets with only nine inputs [60–62]. Fur-

thermore, the receiver operating characteristic (ROC) curves were used to analyze the 

model’s sensitivity (true positive rate) and specificity (true negative rate) to classify each 

type of rice [63]. A neuron trimming exercise was conducted using ten, seven, five, and 

three hidden neurons to find the optimal neuron number, followed by retraining the 

model several times to assess the consistency of the results and find the best model based 

on accuracy and performance. The number of neurons must also be considered to assess 

under- or over-fitting; a larger number of neurons, usually >10, is more likely to lead to 

over-fitting, while a very low number, usually below three, may lead to under-fitting [56]. 

In this study, Model 1 was developed using a data set extracted from the rice images 

obtained from Lightbox 1. After the screening, the Bayesian Regularization (BR) with 

seven neurons was selected because the model presented high accuracy, best perfor-

mance, and no under- or over-fitting signs. The model thus consisted of a two-layer feed-

forward neural network with a sigmoid function using nine morpho-colorimetric param-

eters as inputs to classify the grains according to 15 types of commercial rice (Figure 4). 

The data set from the population of the rice grain samples for training and testing was 

randomly divided into 70% (n = 2687) and 30% (n = 1152), respectively. 

 

Figure 4. Diagram of a neural network model (Model 1) of the Bayesian Regularization algorithm with seven hidden 

neurons and sigmoid function showing nine inputs of morpho-colorimetric parameters and 15 outputs of commercial rice 

grains. The abbreviations for the morpho-colorimetric parameters (inputs) and commercial rice grains (outputs) are 

shown in Tables 1 and 2. w = weight; b = bias. 

2.7. Retraining and Deployment of the Machine Learning Model 

A test was conducted to evaluate the deployment of the proposed method to simulate 

the practical application in a different condition. Therefore, a new data set corresponding 

to the 15 rice samples was acquired using Lightbox 2 (2D PhotoBench 120, Ortery Tech-

nologies Inc., Irvine, CA, USA; Dimension = 61.0 cm × 61.0 cm × 71.1 cm) with 5700 K 

daylight LED lighting, using similar approaches to those described in Section 2.2 with 

slight modification. The same smartphone was attached on a mini tripod at 15 cm from 
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the samples. The images were acquired using Adobe Lightroom to set a custom white 

balance using white reference paper. Data from eight replicate images containing around 

50 rice grains in an image were acquired and extracted from the customized CV codes 

described in Section 2.3. 

The new data from Lightbox 2 were fed to retrain the original Model 1 using the steps 

mentioned earlier in Section 2.6; the retrained Model 1 was then named Model 2. It was 

developed based on the nine morpho-colorimetric parameters as inputs to classify 15 com-

mercial rice grains as targets, similar to the original Model 1 using a random data division 

of 70% (n = 6887) for training and 30% (n = 2952) for testing data sets (Figure 5). After 

testing the model on the 17 ANN algorithms, followed by the neuron trimming test, the 

best model was obtained using the BR algorithms with a sigmoid activation function and 

ten hidden neurons. 

 

Figure 5. Diagram of a neural network model (Model 2) of the Bayesian Regularization algorithm 

with seven hidden neurons and sigmoid function showing nine inputs of morpho-colorimetric pa-

rameters and 15 outputs of commercial rice grains. The abbreviation for morpho-colorimetric pa-

rameters (inputs) and commercial rice grains (outputs) are shown in Tables 1 and 2. w = weight; b 

= bias. 

Deployment accuracy was tested using a new image captured for each type of rice 

obtained from Lightbox 2 using the same procedure as those used to develop Model 2. 

The image acquired using the smartphone was sent to Matlab Drive®, followed by the 

following steps to process the retrieved image in a laptop computer to detect individual 

rice grains, extract morpho-colorimetric features, and classify them according to their cor-

responding class ID using the developed ML model embedded in the code. Finally, a de-

cision image was displayed with the labeled predicted class ID for each rice grain in the 

image. Figure 6 shows the flow diagram of the rice classification process. 

 

Figure 6. Flow diagram of the rice classification using computer vision and machine learning analysis. ANN = artificial 

neural network. 
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3. Results 

3.1. Morpho-Colorimetric Parameters of Commercial Rice Grains 

Table 3 shows the ANOVA results of the morpho-colorimetric parameters from the 

dataset obtained using the foldable lightbox tent for each type of rice. Significant differ-

ences (p < 0.05) were observed between the samples in all parameters. The mean values 

for the FD obtained ranged from 1.57 (LGW) to 1.83 (BMB). The FD values were higher 

among the short-grain samples (the KHO, the SRS, the BMB, and the CLP), while medium-

grain samples mainly had intermediate FD values. 

The WRO had the lowest mean for Cir (0.46), while the short-grain rice samples, such 

as the CLP (0.91) and the BMB (0.91), were among the samples with high mean values. 

The AR is the ratio between the major and minor axis length and showed low mean values 

among the short-grain rice samples (1.63–1.97) compared to the medium- and long-grain 

rice samples (2.06–5.19). The short-grain rice samples such as the CLP (0.74), the BMB 

(0.73), the KHO (0.72), and the SRS (0.72) were the rice samples with high mean values for 

Ext, and the WRO (0.45) was the rice sample with the lowest Ext. The APIdx calculated 

using the pixel area, and the perimeter ratio showed that the BAS (0.27) had the lowest 

mean value among rice samples. Among all the samples, the WRO had a high AR value 

and low values for Cir, Ext, and APIdx, showing that its size and shape were different 

from the other types of rice, which are very long and narrow, reflecting its characteristics 

as a long and slender-shaped grain. 

The L mean value was higher for the white rice samples, such as the JAS (59.46), the 

LGW (59.38), and the BAS (59.16), and lower L values were obtained for highly pigmented 

rice, such as the BKR and the WRO (27.54 and 29.60, respectively). As opposed to the L, 

the YI for the WRO and the BKR was higher than the white rice samples. The inverse 

trends for the L and YI parameters described the rice grain’s lightness and yellowness, 

respectively. A low positive value was observed in mean values of a for all white rice 

samples, and higher mean values were obtained for both highly pigmented rice samples. 

The unpolished rice samples had a higher b value compared to the white rice samples. 

3.2. Multivariate Data Analysis 

Figure 7a shows the PCA biplot for the nine morpho-colorimetric parameters and the 

15 commercial rice samples from the data set obtained from the foldable light box tent. 

The PCA explained the 82.7% total data variability (PC1: 59.8%; PC2: 22.90%). Based on 

factor loadings (FL), principal component one (PC1) was characterized by AR (FL = 0.40) 

and YI (FL = 0.34) on the positive side of the axis, whereas Ext (FL = −0.39), Cir (FL = −0.39), 

and L (FL =−0.34) represented PC1 on the negative side. The principal component two 

(PC2) was mainly represented by b (FL = 0.43) and Y1 (FL = 0.41) on the positive side, and 

L (FL = −0.35) on the negative side. 

The colorimetric parameters, such as YI, b, and a, were positively related and associ-

ated with the BKR and, to a lesser extent, the brown rice samples, such as the MGB, the 

DGR, and the BDM, which are located in the center of the PCA. In contrast, the L was 

negatively related to the latter parameters and associated with the MOB (brown rice). The 

morphometric parameters such as Ext, Cir, FD, and APIdx had a positive relationship and 

were associated with most rice samples belonging to the short and medium grains. Pa-

rameter AR was negatively related to the latter parameters and associated with the long-

grain rice (JAS, LGW, and BAS). 

Figure 7b shows the cluster analysis using the Euclidean linkage of PCA based on the 

nine morpho-colorimetric parameters to group the rice. The unpolished rice, the WRO, 

and the BKR were found in the same group, while the rest of the rice samples were clus-

tered in a group. Likewise, Figure 7a showed groups of rice samples identified for black 

rice (BKR) and wild rice (WRO), brown rice (DGR, MGB, and BDM), and long-grain (JAS, 

LGW, and BAS) rice. However, there was no clear distinction between short-grain (BMB, 

CLP, KHO, and SRS) and medium-grain (ARB and CLS) rice. 
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Table 3. The mean and ± standard error (SE) values for morpho-colorimetric parameters of the commercial rice samples. 

Rice 

Sample 
n FD SE Cir SE AR SE Ext SE APIdx SE L SE a SE b SE YI SE 

KHO 243 1.82 a ±0.08 0.89 b ±0.02 1.63 h ±0.09 0.72 a ±0.04 0.70 c,d ±0.08 55.96 d ±1.61 1.93 e ±0.55 −1.61 f ±1.81 −4.17 i ±4.69 

SRS 276 1.82 a ±0.08 0.90 a,b ±0.02 1.64 h ±0.10 0.72 a,b ±0.04 0.71 c,d ±0.08 53.80 f ±1.81 2.05 e ±0.17 −0.91 e ±0.42 −2.42 g,h ±1.12 

BMB 210 1.83 a ±0.10 0.91 a,b ±0.04 1.61 h ±0.11 0.73 a ±0.05 0.75 c ±0.20 55.20 e ±1.75 1.89 e ±0.38 0.70 c ±0.65 1.78 e,f ±1.64 

CLP 262 1.82 a ±0.12 0.91 a ±0.08 1.58 h ±0.16 0.74 a ±0.05 0.69 d ±0.31 54.62 e ±2.09 2.52 c ±0.37 −0.34 d ±0.40 −0.88 g ±1.05 

ARB 126 1.66 c,d ±0.04 0.83 c ±0.02 1.94 g ±0.10 0.67 c ±0.05 1.17 a ±0.10 54.87 e ±1.71 1.34 f,g ±0.31 −0.16 d ±0.82 −0.40 f,g ±2.16 

CLS 230 1.67 c ±0.18 0.83 c ±0.04 1.97 g ±0.20 0.68 c ±0.07 0.75 c ±0.07 56.71 c ±3.31 1.27 g ±0.52 −0.35 d ±1.01 −0.91 g ±2.52 

LGW 195 1.57 f ±0.10 0.61 g ±0.04 3.32 c ±0.34 0.57 d,e ±0.13 0.46 f ±0.08 59.39 a ±1.06 1.31 g ±0.19 −1.82 f ±0.31 −4.38 i ±0.76 

JAS 297 1.59 e,f ±0.10 0.64 f ±0.09 3.18 d ±0.47 0.59 d ±0.14 0.50 f ±0.21 59.50 a ±3.41 1.30 g ±0.40 −1.43 f ±0.36 −3.56 h,i ±0.50 

BAS 330 1.58 f ±0.17 0.59 h ±0.11 3.59 b ±0.66 0.55 e ±0.15 0.27 h ±0.18 59.16 a ±1.47 1.52 f ±0.25 −1.53 f ±1.60 −3.71 h,i ±3.87 

BDM 224 1.62 d,e ±0.16 0.82 c ±0.03 2.06 g ±0.18 0.69 b,c ±0.08 0.83 b ±0.11 53.10 g ±1.93 2.27 d ±0.30 3.91 b ±1.03 10.55 d ±2.88 

MGB 212 1.59 e,f ±0.12 0.79 d ±0.06 2.27 f ±0.26 0.6 c ±0.10 0.71 c,d ±0.29 55.20 e ±1.46 1.97 e ±0.27 4.72 a ±2.02 12.22 c,d ±5.23 

MOB 274 1.71 b ±0.17 0.78 d ±0.06 2.33 f ±0.31 0.67 c ±0.10 0.49 f ±0.11 58.01 b ±0.97 1.99 e ±0.20 1.08 c ±0.63 2.67 e ±1.57 

DGR 308 1.59 e,f ±0.09 0.67 e ±0.03 3.06 e ±0.23 0.60 d ±0.12 0.63 e ±0.09 52.99 g ±1.65 1.51 f ±0.29 4.86 a ±1.81 13.18 c ±5.09 

BKR 317 1.59 e,f ±0.09 0.60 g,h ±0.05 3.56 b ±0.39 0.56 e ±0.14 0.50 f ±0.11 27.54 i ±2.22 14.64 a ±1.32 4.97 a ±2.35 25.11 a ±10.43 

WRO 335 1.66 c ±0.12 0.46 i ±0.05 5.19 a ±0.82 0.45 f ±0.16 0.39 g ±0.12 29.60 h ±2.32 7.95 b ±0.94 4.19 b ±2.88 19.59 b ±13.50 

Mean values with different letters for each parameter indicate significant differences based on ANOVA (p < 0.001) and Tukey’s honestly significant difference (HSD) test (α < 0.05). 

Abbreviations of samples are found in Table 1 and morpho-colorimetric parameters in Table 2. 
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(a) (b) 

Figure 7. The multivariate data analysis for (a) principal component analysis (PCA) biplot for morpho-colorimetric pa-

rameters of 17 commercial rice types, where PC1 = principal component one, PC2 = principal component two; and (b) 

cluster analysis of the commercial rice samples based on morpho-colorimetric parameters. The abbreviations for morpho-

colorimetric parameters and rice samples are shown in Tables 1 and 2. 

3.3. Machine Learning Modelling 

Table 4 shows the statistical results of classifying the commercial rice grains based on 

nine morpho-colorimetric parameters using the Bayesian Regularization algorithm. Both 

classification models had high overall accuracies (>90%), with a lower MSE value for train-

ing (MSE < 0.01) than testing (MSE = 0.01) stages. Moreover, comparable accuracy was 

obtained for the training and testing stage for both models. This showed that the models 

had no signs of under- or over-fitting. 

Table 4. Statistical results of the ANN model using Bayesian Regularization algorithm of the artifi-

cial neural network. 

Stage Sample (n) Accuracy (%) Error (%) Performance (MSE) 

Model 1 (Neurons = 7) 

Training 2687 95.0 5.0 <0.01 

Validation - - - - 

Testing 1152 87.8 12.2 0.01 

Overall 3839 92.9 7.1 - 

Model 2 (Neurons = 10) 

Training 6887 91.6 8.4 <0.01 

Validation - - - - 

Testing 2952 88.5 11.5 0.01 

Overall 9839 90.7 9.3  

Figure 8 shows the receiver operating characteristic (ROC) curve of the true-positive 

(sensitivity) versus the false-positive rates for both ANN models for classifying commer-

cial rice grains. Based on the plot, the curves are closer to the true-positive rate at the y-

axis, showing that the classification model had high true-positive rates (sensitivity) for 

classifying the rice samples correctly. It also showed that the models had a high predictive 

power to classify into each type of rice. 
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(a) (b) 

Figure 8. The receiver operating characteristic (ROC) curve of the artificial neural network models to classify 15 commer-

cial rice samples using morpho-colorimetric parameters as inputs for (a) Model 1 and (b) Model 2. The abbreviations for 

rice samples are shown in Table 1. 

3.4. Evaluation of Commercial Rice Grains Classification Using ML 

The deployment accuracies of the developed models for classifying new data sets of 

rice samples are shown in Table 5. The model’s performance in classifying the rice samples 

(n = 50) showed a high mean accuracy of 93.9%. The results also showed that the model 

successfully classified all the rice samples according to their respective rice class with 

≥82%, which is acceptable for the application. 

Table 5. Results of deployment accuracy when tested on the new data set obtained from 2D Photo-

Bench 120 lightbox. The abbreviations for the rice samples are shown in Table 1. 

Rice Sample Class Deployment Accuracy (%) 

KHO 1 96.0 

SRS 2 94.2 

BMB 3 96.0 

CLP 4 82.0 

ARB 5 94.0 

CLS 6 94.0 

LGW 7 87.8 

JAS 8 98.0 

BAS 9 88.0 

BDM 10 94.0 

MGB 11 98.0 

MOB 12 92.0 

DGR 13 96.0 

BKR 14 98.0 

WRO 15 100.0 
 Mean (%) 93.9 

4. Discussion 

4.1. Morpho-Colorimetric Features 

The developed codes to extract nine morpho-colorimetric parameters were modified 

from previous works on leaf classifications for grapevine cultivars [40] and Chinese me-

dicinal plants [25]. The novelty in this work was the incorporation of dimensionless 
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morphological parameters, so the distance of the camera from the rice grains can vary 

with different setups. For fractal analysis parameters, the FD was formerly used by Jino-

rose et al. [64] to examine the effect of the parboiling process and cooking time on the 

physical changes of cooked rice grains based on image analysis. The morphometric pa-

rameters could discriminate short-grain rice groups indicated by high mean values for 

FD, Cir, Ext, APIdx, and low AR. Moreover, Cir and AR showed their potential as key 

parameters for ML modeling in classifying the ARB and the CLS under a similar grouping. 

This is in accordance with Calingacion et al. [37], who suggested that these types of rice 

were categorized as medium-length with bold-shape grains. 

The colorimetric parameters extracted from the rice showed that white rice and un-

polished rice vary because of the pigmentation on the bran layer of unpolished grain. Be-

sides, the ARB, the CLP, and the BMB rice samples used for risotto and paella have chalky 

kernels that are more opaque than the translucent rice cultivars such as the LGW, JOM, 

and JSR [65]. High pigmentation on the BKR and the WRO rice samples discriminated by 

high a (redness) value were in accordance with previous research, which suggested that 

the pigmentation for those types of rice was related to the reddish color on the rice grains 

[17,66]. The high pigmentation corresponds to the carotenoid and anthocyanin content, 

which is linked with significant health benefits [67]. It is known that different colors of 

rice grains may depend on several factors, such as the varieties, the milling degree, the 

aging, and the parboiling process. A previous study showed that the relationship between 

the chalkiness and the physicochemical properties in rice was reflected by high total-

starch accumulation, low total protein, and amino acids in the chalky part [68]. Besides, 

the milling process to polish the brown rice by removing the bran layer for white rice 

production could also affect the color variation in rice grains because different types of 

rice may be polished at different milling degrees during the process [21,69]. Therefore, the 

significant differences in grain pigmentation were considered relevant parameters to de-

velop the classification model when using supervised ML in the parameter engineering 

process of supervised ML modeling. 

4.2. Multivariate Data Analysis 

Based on PCA and cluster analysis, it was found that most short- and medium-grain 

rice samples were grouped, as shown by the high similarities among the rice samples, 

which could be explained by their positive associations with FD, Cir, and Ext and negative 

associations with AR. Commonly, the AR is used to categorize the rice into three shape 

classes: bold (<2), medium (2.1–3), and slender (>3) [70]. This could be explained by pre-

vious research conducted by Calingacion et al. [37], in which both short- and medium-

grain rice may have bold- and medium-shaped rice. As the PCA and cluster analysis 

showed an unclear separation among the rice samples, it was important to explore the 

potential of machine learning modeling to classify the rice. 

4.3. Machine Learning Modeling 

For ML models developed in this study, comparable MSE values were obtained for 

the training and testing stage, implying that the developed model showed no signs of 

over-fitting [71]. A similar finding from previous work was reported based on a compar-

ative empirical study between BR and LM algorithms to develop the ANN model for so-

cial data prediction. The BR showed better performance than the LM algorithm for data 

prediction and supported its performance in dealing with high complexity data [62]. 

A previous study reported the classification of three types of commercial Basmati rice 

images using a k-Nearest Neighbor (k-NN) classifier based on morphometric parameters, 

such as the area, major axis, minor axis, eccentricity, and perimeter [72]. However, the 

overall classification accuracy was 79%, which could lead to poor estimation during de-

ployment. Moreover, using specific dimensions from rice may jeopardize the accuracy of 

models using different settings, especially camera distance from the objects of interest. In 

contrast, Anami et al. [73] compared classification models developed using the Multilayer 
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Back Propagation Neural Network (BPNN), the Support Vector Machine (SVM), and k-

NN to classify five levels of adulteration in bulk paddy grain. The latter model was devel-

oped using the combination of color and texture parameters extracted from the images. 

The BPNN model was identified as the best model to classify the rice adulteration level at 

an average of 93.31%. However, it required a high number of input data (40 principal 

component coefficients) compared to the present study, which used only nine easily de-

rived morpho-colorimetric inputs to obtain a comparable accuracy. Therefore, this study 

demonstrates the importance of selecting the appropriate inputs, classifiers, training algo-

rithms, and hyperparameters to optimize the classification accuracy, which may help 

avoid under- and over-fitting and mitigate the high computational requirements. 

The default data division of 70% for training and 30% for testing was used in the 

study as they represented a sufficient number of samples in each category. This method 

uses independent sets of samples for each stage and evaluates the overall accuracy by 

including all samples. A similar data division to develop ANN models was used in pre-

vious studies [35,59,74]. Besides, several retraining attempts were conducted to assess the 

consistency of the results, obtaining similar results in every attempt. Furthermore, the de-

ployment using new data further validates the accuracy and performance of the model. 

4.4. Deployment of the Classification Machine Learning Model 

One of the challenges of supporting practical application in a different controlled en-

vironment is the high sensitivity to lighting conditions and camera settings, contributing 

to high misclassification when testing on a new data set obtained under different condi-

tions. Therefore, Model 2 was developed using the new data sets obtained from Lightbox 

2 to evaluate the deployment accuracy of the initial Model 1. The high deployment accu-

racy showed that the developed model based on adimensional morphological parameters 

is robust and reliable. Unlike the existing classification models, the ANN model devel-

oped in this study included a comprehensive and complex range of commercial rice sam-

ples as targets, including white, brown, black, and wild rice. Therefore, the model appears 

to exhibit robustness in classifying the different commercial rice grains available globally 

in the market. 

The advantage of using dimensionless parameters is that the user is allowed to cap-

ture images without strict settings. The demonstrated method is independent of the type 

of camera and the camera’s distance from the object. Moreover, the classification model 

was developed using two lightbox systems, increasing model generalizability and adapt-

ability to new data. 

The work in this study is highly significant to the rice industry as the extracted mor-

pho-colorimetric parameters were associated with consumer perceptions of raw [6–9] and 

cooked rice [6,10,11] quality. Therefore, these parameters could predict consumer percep-

tions of rice associated with the appearance quality traits for rice types. Furthermore, the 

automatic extraction of features and ANN modelling will help the industry to certify rice 

types and prevent adulteration [75]; furthermore, the ANN modelling based on feature 

extraction as inputs could also be used to target consumer perception and quality param-

eters as it has been performed for other food and beverage products [57,59,76]. 

This grain-by-grain scale approach proposed for quality assurance may avoid man-

ual analysis and destructive assessment and save time compared to traditional descriptive 

sensory analysis with trained panelists. The effort of utilizing a smartphone camera to 

capture the images paired with a semi-automated CV algorithm could accelerate this de-

velopment, making it cost-effective, user-friendly, rapid, and convenient. Moreover, since 

the smartphone is portable, it can also support on-site assessment instead of using spe-

cialized equipment in the laboratory. 
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5. Conclusions 

This study showed the development of a cost-effective and rapid method to classify 

commercial rice samples obtained from a smartphone camera. It was achieved by inte-

grating CV algorithms to extract morpho-colorimetric parameters and ML to classify 15 

types of commercial rice grains. High classification accuracies were obtained based on ML 

models developed using the dimensionless parameters as inputs captured from different 

lightboxes, which increases model generalization. Further studies are required to link 

these easily obtained parameters with other quality traits and compositional parameters 

of rice grains that are important for the industry. Moreover, the methodologies proposed 

in this study can be applied by the industry to develop a smartphone application inte-

grated with cloud-based computing to automatically assess consumer perception associ-

ated with rice quality traits and in real-time. The latter is achieved by acquiring consumer 

sensory perceptions through images of rice and cooked rice. This can benefit the industry 

in monitoring rice quality conveniently along the rice supply chains as well as at the con-

sumer end. 
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