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Abstract: In this work, we experimentally analyzed the effect of tapering in light-diffusing optical
fibers (LDFs) when employed as surface plasmon resonance (SPR)-based sensors. Although tapering
is commonly adopted to enhance the performance of plasmonic optical fiber sensors, we have
demonstrated that in the case of plasmonic sensors based on LDFs, the tapering produces a significant
worsening of the bulk sensitivity (roughly 60% in the worst case), against a slight decrease in the full
width at half maximum (FWHM) of the SPR spectra. Furthermore, we have demonstrated that these
aspects become more pronounced when the taper ratio increases. Secondly, we have established
that a possible alternative exists in using the tapered LDF as a modal filter after the sensible region.
In such a case, we have determined that a good trade-off between the loss in sensitivity and the
FWHM decrease could be reached.

Keywords: surface plasmon resonance (SPR); optical fiber sensors; tapered light-diffusing fibers;
light-diffusing fibers; modal filter

1. Introduction

In recent years, surface plasmon resonance (SPR) has been demonstrated to be a very
sensitive technique for the detection of small refractive index (RI) variations at the boundary
between a thin metal layer (e.g., gold) and a dielectric medium (e.g., receptor layers).

In the literature, several sensor configurations that take advantage of the SPR phe-
nomenon have been reported [1–3]. Furthermore, when using an optical fiber as the SPR
medium, additional advantages, such as immunity to electromagnetic interference, remote
sensing capabilities, a light weight, etc., can be obtained [4–9]. In this case, both silica and
polymeric optical fibers (POF) can be used to develop groundbreaking sensors in several
application fields [10–13].

In general, several solutions and configurations can be adopted to improve the per-
formance of SPR sensors based on optical fibers, for instance, by using a bimetallic layer,
modal filters, a doped fiber core, etc. [14–17]. A commonly used approach is tapering
the sensing region, which usually enhances the performance [18]. The advantages of
plasmonic sensors based on tapered optical fibers have been extensively explored in the
literature, both from a theoretical and an experimental point of view [18–22]. Along this
line, Cennamo et al. have recently presented an experimental analysis of SPR sensors based
on tapered plastic optical fibers, confirming the theoretical predictions [23]. Furthermore,
SPR sensors based on tapered optical fibers have been exploited in several application
fields, such as water pollutant detection [24,25], magnetic field sensing [26], and many
others [27–29].

Different kinds of light-diffusing fibers (LDFs) have recently shown their potentiality
as plasmonic sensors [30–32]. This class of optical fibers is characterized by the fact that
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light is scattered out of the fiber all along its length due to light-scattering centers in its core.
This characteristic allows for an easier fabrication procedure, since only a metal deposition
step is required to build the SPR sensor [30].

In this work, we explored the use of tapered silica LDFs in plasmonic sensors configu-
rations. As the first step, we conducted an experimental study on three different SPR-LDF
sensor configurations, characterized by taper ratios of 1.3, 2.3, and 4.6, respectively. We then
compared the performance parameters relative to an SPR sensor based on a straight (un-
tapered) silica LDF and a plastic LDF. Finally, we reported the use of the tapered silica
LDF as a modal filter, in similarity with the study reported in Ref. [15]. In all cases, several
water–glycerin mixtures were used to test the proposed sensor configurations in terms of
bulk sensitivity and FWHM.

This work aimed to demonstrate the effect the tapering process produced on a silica
LDF plasmonic sensor. The choice of the used parameters was fixed at typical values
compatible with the machine used, to compare the several tested sensor configurations.

2. Fabrication Process and Experimental Setup
2.1. Tapered LDF Probes

The silica LDF (Fibrance® by Corning®, New York, NY, USA) used in our experiments
was composed of a silica core with a diameter of 170 µm, and a polymeric cladding with a
diameter of roughly 230 µm. The chosen fiber was a diffusive fiber with a plurality of helical
voids randomly distributed into the core. The presence of the voids impacted the guided
light, as it was scattered radially outward from the core. Clearly, the number of voids in
each section and their dimensions caused a different amount of emitted light. In addition,
the smaller pitches scattered more light than larger pitches, while their diameters ranged
in size from 50 nm to 500 nm. Thus, the propagation light scattered independently of the
wavelength of the used light source.

The tapered silica LDFs were fabricated using a GPX 3800 Glass Processing System
(Vytran LLC, Morganville, NJ, USA). The tapers were created by heating the fiber to its
softening point, and then pulling the ends apart to reduce its diameter. The GPX 3800
allowed us to precisely control the geometry of the taper, by regulating the filament power,
the pull speed, and the fiber tension.

In this work, different tapers were utilized in order to characterize their roles in the
plasmonic sensor system. More specifically, three different values of taper ratios were
employed in our tests, i.e., 1.3, 2.3, and 4.6. In all cases, the total length of the fabricated
taper was 3 cm, composed of a 1 cm long downtaper, a 1 cm-long waist, and a 1 cm
long uptaper.

2.2. SPR Sensors Based on Straight LDFs and Tapered LDFs

In order to realize the SPR sensors based on straight (untapered) and tapered silica
LDFs, a unique fabrication step was carried out, which consisted of depositing a thin gold
nanofilm around the circumference of the sensible area (about 3 cm) [30]. This process was
carried out through a sputter coater machine (Bal-Tec SDC 500, Schalksmühle, Germany).
In order to metalize the whole fiber circumference along the sensible region, the deposition
process was repeated twice, one for each side of the fiber. Each deposition step was
performed for 105 s at a pressure of 0.05 mbar and a current of 60 mA, resulting in a gold
layer thickness of roughly 60 nm, in a similar way to [30].

2.3. Equipment

The experimental setup was composed of a white light source and a spectrometer.
The white light source (model HL-2000-LL, produced by Ocean Optics, Dunedin, FL, USA)
emitted in a spectral range between 360 nm and 1700 nm, whereas the spectrometer (model
FLAME-S-VIS-NIR-ES, produced by Ocean Optics, Dunedin, FL, USA) showed a detection
range between 350 nm and 1023 nm, with a spectral resolution of 1.4 nm (FWHM).
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The spectrometer was connected to a computer with specific software that managed
and processed raw data [30].

To test the realized plasmonic sensor configurations based on the LDFs, different
water–glycerin solutions were prepared, whose refractive indexes had been characterized
by an Abbe refractometer (RMI, Exacta Optech, Munich, Germany).

2.4. Experimental Sensor Configurations

The experimental configurations comprised a white light source illuminating the
plasmonic fiber sensors connected to a spectrometer (see Figure 1) [30]. The same equip-
ment was used in the experimental analysis of all the plasmonic sensor configurations
here reported.
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Figure 1. (a) Experimental tapered LDF-SPR sensors with three different taper ratios: 1.3, 2.3, and 4.6;
(b) experimental SPR-LDF sensor configuration implementing a tapered LDF as a modal filter.

Figure 1a demonstrates, in more detail, the first experimental configuration based on
SPR-LDF sensors with a tapered sensing region. This kind of configuration was tested with
three different taper ratios (1.3, 2.3, and 4.6), with the taper ratios being defined as the ratio
between the diameter of the LDF (2 × ri) and the diameter of the taper in its waist region
(2 × ro).

The second experimental configuration, shown in Figure 1b, was based on an SPR
sensor followed by a modal filter, similar to the study reported in Ref. [15]. However,
in this analysis, the plasmonic sensor was an SPR-LDF sensor, whereas the tapered LDF
was used as a modal filter. In that case, the sensing region was composed of a piece of
gold-coated, untapered LDF, with a length of 2 cm.

Before illustrating the results of our comparative analysis, let us recall the bulk sensi-
tivity, the main parameter of interest for this kind of sensor. Sensitivity (S) can be defined
as the shift in resonance wavelength per unit change of refractive index [33],

S (ns) =

[
δλSPR
δnsm

]
ns

[ nm
RIU

]
(1)

where δnsm is the variation of the refractive index of the sensing medium giving rise to a
resonance wavelength shift equal to δλSPR.

3. Experimental Results and Discussion
3.1. SPR Sensors Based on Tapered LDFs

The first experimental analysis regarded the comparison of three different plasmonic
configurations based on tapered LDFs, with three different taper ratios (1.3, 2.3, and 4.6).



Sensors 2021, 21, 6333 4 of 10

In this section, the results were obtained exploiting the experimental setup reported
in Figure 1a.

Figure 2 shows the transmission spectra at different taper ratios and external refractive
indexes (n), as obtained by normalizing each spectrum to the one acquired with air as
the surrounding medium, where the SPR resonance condition was not satisfied. In all
three configurations, an increment of the resonance wavelength was observed when the
refractive index of the surrounding medium grew. Figure 2 demonstrates that the significant
differences of the experimental spectra were produced for high refractive indices values of
the medium (higher than 1.353 RIU).
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Figure 2. SPR transmitted spectra, obtained by normalization to the spectrum acquired with air as
the surrounding medium, for different refractive index values. Configuration with a taper ratio equal
to (a) 1.3, (b) 2.3, and (c) 4.6.

This aspect can also be observed in Figure 3, where the experimental variation in
resonance wavelength (∆λ), calculated with respect to water (n = 1.332), has been reported
as a function of the external refractive index, for the three analysed sensor configurations.
In Figure 3, each experimental value is the average of five consecutive measurements,
while the error bars represent the highest measured standard deviation (equal to 0.2 nm).
The quadratic fitting of the experimental results is reported as well.
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Figure 3. Variation in SPR wavelength (∆λ) versus external refractive index and quadratic fitting of
the experimental data for three different configurations based on tapered LDFs.

Using Equation (1) and the quadratic fitting equations reported in Figure 3, we can
approximate the bulk sensitivities as the first derivative of the quadratic functions, as shown
in Figure 4, where it is evident that the sensitivity decreases as the taper ratio increases in
the considered refractive index range.
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pered LDF.

Table 1 compares the sensitivity and the FWHM values of the sensor configurations
based on a tapered silica LDF (with different taper ratios) and an untapered silica LDF [30],
at a fixed refractive index equal to 1.353. The same table also reports the above-mentioned
parameters for an LDF based on a POF without a taper [32]. The comparison demonstrates
how tapering the LDF along the sensible region reduced the sensitivity in respect to the
straight LDF, whereas the FWHM slightly decreased. This could be related to the way in
which light propagates in silica LDFs. As already underlined, the silica LDF included in its
core multiple centers of scattering that excited higher-order modes. Consequently, the SPR
condition was easily satisfied, since a very large number of angles of incidence at the gold
surface, capable of exciting plasmons, were obtained [30]. Therefore, the introduction of a
tapered sensing region did not cause a variation in the resonance conditions in terms of
useful SPR angles, which was the mechanism enhancing the SPR sensitivity when tapers
were realized on a conventional optical fiber [18]. Rather, in our LDF, the only consequence
of tapering, in terms of SPR excitation efficiency, was a reduction in the fiber diameter,
which worsened the sensitivity while improving the capability to read the SPR minimum
(the FWHM decreased), as already shown in SPR sensors based on POFs with different
diameters [34].

Table 1. Comparison between different LDFs configurations, at a fixed refractive index equal to 1.353.

Plasmonic Sensor Configuration Refractive
Index (ns)

Sensitivity
[nm/RIU]

FWHM
[nm] Reference

LDF in silica without taper 1.353 2200 173.6 [30]
LDF in silica with taper ratio of 1.3 1.353 1300 168.6 This work
LDF in silica with taper ratio of 2.3 1.353 1150 165.3 This work
LDF in silica with taper ratio of 4.6 1.353 910 157.6 This work

LDF-POF 1.353 1550 202.7 [32]

3.2. SPR Sensor Based on LDFs and Modal Filter Based on Tapered LDF Probes

The second experimental configuration involved the use of a tapered silica LDF probe
only as a modal filter. The use of modal filters has already been explored in the literature
with different configurations [15,32]. In particular, the modal filter could be inserted
either before (light source side) or after (spectrometer side) the sensor system. The second
configuration (spectrometer side) was preferred because it led to major improvements in
the capability to read the SPR minimum (decrease in the FWHM) [15,32].
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For this reason, a modal filter consisting of a tapered silica LDF placed on the spec-
trometer side was implemented in our tests. The results were obtained in this section by
utilizing the experimental setup reported in Figure 1b.

Figure 5a demonstrates the SPR transmission spectra using the tapered silica LDF
probe as a modal filter, whereas Figure 5b demonstrates the variation in resonance wave-
length (∆λ), calculated in respect to water (n = 1.332), with the quadratic fitting of the
experimental values and the error bars.
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side: (a) normalized SPR transmission spectra for different refractive index values; (b) variation in
SPR wavelength (∆λ) versus external refractive index with the quadratic fitting of the experimental
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3.3. Discussion

In this section, we compare different plasmonic LDF-based sensor configurations.
In particular, the sensitivity of the LDF-SPR sensor reported in [30] has been compared
with the results here reported, obtained by utilizing the experimental configurations
illustrated in Figure 1a (Section 3.1) and Figure 1b (Section 3.2). As such, Figure 6 reports
the sensitivity to external refractive index changes of the SPR sensor configurations based
on the untapered silica LDF [30], the tapered silica LDF (with a taper ratio equal to 1.3,
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the best configuration reported in Section 3.1), and the untapered silica LDFs with a
tapered silica LDF employed as a modal filter (reported in Section 3.2).
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Figure 6. Sensitivity as a function of the refractive index for all the configurations based on silica
LDF without a taper (red dots), silica LDF with a taper ratio equal to 1.3 (magenta dashes), and with
a silica LDF as a modal filter on the spectrometer side (blue line).

It was clear that the modal filter led to an intermediate result in terms of sensitivity,
since it ensured a higher sensitivity (in all the considered refractive index ranges) in respect
to the best tapered configuration (Section 3.1).

Table 2 more generally demonstrates a comparative analysis of the LDF-based sensor
configurations. As can be seen, the configuration based on a modal filter here presented
could be a good trade-off between sensitivity and FWHM in respect to other sensor con-
figurations [30,32]. In fact, the loss in sensitivity was reasonable (≈−19%), whereas the
FWHM decreased by ≈ 4%. The FWHM reduction was extremely interesting because
it could improve the capability to read the SPR minimum, making this kind of sensor
simple to use in several potential application fields, exploiting friendly software interfaces.
For example, by coupling these plasmonic probes with specific bio-receptors, sensitive
biosensors could be easily integrable in a portable, simple-to-use, small-size, and low-cost
device for point-of-care testing in different clinical applications.

Table 2. Comparison of performances parameters relative to several configurations based on silica LDFs (without taper and
with taper as a modal filter) and plastic LDFs (with a modal filter) at a fixed refractive index equal to 1.353.

Plasmonic Sensor Configuration Refractive Index (n) Sensitivity [nm/RIU] FWHM [nm] Reference

LDF in silica without taper 1.353 2200 173.6 [30]
LDF-POF sensor with modal filter on

spectrometer side 1.353 1390 182.7 [32]

LDF in silica with modal filter on
spectrometer side realized by a taper 1.353 1780 166.2 This work

As demonstrated in Table 2, in respect to the LDF-POF-based sensor [32], both con-
figurations based on silica LDFs showed an overall improvement in the performance
parameters.

4. Conclusions

We have analyzed a tapered silica LDF’s performance when it is employed in a
plasmonic sensor system. At first, we determined that the tapering process, commonly
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used to enhance optical performances, led to a significant worsening in our study case. This
aspect was related to the particular structure of the silica LDF. Moreover, we have shown
that a good trade-off could be achieved using the tapered silica LDF not in the sensible
region, but as a filter for the higher-order modes propagating inside the silica LDF, leading
to an acceptable loss in sensitivity in favour of a reduction in the FWHM, by improving the
capability to read the SPR minimum.
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