
sensors

Article

Unsupervised Machine Learning Applied to Seismic
Interpretation: Towards an Unsupervised Automated
Interpretation Tool

Alimed Celecia 1, Karla Figueiredo 2,* , Carlos Rodriguez 3, Marley Vellasco 1,* , Edwin Maldonado 1,
Marco Aurélio Silva 4, Anderson Rodrigues 1, Renata Nascimento 3 and Carla Ourofino 3

����������
�������

Citation: Celecia, A.; Figueiredo, K.;

Rodriguez, C.; Vellasco, M.;

Maldonado, E.; Silva, M.A.;

Rodrigues, A.; Nascimento, R.;

Ourofino, C. Unsupervised Machine

Learning Applied to Seismic

Interpretation: Towards an

Unsupervised Automated

Interpretation Tool. Sensors 2021, 21,

6347. https://doi.org/10.3390/

s21196347

Academic Editor: Andrea Cataldo

Received: 20 July 2021

Accepted: 17 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electrical Engineering Department, PUC-Rio, Rio de Janeiro 22451-900, Brazil;
acelecia@aluno.puc-rio.br (A.C.); edmaldonadot@hotmail.com (E.M.); andersonrds.rj@gmail.com (A.R.)

2 Department of Informatics and Computer Science, Institute of Mathematics and Statistics, State University of
Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, Brazil

3 Tecgraf Institute, PUC-Rio, Rio de Janeiro 22451-900, Brazil; carlosrodriguez@tecgraf.puc-rio.br (C.R.);
rlins@tecgraf.puc-rio.br (R.N.); ourofino@tecgraf.puc-rio.br (C.O.)

4 Department of Electronics and Telecommunications, State University of Rio de Janeiro (UERJ),
Rio de Janeiro 20550-900, Brazil; marcoground@gmail.com

* Correspondence: karlafigueiredo@ime.uerj.br (K.F.); marley@ele.puc-rio.br (M.V.)

Abstract: Seismic interpretation is a fundamental process for hydrocarbon exploration. This activity
comprises identifying geological information through the processing and analysis of seismic data
represented by different attributes. The interpretation process presents limitations related to its high
data volume, own complexity, time consumption, and uncertainties incorporated by the experts’
work. Unsupervised machine learning models, by discovering underlying patterns in the data, can
represent a novel approach to provide an accurate interpretation without any reference or label,
eliminating the human bias. Therefore, in this work, we propose exploring multiple methodologies
based on unsupervised learning algorithms to interpret seismic data. Specifically, two strategies
considering classical clustering algorithms and image segmentation methods, combined with feature
selection, were evaluated to select the best possible approach. Additionally, the resultant groups of
the seismic data were associated with groups obtained from well logs of the same area, producing
an interpretation with aggregated lithologic information. The resultant seismic groups correctly
represented the main seismic facies and correlated adequately with the groups obtained from the
well logs data.

Keywords: unsupervised machine learning; seismic interpretation; image segmentation; well
logs clustering

1. Introduction

A key aspect of any hydrocarbon exploration activity is understanding the subsurface
structure and its properties in order to determine the existence of hydrocarbon deposits
such as petroleum or natural gas. Geophysical exploration can be defined as the search
for commercial deposits of useful minerals, including hydrocarbons [1]. As a fundamental
process in exploration, seismic interpretation comprises the identification of geological
information through the processing and analysis of seismic data [2]. Interpretation can also
be considered as Deriving a simple, plausible geologic model that is compatible with all
observed data. The model is never unique and refining it involves a sequence of somewhat
arbitrary choices [1]. These data, after they are acquired, are processed by transforming
them into different attributes that can highlight some geologic structure, stratigraphic
feature, or rock properties.

Usually, the number of generated attributes is in the order of tens [3], producing a
considerable amount of data that can be redundant or irrelevant for a given task. Moreover,
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individual seismic attributes may be related to some subsurface features, helping their
identification. Examples are root mean square amplitude for delineating direct hydro-
carbon indicators [4] or geometric attributes for fault/fracture detection [5]. As a result,
applying a multi-attribute analysis is suggested, in order to improve the outcome of the
interpretation process.

An interpreter is a specialist who analyzes this large volume of data to define the
most likely subsurface model and geological evolution through seismic facies analysis.
Interpretation is an iterative process in which the expert has to employ his/her experience,
skills, and knowledge in the area of interest to select the best set of attributes that describes
a geological layer [6]. Therefore, interpreters should deeply understand each aspect of the
available seismic data, its acquisition and processing, as well as the technologies employed
for interpretation assistance and attributes generation [7]. This knowledge is particularly
important for avoiding errors or common pitfalls in seismic data interpretation.

The interpretation process is then limited by its complexity, time consumption, un-
certainties added by the subjectivity of the expert analysis, the quality of his/her work,
and the limitations of the software employed in workstation-based interpretations. More-
over, the process should adequately integrate geological, geophysical, petrophysical, and
engineering data [2]. Such a huge volume of data to process can be challenging even for
an experienced interpreter. Additionally, it can result in a suboptimal solution, producing
losses in the order of millions of dollars during hydrocarbon’s exploration [8,9].

An alternative approach for this process is the application of machine learning algo-
rithms on seismic data. Such techniques can contribute to speeding up the activity through
an accurate interpretation that can serve as valuable assistance for the experts. For seismic
signal classification tasks, many supervised machine learning models, such as Support
Vector Machine (SVM) [10], Decision Trees [11], Multilayer Perceptron Neural Networks
(MLP), or Convolutional Neural Networks [12,13], have been explored. These types of
algorithms employ predefined labels (product of the human interpretation of seismic data)
to train the models, optimizing their label recognition capacity in a given dataset. In this
way, their success depends on the seismic data labels and, consequently, on the interpreter’s
overall performance.

Unsupervised Machine Learning models, in contrast, are a category of algorithms
that, without any reference or label, discovers underlying patterns and relationships in
the data. Applying such a paradigm of algorithms can identify new relationships between
seismic attributes, which are unknown beforehand, assisting the expert in generating a
more accurate interpretation. A large amount of seismic data and the lack of labels available
in new exploration [14] add to the advantages of applying these models. Moreover, the
application of this type of algorithm can be extended to data other than seismic, such as well
logs [15], obtaining the structures of lithological data. The association between those results
and the seismic data can produce a more enriched and informative interpretation model.

This algorithm category can be separated into two main groups: classical clustering
algorithms and image segmentation algorithms. Classical clustering algorithms have been
applied successfully in the seismic and well data exploration areas separately. Examples
are self-organizing maps [5], k-Means [16], Fuzzy c-Means [17], or Growing Neural Gas
(GNG) [18], among others. Those studies concentrate on the proposal and evaluation
of a single model, limiting their analysis by not validating or comparing their results
with other state-of-the-art algorithms over the same data. A proper evaluation requires
a comparison with other algorithms to contrast and discuss the results. Additionally,
the advantage offered of applying a feature selection process is not commonly explored,
and when included, is limited to classical models such as Principal Component Analysis
(PCA) [5,19] or Independent Component Analysis (ICA) [16].

On the other hand, image segmentation algorithms are not as common as classical
clustering algorithms in seismic interpretation problems. In general, their utilization is
limited to segmenting a specific seismic object, as in [20,21] for salt boundaries or [22]
for salt diapir. In these approaches, seismic slices are treated as image sequences that
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are processed independently. Therefore, a postprocessing step is required to combine the
results in a seismic volume. More recently, Unsupervised Deep Learning architectures,
such as Autoencoders or Generative Adversarial Networks (GANs), have been success-
fully applied on seismic interpretation problems [23–25], demonstrating similar or better
performance than more traditional image segmentation methods. Additionally, feature
dimensionality reduction [26] and multitask learning [27] have been recently proposed for
high dimensional images processing.

One limitation of applying machine learning models to seismic data interpretation is
the size of the data to be processed [28], which is usually in the order of tens of gigabytes
(Gbs) [29]. When processed point to point, this amount of data makes it computationally
impossible to apply such algorithms without a potent computing power [30]. Moreover,
when complex Deep Learning architectures are utilized, the demanded computing power
is even higher, requiring servers with multiples GPUs of proper memory to accommo-
date the Gbs of seismic data for more accurate and efficient 3D processing. A particular
advantage of traditional image segmentation algorithms is the possibility to group data
points considering spatial relationships, producing a novel representation that can alleviate
the volume of the computing power demanded. Such groups can be associated through
unsupervised algorithms or similarity functions to produce a unified result in the whole
seismic volume. Given that it is only needed to process the groups, the computing power
demanded is significantly reduced, without losing spatial information. A variant of such
an approach was explored in [18], in which the GNG algorithm is employed to cluster
amplitude voxels that are then associated using a similarity function.

In this work, we aim to explore the use of unsupervised machine learning models
and image segmentation algorithms in a multi-attribute analysis for both seismic data and
well logs. The main objective is to propose an automated seismic interpretation model
to associate lithologic information obtained from groups with similar well log patterns
to seismic facies. Both the seismic facies and the well logs groups are developed using
unsupervised algorithms.

To define the best model for seismic data, we evaluate two strategies for data represen-
tation: one directly clustering each point in the seismic volume (Pointwise Data Clustering);
and another utilizing image segmentation algorithms to define spatial groups (Spatial
Groups Data Clustering). Our proposal is based on the hypothesis that by employing unsu-
pervised models, the geometrical and spatial/temporal relationships of seismic attributes
(characterizing seismic facies patterns) can be correlated to lithologies defined by well log
patterns. The obtained information can be applied to predict associated lithologic domains
where no wellbore information is available in a fully automated procedure. Additionally,
we assess several feature selection methods that can suggest the subset of seismic attributes
more relevant for the description of the seismic data without redundancies in a pure al-
gorithmic analysis. The development and evaluation of these models took into account
the input of a specialist (geophysicist), who provided a valuable opinion throughout the
work. Different configurations are evaluated and, based on the results obtained, the best
approaches in each stage of the processing pipelines are defined in the final unsupervised
interpretation model.

Therefore, the main contribution of this paper is the proposition of an interpretation
model that can automatically discover the main seismic facies in the seismic data and
associate them to lithologic information from well logs of the area. The interpretation
model is based on unsupervised algorithms to process both seismic and well logs data.
The proposed seismic data processing pipeline is described in detail, evaluating and
comparing multiple models of unsupervised seismic interpretation that demand smaller
computational power than Deep Learning models. Finally, the proposed interpretation
model considers three unsupervised association methods between the groups formed in
each domain (seismic and well logs data).

The remainder of this paper is organized as follows: Section 2 describes the materials
and methods employed to develop the algorithms utilized in the data processing pipeline;
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Section 3 describes the results obtained from all the approaches used in the unsupervised
interpretation model; finally, Section 4 provides the conclusions of the work.

2. Materials and Methods

The proposed unsupervised automated interpretation model is based on applying
algorithms capable of recognizing patterns and relationships in the data without further
information. The output of such a paradigm is the creation of different groups that separate
the data that share an underlying pattern. The devised interpretation model explores the
relationship between such clusters of seismic data and seismic logs to associate lithologic
information to seismic facies. Therefore, the methodology is based on two independent
data processing pipelines: one for the seismic data and the other for the well logs. The next
subsection briefly introduces the theoretical aspects of seismic and well logs data, followed
by subsections that describe each pipeline in detail.

2.1. Fundamentals of Seismic Reflection, Seismic Attributes and Well Logging

The main seismic method used in the oil industry is reflection. In this method, a
source (explosives or vibrators on land, air-guns in marine environment) generates sonic
waves, which propagate down into the Earth, are reflected at interfaces, propagate up, and
are recorded by hundreds or thousands of receivers (geophones on land, hydrophones in
marine) spread out on the surface.

For the reflection method, interfaces are boundaries (in general related to the top and
base of geological layers) between two media with different levels of acoustic impedance
(defined by the product of sound velocity and density). Velocity and density of rocks,
layers, or sequence of layers, are defined by mineralogical content, and depositional and
diagenetic (physical and chemical changes suffered by the rock after its deposition) process
occurred in this rock along the geological time (from few thousands to hundreds of millions
of years).

The amount of reflected energy at each interface is proportional to the acoustic
impedance contrast between the layers above and below this interface. Thus, if acoustic
impedance decreases from the upper to the lower layer, the amplitude (related to the square
root of the reflected energy) is positive. This is common, as, in general, older rocks are
below the newest ones, and these older rocks have, as a rule, higher velocities and densities.
An interface of negative amplitude with high interest to hydrocarbon exploration is when
the deeper layer is a rock with high porosity, and the pores are filled with oil or gas. Such a
rock has relatively low velocity and density because the high number of pores makes wave
propagation harder (decreasing velocity). The fluids filling the pores have a density much
lower than the minerals of the rock.

In addition to the amplitude, key parameters that define the properties of upgoing
reflected waves are travel time (how long it takes for a wave to travel from the source, be
reflected, and be recorded by a receiver) and frequency content (as a wave travels through
the Earth, its frequency content changes according to complex interaction among the wave
front and the rocks it is propagating trough).

So, a final aspect of the seismic reflection data indicates some underground character-
istics (e.g., kind of lithology, porosity amount, dominant fluid in rock pores, layer thickness,
and age) fundamental for hydrocarbon exploration. As important as local characteristics,
the vertical and lateral variations of these characteristics are key to indicate the presence
of oil and/or gas in some area and the likelihood of a commercial accumulation. These
characteristics are named seismic facies.

The final product of seismic acquisition and processing (necessary to correct wave
propagation effects) is named as a section (for 2D) or cube (for 3D, to be used in this study).
Both sections and cubes are made by hundreds or thousands of individual seismic traces
grouped according to a fixed distance among them, with their geographical position being
defined during seismic processing. All seismic traces have the same time length (varying
between 4 to 10 s, corresponding to the time necessary for a reflected wave from the deepest
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interface of interest to arrive at the surface). The continuous reflected waves are discretized
at a regular sampling interval (2 or 4 ms, so each seismic trace has 1000 to 5000 samples).
Every sample has its correspondence to the amplitudes of the reflected waves.

From section or cubes, seismic attributes can be derived, aiming for better definition
of layer limits and changes (both laterally and vertically). These attributes are extensively
explained in the literature [2,6], derived from simple to complex mathematical operations
applied in the “original” data. In general, seismic attributes may allow properties not
clearly defined in the initial data to be identified, making them a useful tool for hydrocar-
bon exploration.

In this study, 13 attributes were used. Five of them (Frequency, Peak Frequency,
Frequency 20 Hz, Frequency 30 Hz, Frequency 25/30/35 Hz) are related to frequency,
four (Quadrature, Apparent Polarity, Instantaneous Phase, Cosine Phase) to complex
trace, three (Amplitude, Peak Amplitude, Energy) to amplitude, and one (Chaos) to sharp
lateral and/or vertical variations of seismic reflections and/or seismic facies, according to
statistical analysis of reflection geometries.

Frequency indicates a characteristic of the amplitude spectrum (obtained by Fourier
transform applied in the amplitude data), allowing the grouping of seismic facies with
distinct spectra. Peak Frequency is, in the amplitude spectrum, the frequency value with
the highest amplitude. Frequency 20 and 30 are, respectively, the resultant seismic data
after a filter attenuates any frequencies below and above the desired one. Frequency
25/30/35 combines three datasets obtained after filtering the original data at 25, 30 and
35 Hz. This combination is sometimes called RGB, as it is common to associate frequencies
with colors (Red, Green, and Blue) for display and analysis. It is also referred to as spectral
decomposition, as the amplitude spectrum is decomposed in short frequency ranges. All
frequency attributes are commonly used on seismic facies classification and clustering.

A complex trace is—as a complex number—a seismic trace with real and imaginary
parts. The real trace is the original seismic trace obtained from seismic acquisition and
processing, and the imaginary trace is the Hilbert transform of the real trace. Although
the physical meaning of some complex attributes may be difficult to understand, their use
is widespread as an additional source of information, being often useful as a “different
view” (or approach) to a dataset. Quadrature is the imaginary trace, corresponding to a
90◦ phase shift (equivalent to the result of a Hilbert transform), with the same amplitude
spectrum of real trace but sometimes highlighting subtle features. Apparent polarity is the
sign (either positive or negative) for the complex trace maximum amplitude inside a time
window. It can both individualize a thicker geological layer and indicate layer continuity
when seismic data are noisy. The Instantaneous Phase is the phase of the complex trace at
a specific time sample. As it does not depend on the amplitude, weak (low) and strong
(high) amplitude reflections will be equally highlighted, providing interface continuity.
This is often helpful in enhancing geometries of seismic reflections, which is a fundamental
aspect of seismic facies. Cosine phase is the cosine of the Instantaneous Phase, with the
same application but with the benefit of being continually smooth.

Although seismic studies (including facies and attribute analysis) are routinely used
in the industry as a necessary step for hydrocarbon exploration, a vital issue with using
seismic data is that it is not a direct method. This issue produces a large amount of
uncertainty on seismic analysis, as one has to use “second-hand” information on rock
properties to estimate what is really important (volume of hydrocarbon in rock pores).

This issue is largely reduced when direct information is available. The main source of
this direct information is drilled wells in the area where seismic data has been acquired and
processed. The most important direct information comes from well logs, which measures
the physical and chemical properties of geological layers drilled by the well. Common
logs used in hydrocarbon exploration are Resistivity, Sonic, Shear, Density, Neutron, and
Gamma-Ray.

As suggested by its name, Resistivity logs measure how much a rock opposes the
electrical current inside it. Dominant fluid filling rock pores are saline (tens to few hundreds
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of ppm of salt) water, with a very low resistivity. Pores filled with gas or oil are much
more resistive, so this log indicates hydrocarbon occurrence in a rock. Deep and medium
values are related to how far the log measures resistivity from the wellbore. The difference
between deep and medium values indicates how far the drilling mud (necessary for the
well not to collapse during drilling) has penetrated the original rock.

Sonic and Shear logs measure, respectively, the slowness (inverse of velocity) of
compressional (sound) and shear waves, so they are used to estimate physical properties
(porosity and rock compaction are among the most important) that affects the velocity of
these waves.

In the case of Density and Neutron logs, a source emits gamma rays close to the
rock, dislodging electrons which are then deflected. Denser rocks have more electrons,
generating more gamma rays scattering. A group of receivers measures the amount of
gamma rays deflected by orbital electrons, indicating rock density, porosity and presence
of gas.

Gamma Ray logs measure the natural radioactivity of the rocks. As a rule, the clay
shales (very poor reservoirs) have natural radioactivity much higher than sandstones and
carbonates. This occurs because clays are, in general, the most radioactivity minerals.
Consequently, this log is commonly used to define if a rock is a good (very small shale or
clay content) or bad (high shale or clay content) hydrocarbon reservoir.

Geologic layers have, in general, a constant pattern for Resistivity, Gamma Ray and
Sonic/Shear, so these logs are used for layer correlation among wells. A quite extensive
explanation of well logs in the hydrocarbon industry can be found in [31].

2.2. Seismic Data Analysis Methodology

The seismic data clustering models only require selecting a seismic volume of interest
and calculating the seismic attributes to be included in the analysis. These data are
represented by a seismic volume or cube with coordinates Inline (IL), Crossline (XL), and
Domain (Z) [32], as can be seen in Figure 1a). A cut on the seismic volume in a fixed
coordinate (IL, XL, or Z) is called a slice (Figure 1b).

Figure 1. (a) Seismic Volume, (b) Slice (cut on the seismic volume) on a fixed IL coordinate.

Given that a seismic volume can be considered a sequence of subsurface images, we
propose two different approaches for seismic data clustering: Pointwise Data Clustering
and Spatial Groups Data Clustering. The two alternatives are represented in Figure 2.
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Figure 2. Proposed seismic data clustering approaches.

Pointwise Data Clustering analyzes the seismic volume using each data point o(IL, XL, Z)
as a sample. These samples can be described with multiple seismic attributes commonly
extracted from the amplitude seismic data, such as energy, frequency, phase, among others.
With the Seismic Volume usually requiring Gbs of storage, the addition of multiple seismic
attributes for an accurate interpretation can escalate the volume of data to a prohibitive
size for most Machine Learning algorithms. Therefore, we propose feature selection [33] to
eliminate irrelevant or redundant seismic attributes, resulting in a significant reduction in
the data size. Specifically, 28 seismic attributes are reduced to a subset of only 12 attributes
employing the rankings provided by four feature selection algorithms: Principal Compo-
nent Analysis [34], Principal Feature Analysis [35], Variance Threshold [36], and Feature
weighting k-Means [37]. After selecting the best subset of seismic attributes, classical clus-
tering algorithms are applied to the data, obtaining post-processed groups to enhance their
homogeneity inside the seismic volume. These groups represent points in this multivariate
seismic volume with similar seismic attributes values.

Spatial Groups Data Clustering, in contrast, defines a processing pipeline that em-
ploys image segmentation algorithms to define preliminary spatial groups of seismic data
denominated segments. This approach begins by dividing the seismic volume in a se-
quence of slices in one of the coordinate directions. Each slice is represented as one image,
which is then divided into multiple spatially compact segments through a segmentation
algorithm. Then, several features are extracted from each segment, such as statistics of the
seismic signals, texture, or shape information. Finally, a clustering algorithm is applied to
the different segments based on the extracted features, separating them into groups with
common characteristics. An in-depth description of the two methodologies is presented in
the next subsections.

Therefore, both approaches presented in Figure 1b start the process from seismic
attributes. However, the Pointwise Data Clustering approach creates seismic groups
directly from the seismic attributes, while the Spatial Groups Data Clustering develops
seismic groups from features extracted from segments created by an image segmentation
algorithm using seismic attributes.

2.2.1. Pointwise Data Clustering

The first stage of the pointwise data clustering approach is the feature selection
process. Algorithms from feature selection models denominated filters [38] were selected
to evaluate this strategy. This category includes the algorithms that rank the features or
evaluate the subsets of features based on predefined parameters or metrics. The filter
methods evaluated, which were selected considering their lightweight computing power
demand, were: Principal Component Analysis (PCA), Principal Feature Analysis, Variance
Threshold, and Feature weighting k-Means. In this approach, the features representing the
seismic volume are directly the multiple seismic attributes.

The subsequent stage is the application of clustering algorithms to generate the
groups of related seismic data from the seismic volume represented by the subset of
seismic attributes. Our hypothesis is that these groups will be directly related to the
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seismic facies patterns of the data. The classical clustering models k-Means and Kohonen’s
Self-Organizing Maps were evaluated in this work.

2.2.2. Spatial Groups Data Clustering

This approach for seismic data clustering builds upon the seismic volume interpre-
tation as a sequence of slices defining images of the seismic data in the inline, crossline,
or domain coordinate. These seismic images can represent a single seismic attribute as a
single channel grayscale image or multiple seismic attributes as the three channels of an
RGB image. Given that the seismic data are a mixture of signals defined in the real number
domain, it is necessary to apply a preprocessing stage to transform the seismic slice into a
valid image. The diagram of the preprocessing steps is illustrated in the bottom part of
Figure 3:

Figure 3. Image Preprocessing Pipeline.

At first, the seismic slice distribution is enhanced using Adaptive Equalization [39],
which improves the contrast of the image by transforming the intensity values, using the
local information of the neighborhood, into an approximately uniform distribution. As
a result, the details of the seismic data are highlighted, as can be seen in Figure 4. The
equalization is followed by applying a Mean Filter, which eliminates noise that can be
amplified during the Adaptive Equalization. After enhancing the contrast of the seismic
data, the intensities are discretized in the range (0–255).

Figure 4. Example of results from the adaptive equalization on the seismic slice: (a) original seismic
vertical slice, (b) seismic vertical slice after adaptive equalization.
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The next step in the Spatial Groups Data Clustering approach is the segmentation
models, based on image segmentation algorithms, which aim to create spatially compact
groups and similar colors denominated segments. Consequently, it is expected to gen-
erate segments that relate well to geologic structures observable in the seismic image.
We evaluated two models with different principles for the image segmentation model:
Watershed [40] and SLIC [41]. The former interprets the image as a three-dimensional
topographical map, defined by the intensity values, that is gradually filled with water
from seed points in the minimum points of the image. When water from different sources
(basins) encounter, then a limit line is generated. The filling process ends when the water
reaches the maximum point of the topography, producing segments associated with each
basin. The latter is a superpixel algorithm that generates compact segments based on
clustering intensities (employing k-Means) in a region proportional to the desired size of
the superpixel. The distance function used in the k-Means algorithms is a combination of
color and spatial proximity between the intensity values.

To determine the best configuration for both SLIC and Watershed, we evaluated
them with different numbers of segments and markers, respectively, in the range 15–1000.
Figure 5 illustrates examples of segments obtained from both segmentation approaches.
For SLIC, the seismic image is highly over-segmented, with compact segments that cannot
always adhere to some of the main lithological features present in the image. On the other
hand, the Watershed algorithm produces broader segments with better adherence to seismic
facies patterns. In both approaches, it is visually noticeable inaccuracies between segments’
borders and facies which can be reduced in some level with the posterior clustering stage.

Figure 5. Example of results from the segmentation of the seismic (vertical slice) data (a) through the
SLIC (b) and Watershed (c) algorithms.
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The resultant segments are spatially compact elements containing pixels with simi-
larities between them. To cluster the obtained segments into regions of the image with
common characteristics, relevant information from each segment must be extracted (Fea-
ture Extraction module in Figure 3). A clustering algorithm then uses the extracted features
to determine the final groups (Classical Clustering Algorithm module in Figure 3).

Each segment is described through a combination of characteristics based on statistics
of the seismic signals [42–44], shape [45–48], texture including Haralick features (GLCM)
and Local Binary Patterns (LBP) [49–51], histogram of oriented gradients (HOG) [52,53],
and Neighborhood information. These characteristics are represented in Figure 6 and are
used in the clustering process employing any clustering algorithm. In this work, given that
the volume of data to be clustered is reduced (the segments encompass several data points),
we evaluated the following clustering algorithms: Agglomerative [54], Kohonen [55], and
k-Means [56]. The result of these algorithms are groups with those image regions that are
similar in the segments’ feature space and that, theoretically, should correlate with the
seismic facies pattern in the images.

Figure 6. Set of features representing each segment of the Spatial Groups Data Clustering method.

2.3. Well Logs Data Analysis Methodology

The seismic data employed in this work contain one well with sufficient size to be
considered for the association process between lithological properties of the rocks and
the seismic groups obtained through seismic data clustering. The lithological properties
available in the well logs were: Deep Resistivity, Medium Resistivity, Sonic, Shear, Density,
Neutron, and Gamma Ray. These logs, at first, are preprocessed following a windowing
scheme in which all logs are divided into windows of a determined depth. Hence, each
value at a depth x from the logs is represented by a window centered at x containing a
neighborhood y around x. This strategy aggregates useful information for the clustering
process in comparison to utilizing single values only. The windowed well log data are then
clustered employing k-Means to find groups of similar lithologies.

2.4. Seismic and Well Logs Groups Association

The process for associating seismic facies, represented by the groups obtained from
clustering the seismic data, with lithological properties represented through groups of well
logs, follows these four steps:

i. Depth–time conversion to transform both datasets to the same domain (usually
seismic data are given in the time domain and well logs in the depth domain);

ii. Blocking process to reduce the resolution of well logs data to the seismic data (well
logs and seismic data present a resolution of 0.15 ms and 4 ms, respectively);
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iii. Elimination of noisy segments resultant from previous operations (groups with a size
smaller than 12 ms);

iv. Association between seismic and well logs groups.

The depth–time conversion employs the well velocity data and the depth (Z) to
compute the two-way traveltime (TWT) information of each point using the expression:

TWT = 2 ∗ Z/Velocity (1)

The blocking process is similar to the downsampling of a signal, decreasing the sample
rate of well logs groups in the depth domain. This transformation is performed over the
results of the clustering process of well logs data. The process divides these groups’ data
into consecutive windows of 4 ms, which are represented with the label of the predominant
group. After the downsampling process, to reduce spurious groups’ influence on the
association results, sets with a size smaller than 12 ms (value defined by the geophysicist as
adequate for this case) are considered noisy segments and, consequently, eliminated. Each
eliminated depth interval then assumes the group label of its neighbor with the biggest size.

Figure 7 illustrates the set of pre-association steps in a hypothetical case. Figure 7a
shows the well logs clustering result after converted to the time domain (considering
samples of 2 ms). Figure 7b represents the result of the blocking process, and each element
of the column represents 4 ms of the elements of the original domain. As a result, the
resolution of the well logs groups is reduced in half. This process is followed by the
inspection and elimination of noisy segments. Assuming the size of the smaller red and
orange sets (Blocks A and B in Figure 7b) as 4 and 8 ms, respectively, which are smaller
than the threshold (12 ms), these segments are considered noisy. Then, their labels are
substituted by the one of their biggest neighbors (blue group). Finally, the resultant well
logs clustering is shown in Figure 7c.

Figure 7. Pre-association steps: (a) original clustering considering samples of 2 ms, (b) result of the
blocking process with a factor of 1/2 (each element of the column represents 4 ms on the original
domain), (c) result of the noise elimination (eliminates the smaller red and orange sets that presented
size of 4 and 8 ms, respectively). Above the columns, the correspodent sampling frequency is shown.

The obtained groups generalize the overall distribution of lithologies present in the
well location in the same domain of the seismic data. Therefore, these groups can be
associated with seismic groups by comparing their location in the subsurface. In this
direction, we evaluated three different approaches: two based on the similarity between
sample sets (Jaccard [57] and Rand Index [58]) and another based on a heuristic that
employs the limits of each set.

The Jaccard Index and Rand Index are similarity measures between two sets commonly
used in machine learning applications. The Jaccard Index measures the similarity between



Sensors 2021, 21, 6347 12 of 27

two groups by analyzing the relationship between their intersection over their union.
Specifically, given:

- f00: Number of pairs belonging to different well logs groups and seismic groups.
- f01: Number of pairs belonging to different well logs groups and the same seis-

mic groups.
- f10: Number of pairs belonging to the same well logs groups and different seis-

mic groups.
- f11: Number of pairs belonging to the same well logs groups and seismic groups.

The Jaccard Index is defined as:

J I =
f11

f00 + f01 + f10
(2)

The Rand Index also computes the similarity between sets following the expression:

RI =
f00 + f11

f00 + f01 + f10 + f11
(3)

The proposed heuristic to associate the obtained groups analyzes the limits of the
different segments in the depth domain, as depicted in Figure 8. The process establishes
an iterative search between the limits from well and seismic groups, starting from top to
the bottom. At first, the first segment limit from the top of well group is located. When
this limit is found, its distance to all partitions on the seismic groups is computed. The
smallest one is compared to a defined threshold L (given in ms and represented in Figure 8a
at the bottom to illustrate its size). This threshold is defined by the user depending on
the resolution of the available data. If the distance surpasses L (meaning that there is no
equivalent seismic group close enough in the seismic data results), then this set establishes
a limit in the association results (Figure 8b). Conversely, if the distance is smaller than L,
the limit from the set in the seismic side is assumed as associated with it and passes into
the association results (Figure 8c). When all limits in the seismic groups are exhausted, the
process ends and any group left in the well results passes its limits to the final association.
The groups present in the association represent the approximated relationship between the
spatial distribution of seismic and well groups.

Figure 8. Exemplification of the association process evaluated from the top to the bottom of the well: (a) original clustering
results, (b) association between the first limit of the well group and seismic group when the distance between group limits
is bigger than a threshold L, (c) association between the second limit, which is now smaller than L.

In the figure, it can be observed that when there is no equivalent seismic group inside
the distance threshold, the well group imposes its limit in the association result. This
strategy is justified by the nature of the well log data, which are obtained directly from
the subsurface and can be considered more reliable than the seismic data. Therefore, we
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considered maintaining well groups if an equivalent group is not present (the seismic data
only produced a group in that region).

3. Results and Discussion

This section presents the case study used to evaluate the proposed unsupervised
automated interpretation model comprising the two strategies for seismic data clustering
(pointwise and spatial groups’ data clustering) and the results obtained from each process-
ing stage. Given that the proposed models handle, in all stages, unlabeled data, the quality
of the results obtained was evaluated by a specialist (geophysicist) for both seismic and
well logs data. The seismic data used in this case study correspond to a seismic volume
with dimensions: inline from 995 to 1775, crossline from 5613 to 7231, and domain 2200
to 3700 ms. Inline and crossline intervals are constant and equal to 25 and 12.5 m, so the
area analyzed comprises a rectangle close to 400 km2 (19.5 km × 20.2 km). Examples of
the groups obtained from the seismic data clustering are illustrated for the inline 1385 or
1413 (inlines in a close distance to the location of the well). All models were run in a Linux
Server with CPU i7-5960X @ 3.00 GHz and 128 Gb of RAM memory.

3.1. Seismic Data Analysis
3.1.1. Pointwise Data Clustering

The seismic volume is represented using a set of 28 seismic attributes computed us-
ing Petrel (https://www.software.slb.com/products/petrel, accessed on 22 March 2021)
and OpendTect (https://www.dgbes.com/index.php/software/opendtect, accessed on
22 March 2021) software (Figure 9), which is then reduced by the feature selection stage. To
select the best subset of seismic attributes, a ranking based on the results of the four feature
selection algorithms mentioned in Section 2.1 (Principal Component Analysis, Principal
Feature Analysis, Variance Threshold, and Feature weighting k-Means) is calculated. The
mean of the ranking value of each seismic attribute obtained from each feature selection
method is computed and is assumed as the importance of the attributes. The selected
subset of attributes is determined by applying an approximation of the elbow method
strategy [59]—originally employed to determine the number of clusters in an unsuper-
vised learning analysis—to the mean ranking graph (observed in Figure 10). The most
pronounced brakes are situated at the second (Freq20 Hz) and 24th (RefIntensity) attributes
(first and third arrows in Figure 10). Nevertheless, these sets can be considered detrimental
for the seismic analysis because only two frequency attributes do not identify all possible
seismic structures and twenty-four does not significantly reduce the total number of at-
tributes. Consequently, the next most significant break (the one with a marked disparity on
the line inclination) was chosen, occurring at the 12th attribute (CosPhase). The selected
subset then comprises those 12 attributes.

Figure 9. Seismic attributes.

https://www.software.slb.com/products/petrel
https://www.dgbes.com/index.php/software/opendtect
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Figure 10. Mean rank of seismic attributes. Red arrows signal the most significant breaks.

This subset of attributes is employed to cluster the seismic data in the pointwise
clustering approach. From the unsupervised algorithms evaluated (k-Means and Koho-
nen), Kohonen resulted in more promising results, following the specialist’s assessment.
Examples of one inline from the best results obtained are shown in Figures 11 and 12, where
each color indicates a different group from the clustering model. Figure 11 illustrates the
resultant seismic groups from the application of Kohonen with eight groups. Following
the specialist’s recommendation, adding the Amplitude attribute to the subset of features
generated the result observed in Figure 12. The results did not significatively change, but
they offered a slightly better definition of cluster separation, mainly in the deeper part of
the figure (bottom part).

The groups obtained from the pointwise data clustering, as expected, delineate seismic
components with common characteristics (these common characteristics are the seismic
facies, explained in Section 2.1). Specifically, it is possible to differentiate diverse combina-
tions of groups for the main seismic regions in the data. Nevertheless, in regions of the
seismic data that present marked variability (examples are the superior and middle parts
of Figures 11 and 12 located inside the black polygons), the behavior of groups can be
chaotic, presumably under the influence of the frequency attributes. Such a characteristic
is not desirable for a seismic interpretation. Therefore, the performance of the pointwise
clustering in combination with the best subset from seismic attributes is considered limited.
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Figure 11. Results of the application of Kohonen on the best subset of seismic attributes with a rectangular map of
size 6 × 6 neurons and 8 groups. At the top, the original vertical seismic slice is presented; on the bottom, each group
from the Kohonen map is represented with a unique color. Black polygons indicate regions in which groups show a
chaotic distribution.

Figure 12. Results of the application of Kohonen on the best subset of seismic attributes and the Amplitude attribute with a
rectangular map of size 6 × 6 neurons and 8 groups. The original vertical seismic slice is presented at the top; on the bottom,
each group from the Kohonen map is represented with a unique color. Black polygons indicate regions in which groups
show a chaotic distribution.

3.1.2. Spatial Groups Data Clustering

The seismic data clustering based on spatial groups employs the segments from
image segmentation algorithms (SLIC and Watershed) to obtain groups describing close
distributions in space and magnitude from each seismic slice. Then, the model with the
best results will be selected as part of the seismic data processing pipeline. As mentioned
in Section 2.2.2 and observed in Figure 5, each algorithm produces segments with different
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characteristics. SLIC, on the one hand, over-segments the seismic data image and its
segments do not adhere well to the main lithological features. On the other hand, the
segments obtained by the Watershed algorithm are less compact, covering more regions of
the seismic image with better accuracy concerning lithological features. The results of both
segmentation algorithms were analyzed by the specialist (geophysicist), evaluating the
quality of the obtained segments. The segments obtained employing Watershed present
a better accuracy concerning seismic structures, covering a bigger area. Therefore, this
algorithm was considered better for the proposed approach. It is important to highlight
that the quality of the segments directly influences the result of the clustering algorithm,
which enforces the criteria for selecting Watershed as the best method.

As described in Section 2.2.2, the segments obtained using the Watershed model on
the seismic images are used in the clustering process. To represent each segment, several
features were defined (illustrated in Figure 6). Each clustering algorithm considered
(Agglomerative, Kohonen, and k-Means) was applied to the segments represented by a set
composed of all these features. The parameters assessed for each clustering algorithm are
summarized in Table 1.

Table 1. Parameters of clustering algorithms.

Algorithm. Parameter Value

k-Means Groups (4–8)

Kohonen
Groups (4–8)

Kohonen Map Size (10 × 10–100 × 100)
Grid Shape Rectangular; Hexagonal

Agglomerative
Groups (4–8)

Distance Metric Euclidean; Manhattan; Cosine; L1; L2
Linkage Ward; Complete; Average; Single

The first set of experiments involved evaluating the best combination of three seismic
attributes that provide the most informative seismic image, emulating the RGB color space.
The evaluated combinations of seismic attributes are the following:

Amplitude, Quadrature, Sweetness.
Amplitude, Instantaneous Thin Bed, Sweetness.
Instantaneous Thin Bed, Similarity Cross Average, Energy.
CosPhase, Similarity Cross Average, Energy.
CosPhase, Amplitude, Energy.
Sweetness, Amplitude, Energy.
Amplitude, Apparent Polarity, Sweetness.
Amplitude, Amplitude Contrast, Similarity Cross Average.
Texture Dissimilarity, Amplitude, Similarity Cross Average.
Texture Contrast, Amplitude, Similarity Cross Average.
Texture Dissimilarity, Amplitude, Sweetness.
Amplitude, Texture Dissimilarity, Freq30 Hz.

These combinations were selected from tests exploring which attributes generated
interesting results (several other combinations were unsuccessfully evaluated). From
these combinations, the most interesting results were from the combinations {Texture
Dissimilarity, Amplitude, Similarity Cross Average} and {Texture Contrast, Amplitude,
Similarity Cross Average}.

The selected clustering algorithms (Agglomerative, Kohonen, and k-Means) were
applied to the obtained segments based on the two selected combinations. In all cases,
the difference between clustering from the three algorithms was marginal. Therefore,
the k-Means was selected as the most suitable algorithm, as it is the most computational
efficient algorithm (shorter training time). Figures 13 and 14 display two of the best results
for the first combination and Figure 15 shows one for the second one.
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Figure 13. Results from the clustering of Watershed segments using k-Means (6 groups) and an image composed of Texture
Dissimilarity, Amplitude, Similarity Cross Average. The top image shows the original vertical seismic slice; the bottom one
shows the Watershed results. Black dots in the lower figure indicate main geological boundaries according to geophysicist’s
interpretation of the top figure (conventional seismic data). One can conclude that a good fit occurs between clustering
results and geophysicist’s preliminary interpretation.

Figure 14. Results from the clustering of Watershed segments using k-Means (8 groups) and an image composed of Texture
Dissimilarity, Amplitude, Similarity Cross Average. The top image shows the original vertical seismic slice; the bottom one
shows the Watershed results. Black dots in the lower figure indicate main geological boundaries according to geophysicist
interpretation of the top figure (conventional seismic data). One can conclude that a good fit occurs between clustering
results and geophysicist’s preliminary interpretation.
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Figure 15. Results from the clustering of Watershed segments using k-Means (4 groups) and an image composed of Texture
Contrast, Amplitude, Similarity Cross Average. The top image shows the original vertical seismic slice; the bottom one
shows the Watershed results. Black dots in the lower figure indicate main geological boundaries according to geophysicist
interpretation of the top figure (conventional seismic data). One can conclude that a good fit occurs between clustering
results and geophysicist’s preliminary interpretation.

The black points in each figure approximate the real limits between seismic facies,
provided by the geophysics specialist. In general, it can be observed that in all examples,
the groups obtained—defined with different colors in the image—encompass the main
seismic facies of the data with acceptable accuracy.

A second analysis was performed to evaluate the best subset of features to represent
the segments. This analysis aims to reduce the training time of the model, maintaining
or improving the accuracy. The experiments to select the best subset of features followed
the Forward Selection [60] approach based on the specialist’s opinion. Specifically, in
each step, individual feature categories are employed in the clustering process. Based
on the specialist´s evaluation of the results, the best category is included in the segment
feature subset. The selection process is represented in Table 2, highlighting in each column
the selected best category to be included in the feature subset. Based on the specialist’s
suggestion, some single features from the overall categories that showed promising results
independently were evaluated in some steps.

Interestingly, the attributes selected in each step are somehow related to some type of
texture description (HOG and LBP). Additionally, the information regarding the segments’
neighborhood is also meaningful for the clustering process. The clustering algorithms also
produced similar results in this case, leading us to consider k-Means as the best algorithm
due to its faster training time. The two most promising combinations of seismic attributes
from the previous experiments were evaluated in this case. The one that produced better
results was Texture Contrast, Amplitude, Similarity Cross Average. Examples of results
from applying k-Means to the seismic data represented using the subset of segment features
(HOG, Neighborhood HOG, LBP, Neighborhood LBP) are depicted in Figures 16 and 17
(inline 1413).
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Table 2. Selection of subset of features to represent the segments. In bold are highlighted the features selected in each step.

First Step Second Step Third Step Fourth Step

GLCM GLCM GLCM Neighborhood (GLCM)
LBP LBP LBP Neighborhood (LBP)

HOG Neighborhood (All) Shape Neighborhood (Statistical)
Shape Neighborhood (HOG) Statistical (All) Statistical (All)

Statistical Statistical (All) Neighborhood (All) Shape
Neighborhood Statistical (Histogram) Neighborhood (GLCM) GLCM

Shape Neighborhood (LBP)
Neighborhood (Statistical)

Figure 16. Results from the clustering of Watershed segments using k-Means (5 groups) with the best
subset of features. The top image shows the original vertical seismic slice; the bottom one shows the
Watershed results. Comparing this result with Figures 13–15, it can be concluded that the accuracy of
the model was improved.

As shown in Figures 16 and 17, the subset of features was able to produce more
homogeneous groups with good accuracy concerning the seismic structures. In contrast to
the previous approach, smaller groups—which represent inaccuracies—were eliminated,
which increments the final accuracy of the model. Nevertheless, the resultant groups are
also limited when detailing some lithological structures that present similar characteristics,
mainly present in the middle of the seismic image in the area inside the orange ellipse.

Compared to the pointwise clustering approach, this methodology presented a better
accuracy concerning the main facies in the data, summarizing the data in broader and more
homogeneous groups. Additionally, the training time of the learning models is significantly
reduced, given that the segments encapsulate a significant number of data points.
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Figure 17. Results from the clustering of Watershed segments using k-Means (6 groups) with the best
subset of features. The top image shows the original vertical seismic slice; the bottom one shows the
Watershed results. Comparing this result with Figures 13–15, it can be concluded that the accuracy of
the model was improved.

3.2. Well Logs Data Analysis

The results from the clustering process of well logs data were evaluated following the
specialist’s criteria. The specialist also suggested the values for the window sizes utilized
to divide the logs data, which were 3, 6, and 10 m. The windowing method was applied
to seven well logs datasets: Deep Resistivity, Medium Resistivity, Sonic, Shear, Density,
Neutron, and Gamma-Ray logs. Different configurations of k-Means (4, 6, 8, and 10 groups)
were employed to obtain groups delimiting different lithologies present in the studied well.
Figures 18 and 19 provide a visualization of the clustering results of k-Means with 6 and
10 groups (rightmost column), respectively, both with a window of 6 m.

The examination of these figures indicates the effect in the output of the different
number of groups. For 10 groups, the level of detailing regions with specific characteristics
is higher, with great accuracy in their limits concerning the position of the data that
generated the lithology. For example, the bottom region in Figure 19 presents very different
characteristics, identified as the orange group in the figure, which is unique (not identified
with other parts of the logs) and can be associated with volcanic rocks. In Figure 18, on the
other hand, this area is not recognized as an independent group.

This effect can be better observed in Figure 20, which displays the clustering results
for different numbers of groups for a window size of 6 m. The regions surrounded by the
dashed rectangles are some areas that are better detailed when the number of groups is
higher than 4. The better identification of volcanic rocks is observed at the bottom.

When comparing the effects of the different window sizes evaluated (Figure 21), it can
be seen that when the window size increases, the clustering result tends to be more regular,
with larger groups and fewer partitions of a tiny size. With the decrease in the window
size, scattered insignificant groups appear throughout all the results, which indicates
that the clustering represents isolated portions of the well logs and not a meaningful
part of the neighborhood. This behavior is highlighted in the areas inside the dashed
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rectangles. Therefore, it can be concluded that a window size of 3 m is not recommendable
for this application.

Figure 18. Groups obtained using k-Means (rightmost column) for 6 groups and a window of 6 m for well logs (from left
to right, Sonic/Shear, Deep/Medium Resistivity, Density/Neutron and Gamma Ray). Clearly, the main lithologic groups
(indicated by changes in well log patterns and values) were well defined by k-Means.

Figure 19. Groups obtained using k-Means (rightmost column) for 10 groups and a window of 6 m for well logs (from left
to right, Sonic/Shear, Deep/Medium Resistivity, Density/Neutron and Gamma Ray). Clearly, the main lithologic groups
(indicated by changes in well log patterns and values) were well defined by k-Means.
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Figure 20. Results for different number of groups in k-Means for a window of 6 m.

Figure 21. Results for different window sizes and k-Means with 6 groups.

3.3. Seismic and Well Logs Groups Association

The last stage of this study is the association between the resultant seismic groups
and well logs groups to produce an interpretation of the seismic data with aggregated
lithologic information. This stage was validated by employing the most promising results
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evaluated by the specialist. The process involves several stages on the well logs data side
in order to reduce its resolution and filter very small partitions, as described in Section 2.4.
With these steps, it is clear that some little details are lost, and the groups represent the
overall lithologies of this region. In general, the groups filtered from the well logs and
those representing seismic facies were spatially correlated in all analyses, validating the
unsupervised approaches. An example of the resultant association for the well clustering
with a window of 6 m and six groups, and the seismic data as a composed image of Texture
Contrast, Amplitude, Similarity Cross Average seismic attributes employing Watershed
with the best subset of segment’s features (HOG, Neighborhood HOG, LBP, Neighborhood
LBP) and eight groups is depicted in Figures 22 and 23.

Figure 22. Association results.

Figure 23 shows that the well size is almost half of the size of the seismic data.
Therefore, the groups obtained from the upper half of the seismic image cannot be directly
related to any information from the well logs groups, except for the case in which a group
present in the well area is also present in the top half of the seismic image. In this specific
case, the results from the three association methods are similar, which is repeated in most
cases due to the most general distribution of groups (the well region is covered by a small
number of groups in the seismic data). As a result, the present case relates the cyan and
orange groups from the seismic clustering with the lithologic characteristics of the blue
group in the well clustering, and the other group in the seismic clustering is related partly
to the characteristics of the red one and partly to the properties of the yellow one belonging
to the well columns.
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Figure 23. Example of association result, shown in color columns over seismic vertical slice. Black dots indicate main
geological boundaries according to geophysicist interpretation on seismic data. Left column: clean well groups; Center
column: association results; Right column: seismic groups. A very good fit is present for association results (central column)
and seismic group (right column). Unfortunately, no well log information is available on the upper section of the seismic
data, so only three seismic facies could be associated with the well log.

4. Conclusions

This work presents the development of an unsupervised learning-based methodology
to process seismic data. The produced groups were associated with the seismic facies
obtained with lithologic information from the clustering of well logs data. The methodology
compared two different pipelines that processed the seismic volume and the well logs
separately. Two approaches were proposed to cluster the seismic data. The first one was
based on clustering seismic attributes selected through the consensus of multiple feature
selection algorithms. The second approach is based on interpreting the seismic volume as
a sequence of images. In this case, the image is first segmented, generating segments of
seismic data that are clustered to create the seismic interpretation. The well logs data were
also clustered by employing windows of information and was associated with the groups
representing seismic facies to include lithologic details in the final interpretation.

The methodology was developed in active collaboration with a specialist. As well
as contributing with ideas related to the design of the processing pipeline and speci-
ficities of the data in both seismic and well logs domains, the specialist evaluated the
results throughout the work. The unsupervised approaches produced groups with good
relationships between variations of seismic facies and lithologies. When associated, the
groups’ distributions also demonstrated a good spatial correspondence, which validated
the proposed approaches.

The proposed methodology can assist the interpreter by producing a preliminary
interpretation without any label, which significantly reduces the time required to finish the
interpretation process. Additionally, the facies obtained are related to lithologic properties,
creating a robust interpretation able to assist in the decision process of the hydrocarbon
exploration activity.

The research presented in this paper can be expanded in several directions. Firstly,
the proposed methodology should be evaluated in a different field with more wells to
validate the synergy between seismic and well logs groups in multiple zones of the seismic
volume. Secondly, an in-depth analysis of the relationship between the obtained seismic
groups and lithological properties should be conducted, establishing a direct link between
specific seismic attributes and lithologic properties that could be generalized to other fields.
Additionally, the accuracy of the clustering results between close slices can be improved
by establishing a postprocessing stage to correct small spatial dissimilarities between
segments. Finally, novel deep learning-based unsupervised models can be evaluated on the
seismic data, such as any variant of Autoencoders [61] or Generative Adversarial Networks
(GANs) [62]. These deep learning models can also be exploited in combination with domain
adaptation methods, utilising the knowledge obtained from different seismic data and
extending the results—with improved accuracy—to data from new regions. Additionally,
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the texture information, which is demonstrated to be relevant in the clustering process,
can be leveraged by its inclusion directly in the segmentation models, improving its
final accuracy.

Author Contributions: Conceptualization, M.V. and K.F.; methodology, A.C., M.V., K.F., A.R. and
E.M.; software, A.C., E.M., M.A.S., A.R., R.N. and C.O.; validation, A.C., K.F., C.R., M.V., E.M., M.A.S.,
A.R., R.N. and C.O.; formal analysis, A.C., K.F. and M.V.; investigation, A.C., K.F., M.V. and A.R.;
resources, K.F. and M.V.; data curation, R.N. and C.O.; writing—original draft preparation, A.C.;
writing—review and editing, K.F., M.V. and C.R.; visualization, A.C., K.F., M.V., C.R., A.R. and
M.A.S.; supervision, M.V. and K.F.; project administration M.V. and K.F.; funding acquisition, M.V.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Queiroz Galvão Exploração & Produção, now Enauta, grant
number QGEP 0220180261.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found at http://geo.anp.gov.br/mapview searching for “Atlanta Field”.

Acknowledgments: The authors would like to thank the Brazilian Agencies CAPES, CNPq, FAPERJ
and ANP jointly with Enauta Company for supporting this research.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Sheriff, R.E. Encyclopedic dictionary of applied geophysics. Encycl. Dict. Appl. Geophys. 2002, 13, 14–17. [CrossRef]
2. Onajite, E. Understanding seismic interpretation methodology. In Seismic Data Analysis Techniques in Hydrocarbon Exploration;

Elsevier: Amsterdam, The Netherlands, 2014; pp. 177–211, ISBN 978-0-12-420023-4.
3. Barnes, A.E. Redundant and useless seismic attributes. Geophysics 2007, 72, P33–P38. [CrossRef]
4. Onajite, E. Understanding reflection coefficient. In Seismic Data Analysis Techniques in Hydrocarbon Exploration; Elsevier:

Amsterdam, The Netherlands, 2014; pp. 213–228.
5. Roden, R.; Smith, T.; Sacrey, D. Geologic pattern recognition from seismic attributes: Principal component analysis and self-

organizing maps. Interpretation 2015, 3, SAE59–SAE83. [CrossRef]
6. Herron, D.A. First Steps in Seismic Interpretation; Society of Exploration Geophysicists: Tulsa, OK, USA, 2011.
7. Nanda, N.C. Seismic Pitfalls. In Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production; Springer:

Berlin/Heidelberg, Germany, 2016; pp. 205–217.
8. Amado, L. Field case evaluations. In Reservoir Exploration and Appraisal; Amado, L.B.T.-R.E., Ed.; Gulf Professional Publishing:

Boston, MA, USA, 2013; pp. 53–156, Chapter 12, ISBN 978-1-85617-853-2.
9. Kaiser, M.J. A Review of exploration, development, and production cost offshore Newfoundland. Nat. Resour. Res. 2021, 30,

1253–1290. [CrossRef]
10. Wrona, T.; Pan, I.; Gawthorpe, R.L.; Fossen, H. Seismic facies analysis using machine learning. Geophysics 2018, 83, O83–O95.

[CrossRef]
11. Li, D.; Peng, S.; Lu, Y.; Guo, Y.; Cui, X. Seismic structure interpretation based on machine learning: A case study in coal mining.

Interpretation 2019, 7, SE69–SE79. [CrossRef]
12. Di, H.; Wang, Z.; AlRegib, G. Why using CNN for seismic interpretation? An investigation. In Proceedings of the 2018 SEG

International Exposition and Annual Meeting, SEG 2018, Keystone, CO, USA, 22–25 September 2018; Society of Exploration
Geophysicists: Tulsa, OK, USA, 2019; pp. 2216–2220.

13. Chevitarese, D.S.; Szwarcman, D.; Brazil, E.V.; Zadrozny, B. Efficient classification of seismic textures. In Proceedings of the
International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 8–13 July 2018; Institute of Electrical and Electronics
Engineers Inc.: Piscataway, NJ, USA, 2018; Volume 2018.

14. Hajizadeh, Y. Machine learning in oil and gas; a SWOT analysis approach. J. Pet. Sci. Eng. 2019, 176, 661–663. [CrossRef]
15. Ali, A.; Sheng-Chang, C. Characterization of well logs using K-mean cluster analysis. J. Pet. Explor. Prod. Technol. 2020, 10,

2245–2256. [CrossRef]
16. Chopra, S.; Marfurt, K.; Sharma, R. Unsupervised machine learning facies classification in the Delaware Basin and its compar-

ison with supervised Bayesian facies classification. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration
Geophysicists: Tulsa, OK, USA, 2019; pp. 2619–2623.

http://geo.anp.gov.br/mapview
http://doi.org/10.1190/1.9781560802969
http://doi.org/10.1190/1.2716717
http://doi.org/10.1190/INT-2015-0037.1
http://doi.org/10.1007/s11053-020-09784-3
http://doi.org/10.1190/geo2017-0595.1
http://doi.org/10.1190/INT-2018-0208.1
http://doi.org/10.1016/j.petrol.2019.01.113
http://doi.org/10.1007/s13202-020-00895-4


Sensors 2021, 21, 6347 26 of 27

17. Song, C.; Liu, Z.; Cai, H.; Wang, Y.; Li, X.; Hu, G. Unsupervised seismic facies analysis with spatial constraints using regularized
fuzzy c-means. J. Geophys. Eng. 2017, 14, 1535–1543. [CrossRef]

18. Figueiredo, A.M.; Silva, F.B.; Silva, P.M.; Martins, L.D.O.; Milidiú, R.L.; Gattass, M. A Clustering-based Approach to Map 3D
Seismic Horizons. In Proceedings of the 14th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, 3–6 August
2015; Society of Exploration Geophysicists: Tulsa, OK, USA, 2015; pp. 1166–1170.

19. Chen, L.; Xiao, C.; Yu, J.; Wang, Z. Fault detection based on AP clustering and PCA. Int. J. Pattern Recognit. Artif. Intell. 2018, 32,
1850001. [CrossRef]

20. Lomask, J.; Clapp, R.G.; Biondi, B. Application of image segmentation to tracking 3D salt boundaries. Geophysics 2007, 72,
P47–P56. [CrossRef]

21. Halpert, A.D.; Clapp, R.G.; Biondi, B. Seismic image segmentation with multiple attributes. In Proceedings of the 79th Society of
Exploration Geophysicists International Exposition and Annual Meeting 2009, SEG 2009, Houston, TX, USA, 25–30 October 2009;
Society of Exploration Geophysicists: Tulsa, OK, USA, 2009; pp. 3700–3704.

22. Al-Shuhail, A.A.; Al-Dossary, S.A.; Mousa, W.A.-H. Seismic Data Interpretation Using Digital Image Processing; Wiley: Hoboken, NJ,
USA, 2017; ISBN 9781118881781.

23. Qian, F.; Yin, M.; Liu, X.Y.; Wang, Y.J.; Lu, C.; Hu, G.M. Unsupervised seismic facies analysis via deep convolutional autoencoders.
Geophysics 2018, 83, A39–A43. [CrossRef]

24. Silvany, P.; Machado, M.; de Tarzo, T. Prestack seismic facies prediction via deep convolutional autoencoders: An application to a
turbidite reservoir. In Proceedings of the 16th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil,
19–22 August 2019.

25. Lu, P.; Morris, M.; Brazell, S.; Comiskey, C.; Xiao, Y. Using generative adversarial networks to improve deep-learning fault
interpretation networks. Lead. Edge 2018, 37, 578–583. [CrossRef]

26. Luo, F.; Zhang, L.; Du, B.; Zhang, L. Dimensionality reduction with enhanced hybrid-graph discriminant learning for hyperspec-
tral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5336–5353. [CrossRef]

27. Liu, S.; Shi, Q.; Zhang, L. Few-shot hyperspectral image classification with unknown classes using multitask deep learning. IEEE
Trans. Geosci. Remote Sens. 2021, 59, 5085–5102. [CrossRef]

28. Chopra, S.; Lubo-Robles, D.; Marfurt, K. Explorer; AAPG: Tulsa, OK, USA, 2018; pp. 22–29.
29. Wang, Z.; Di, H.; Shafiq, M.A.; Alaudah, Y.; Alregib, G. Successful leveraging of image processing and machine learning in

seismic structural interpretation: A review. Lead. Edge 2018, 37, 451–461. [CrossRef]
30. Waldeland, A.U.; Jensen, A.C.; Gelius, L.-J.; Solberg, A.H.S. Convolutional neural networks for automated seismic interpretation.

Lead. Edge 2018, 37, 529–537. [CrossRef]
31. Schlumberger Limited. Log Interpretation Principles/Applications; Schlumberger: Houston, TX, USA, 1991.
32. Cox, D.R.; Newton, A.M.W.; Huuse, M. An introduction to seismic reflection data: Acquisition, processing and interpretation. In

Regional Geology and Tectonics; Scarselli, N., Adam, J., Chiarella, D., Roberts, D.G., Bally, A.W.B.T.-R.G., Second, E.T., Eds.; Elsevier:
Amsterdam, The Netherlands, 2020; pp. 571–603, ISBN 978-0-444-64134-2.

33. Liu, H.; Motoda, H.; Setiono, R.; Zhao, Z. Feature selection: An ever evolving frontier in data mining. In Feature Selection in Data
Mining; PMLR: Hyderabad, India, 2010; pp. 4–13.

34. Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572.
[CrossRef]

35. Lu, Y.; Cohen, I.; Zhou, X.S.; Tian, Q. Feature selection using principal feature analysis. In Proceedings of the 15th ACM
International Conference on Multimedia, New York, NY, USA, 24–29 September 2007; Association for Computing Machinery:
New York, NY, USA, 2007; pp. 301–304.

36. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 9781461468493.
37. Huang, J.Z.; Ng, M.K.; Rong, H.; Li, Z. Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach.

Intell. 2005, 27, 657–668. [CrossRef] [PubMed]
38. Celecia, A.; González, R.; Vellasco, M. Feature selection methods applied to motor imagery task classification. In Proceedings of

the LA-CCI 2016 Latin American Conference on Computational Intelligence, Cartagena, Colombia, 2–4 November 2016.
39. Hummel, R. Image enhancement by histogram transformation. Comput Graph. Image Process. 1977, 6, 184–185. [CrossRef]
40. Beucher, S. The watershed transformation applied to image segmentation. Scanning Microsc. Int. 1991, 6, 299–314.
41. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel

Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]
42. Fouad, S.; Randell, D.; Galton, A.; Mehanna, H.; Landini, G. Unsupervised superpixel-based segmentation of histopathological

images with consensus clustering. In Proceedings of the Medical Image Understanding and Analysis, MIUA 2017, Edinburgh,
UK, 11–13 July 2017; Springer: Edinburgh, UK, 2017; pp. 767–779.

43. Bechar, M.E.A.; Settouti, N.; Daho, M.E.H.; Adel, M.; Chikh, M.A. Influence of normalization and color features on super-pixel
classification: Application to cytological image segmentation. Australas. Phys. Eng. Sci. Med. 2019, 42, 427–441. [CrossRef]

44. Liu, F.; Yin, Y.; Yang, G.; Dong, L.; Xi, X. Finger vein recognition with superpixel-based features. In Proceedings of the IJCB
2014–2014 IEEE/IAPR International Joint Conference on Biometrics, Clearwater, FL, USA, 29 September–2 October 2014; Institute
of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014.

45. Zhang, D.; Lu, G. Review of shape representation and description techniques. Pattern Recognit. 2004, 37, 1–19. [CrossRef]

http://doi.org/10.1088/1742-2140/aa8433
http://doi.org/10.1142/S0218001418500015
http://doi.org/10.1190/1.2732553
http://doi.org/10.1190/geo2017-0524.1
http://doi.org/10.1190/tle37080578.1
http://doi.org/10.1109/TGRS.2020.2963848
http://doi.org/10.1109/TGRS.2020.3018879
http://doi.org/10.1190/tle37060451.1
http://doi.org/10.1190/tle37070529.1
http://doi.org/10.1080/14786440109462720
http://doi.org/10.1109/TPAMI.2005.95
http://www.ncbi.nlm.nih.gov/pubmed/15875789
http://doi.org/10.1016/S0146-664X(77)80011-7
http://doi.org/10.1109/TPAMI.2012.120
http://doi.org/10.1007/s13246-019-00735-8
http://doi.org/10.1016/j.patcog.2003.07.008


Sensors 2021, 21, 6347 27 of 27

46. Tighe, J.; Lazebnik, S. SuperParsing: Scalable nonparametric image parsing with superpixels. In Proceedings of the European
Conference on Computer Vision, ECCV 2010, Heraklion, Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 352–365.

47. González, R.C.; Woods, R.E. Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2008; ISBN 013168728X.
48. Shi, J.; Zhang, H.; Ray, N. Solidity based local threshold for oil sand image segmentation. In Proceedings of the International

Conference on Image Processing, ICIP, Cairo, Egypt, 7–10 November 2009; IEEE Computer Society: Washington, DC, USA, 2009;
pp. 2385–2388.

49. Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3,
610–621. [CrossRef]

50. Ahonen, T.; Hadid, A.; Pietikäinen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [CrossRef] [PubMed]

51. Weldon, T.P.; Higgins, W.E. Design of multiple Gabor filters for texture segmentation. In Proceedings of the 1996 IEEE International
Conference on Acoustics Speech, and Signal Processing Conference Proceedings, Atlanta, GA, USA, 9 May 1996; Volume 4,
pp. 2243–2246.

52. Déniz, O.; Bueno, G.; Salido, J.; De La Torre, F. Face recognition using histograms of oriented gradients. Pattern Recognit. Lett.
2011, 32, 1598–1603. [CrossRef]

53. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
54. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data; Kaufman, L., Rousseeuw, P.J., Eds.; Wiley Series in Probability and Statistics;

John Wiley & Sons Inc.: Hoboken, NJ, USA, 1990; ISBN 9780470316801.
55. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [CrossRef]
56. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Berkeley Symposium on Mathematical

Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297.
57. Real, R.; Vargas, J.M. The Probabilistic Basis of Jaccard’s Index of Similarity. Syst. Biol. 1996, 45, 380–385. [CrossRef]
58. Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [CrossRef]
59. Fan, Z.; Xu, X. Application and visualization of typical clustering algorithms in seismic data analysis. Procedia Comput. Sci. 2019,

151, 171–178. [CrossRef]
60. Meyer-Baese, A.; Schmid, V. Feature selection and extraction. In Pattern Recognition and Signal Analysis in Medical Imaging; Meyer-

Baese, A., Schmid, V.B.T.-P.R., Second, E., Eds.; Academic Press: Oxford, UK, 2014; Chapter 2; pp. 21–69, ISBN 978-0-12-409545-8.
61. Baldi, P. Autoencoders, unsupervised learning and deep architectures. In Proceedings of the 2011 International Conference on

Unsupervised and Transfer Learning Workshop, Washington, DC, USA, 2 July 2011; Volume 27, pp. 37–50.
62. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q., Eds.; Curran Associates, Inc.: New York City, NY, USA, 2014; pp. 2672–2680.

http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1109/TPAMI.2006.244
http://www.ncbi.nlm.nih.gov/pubmed/17108377
http://doi.org/10.1016/j.patrec.2011.01.004
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1007/BF00337288
http://doi.org/10.1093/sysbio/45.3.380
http://doi.org/10.1080/01621459.1971.10482356
http://doi.org/10.1016/j.procs.2019.04.026

	Introduction 
	Materials and Methods 
	Fundamentals of Seismic Reflection, Seismic Attributes and Well Logging 
	Seismic Data Analysis Methodology 
	Pointwise Data Clustering 
	Spatial Groups Data Clustering 

	Well Logs Data Analysis Methodology 
	Seismic and Well Logs Groups Association 

	Results and Discussion 
	Seismic Data Analysis 
	Pointwise Data Clustering 
	Spatial Groups Data Clustering 

	Well Logs Data Analysis 
	Seismic and Well Logs Groups Association 

	Conclusions 
	References

