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Abstract: The relationship between the robustness of HRV derived by linear and nonlinear methods
to the required minimum data lengths has yet to be well understood. The normal electrocardiography
(ECG) data of 14 healthy volunteers were applied to 34 HRV measures using various data lengths,
and compared with the most prolonged (2000 R peaks or 750 s) by using the Mann–Whitney U test,
to determine the 0.05 level of significance. We found that SDNN, RMSSD, pNN50, normalized LF,
the ratio of LF and HF, and SD1 of the Poincaré plot could be adequately computed by small data
size (60–100 R peaks). In addition, parameters of RQA did not show any significant differences
among 60 and 750 s. However, longer data length (1000 R peaks) is recommended to calculate most
other measures. The DFA and Lyapunov exponent might require an even longer data length to show
robust results. Conclusions: Our work suggests the optimal minimum data sizes for different HRV
measures which can potentially improve the efficiency and save the time and effort for both patients
and medical care providers.

Keywords: autonomic nervous system; electrocardiography ECG; fluctuations; heart rate variability;
nonlinear analysis; chaos

1. Introduction

Heart rate variability (HRV) is a promising measure used to assess cardiovascular
health by investigating heartbeat fluctuations over time. Electrocardiogram (ECG) is an
autonomically controlled physiological vital signal that changes due to sympathetic or
parasympathetic perturbations. As such, reduction in HRV is a well-established biomarker
of diabetes [1,2], cardiovascular disease (CVD) [3,4], inflammation [5–7], obesity [8] and
psychiatric disorders [9,10]. Over the past half-century, three groups of mathematical
methods for determining HRV have been proposed (i) time domain, (ii) frequency domain,
and (iii) nonlinear analyses [11].

Time- and frequency-domain HRV measures were standardized in 1996 by the task
force of The European Society of Cardiology and the North American Society for Pacing
and Electrophysiology [12]. Nonlinear variability measurements such as the Lyapunov
exponent, fractal, entropy, and symbolic entropy are well-established [13]. However, the
standardization in selecting a time series length for robustness in differentiating different
populations and ailments is currently lacking. HRV measurements are influenced by data
length, sampling frequency [14–17], noise [14,18] and, computation parameters used in
specific methods such as the time delay and embedding dimensions [16,19–23]. The length
of the heart-rate time series data are often considered a limitation for utilizing nonlinear
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analyses. The number of data points in time series is critical for nonlinear analysis since it
is unknown whether fewer data sets can characterize the whole dynamics of the system.

The length of data is an essential factor considering shorter data acquisition time can
improve patient throughput and efficiency of hospitals, healthcare providers, and home
monitoring in general. Additionally, it improves patient’s adherence and overall experience.
An essential part of the HRV analysis is knowing how many data points are needed to
describe the system appropriately. An important rule of thumb suggested by researchers
is to choose time series of at least 10d data points with ‘d’ as the system’s embedding
dimension [24]. In such a scenario, if the embedding dimension is 6, then at least one
million data points are required. However, sometimes obtaining such long time series
data from human subjects in controlled clinical environments is practically impossible. For
example, to collect one million heartbeats, one has to record ECG continuously for about
277 h. This makes human subject data collection practically impossible. Besides, it is not
known if shorter time series can accurately characterize the system’s dynamics. An optimal
data length should capture the essential dynamics of the system. Thus, it is imperative to
understand the relationship between the robustness of the HRV to data lengths, such that
the minimum data points necessary for accurate measurements can be determined.

Traditionally in HRV analysis, the data acquisition time is set to at least 5 min [12].
A limitation to longer data acquisition is that the hydrogel layer used in ECG electrodes
can degrade and lower the signal-to-noise ratio [20,25–27]. Some studies evaluated the
influence of shorter data acquisition time in different HRV measures [28]. For instance,
Munoz and coworkers suggested that some time-domain HRV measures can be reliably
obtained from less than a minute of recording [29]. Others investigated the influences of
data length in both time- and frequency-domain HRV measures [20,30–33]. In the time-
domain analysis, the standard deviation of normal-to-normal (NN) interval (SDNN), root
mean square of standard deviation (RMSSD), and the percentage of successive NN intervals
greater than 50 ms in all NN internals (pNN50) have been suggested as reliable measures for
5 min data lengths. However, frequency-domain HRV measures cannot produce consistent
conclusions. For nonlinear dynamics, Entropy-based HRV measures [34–36] have been
used to differentiate patients with cardiovascular disease from healthy controls using
shorter time-series data. Sample entropy (SampEn) is reported to be less dependent on
data length than approximate entropy (ApEn) [35]. In conclusion, the relationship between
the robustness of HRV derived by linear and nonlinear methods to the required minimum
data lengths has yet to be systematically evaluated and clearly understood.

In addressing such limitations, this study explores how the data length of the ECG
signal affects the HRV measures (time and frequency domain variables and nonlinear
variables). In this study, 14 healthy volunteers were monitored in resting-state. Various
data lengths of ECG recordings were applied to eight (two time, two frequency, and
four nonlinear) approaches, including 13 different methods (statistical and geometric
methods in time domain, Welch’s and Lomb–Scargle in frequency domain, and Poincaré
plot, recurrence quantification analysis (RQA), detrended fluctuation analysis (DFA), Wolf
and Rosenstein’s Lyapunov exponents (LE), ApEn, SampEn, multiscale entropy (MSE),
and composite multiscale entropy (CMSE) in nonlinear analyses), and 34 HRV measures
(Figure 1), to determine the shortest data length that can keep the system dynamics intact.
To understand the robustness of optimal minimum data length that can be utilized to
quantify HRV, each data set size was compared with the most prolonged (2000 R peaks or
750 s) using the Mann–Whitney U test to determine the 0.05 level of significance.
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Figure 1. Approaches, methods, and outputted measures used to calculate HRV in the study. 

2. Materials and Methods 
2.1. Subjects 

The data were collected from healthy young participants with normal ECG record-
ings. A total of 14 subjects (seven male) participated with the age of 23.8 ± 4.1 years (mean 
± standard deviation) and body mass index (BMI) of 23.4 ± 5.1 kg/cm2. Participants were 
excluded if any neurological disorder or heart-related disease was reported. Only one 
male participant reported having a history of Kawasaki’s disease but did not present any 
symptoms during these data collection. 

2.2. Experimental Protocol 
The ECG signals were recorded with lead II placement at a sampling rate of 2 kHz 

from 14 subjects by BIOPAC MP36 System (BIOPAC Systems, Inc., Goleta, CA, USA). 
Subjects were asked to avoid taking caffeine two hours before the time of the study. Par-
ticipants were provided enough rest on the chair (at least five minutes) after arrival to 
ensure the subjects were recorded in a relatively calm state during the studies. At least 10 
min of ECG recordings were acquired while the subjects were seated on the chair. All 
subjects provided written informed consent for the study, which the Institutional Review 
Board of the University of California approved (IRB #2016-2924). 

2.3. Data Preprocessing 
The effect of data length on HRV measures was quantified by analyzing R-R intervals 

on the raw ECG recordings using time, frequency domain and nonlinear analyses meth-
ods. We segmented and standardized ECG data length using R peaks ranging from 60 to 
2000, thus controlling heart rate (HR) differences [20]. In the study, three statistical 
(SDNN, RMSSD and pNN50) and one geometrical method (triangulation index) were in-
cluded in time-domain measurements (Figure 1). Welch and Lomb–Scargle algorithms for 
each of the eight measures (total power, power and normalized power of very low-fre-
quency, low-frequency, and high-frequency, and the ratio of low-frequency to high-fre-
quency) were investigated in the frequency-domain method. Eight nonlinear methods 
were investigated to present different HRV measures. Besides the recurrence quantifica-
tion analysis (RQA), all the measures were computed with consecutive discrete R-R inter-
vals with R peaks ranging from 60 to 2000. RQA was estimated by raw ECG recordings 

Figure 1. Approaches, methods, and outputted measures used to calculate HRV in the study.

2. Materials and Methods
2.1. Subjects

The data were collected from healthy young participants with normal ECG record-
ings. A total of 14 subjects (seven male) participated with the age of 23.8 ± 4.1 years
(mean ± standard deviation) and body mass index (BMI) of 23.4 ± 5.1 kg/cm2. Partici-
pants were excluded if any neurological disorder or heart-related disease was reported.
Only one male participant reported having a history of Kawasaki’s disease but did not
present any symptoms during these data collection.

2.2. Experimental Protocol

The ECG signals were recorded with lead II placement at a sampling rate of 2 kHz from
14 subjects by BIOPAC MP36 System (BIOPAC Systems, Inc., Goleta, CA, USA). Subjects
were asked to avoid taking caffeine two hours before the time of the study. Participants
were provided enough rest on the chair (at least five minutes) after arrival to ensure the
subjects were recorded in a relatively calm state during the studies. At least 10 min of
ECG recordings were acquired while the subjects were seated on the chair. All subjects
provided written informed consent for the study, which the Institutional Review Board of
the University of California approved (IRB #2016-2924).

2.3. Data Preprocessing

The effect of data length on HRV measures was quantified by analyzing R-R intervals
on the raw ECG recordings using time, frequency domain and nonlinear analyses methods.
We segmented and standardized ECG data length using R peaks ranging from 60 to 2000,
thus controlling heart rate (HR) differences [20]. In the study, three statistical (SDNN,
RMSSD and pNN50) and one geometrical method (triangulation index) were included
in time-domain measurements (Figure 1). Welch and Lomb–Scargle algorithms for each
of the eight measures (total power, power and normalized power of very low-frequency,
low-frequency, and high-frequency, and the ratio of low-frequency to high-frequency) were
investigated in the frequency-domain method. Eight nonlinear methods were investigated
to present different HRV measures. Besides the recurrence quantification analysis (RQA),
all the measures were computed with consecutive discrete R-R intervals with R peaks
ranging from 60 to 2000. RQA was estimated by raw ECG recordings ranging from 60 to
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750 s. In the section below, we provided details for (i) R peak extraction, (ii) evaluation for
HRV measures, and (iii) statistical analysis.

2.4. Extraction of R Peaks Using Wavelet Analysis

The consecutive discrete R-R intervals were processed initially from the raw ECG
signal. Symlet 4 (Sym4) wavelet was chosen to enhance R peaks by using maximal overlap
discrete wavelet transform (MODWT) due to its similarity with the QRS complex as shown
in Figure 2. Potential artifacts as arrhythmic events were excluded. The identified R peaks
were then extracted as R-R interval segments used for the HRV analysis.
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2.5. Time-Domain Analysis

Three statistical measures (SDNN, RMSSD, pNN50) and a geometric measure (trian-
gular index) were discussed in time-domain analysis. SDNN is the standard deviation of
the normal-to-normal (NN) interval. RMSSD represents the square root of the mean of the
sum of the squares of differences between adjacent NN intervals. pNN50 calculates the
ratio of the counts of adjacent NN intervals that are more than 50 ms and the total number
of NN intervals in the data set. The basic variable in the geometric method, HRV triangular
index, is also computed (Equation (1)).

HRV Triangular Index =
total number of NN intervals

number of NN intervals in the modal bin
(1)

SDNN, RMSSD, pNN50 and HRV triangular index were computed as standards of
measurement [12].

2.6. Frequency-Domain Analysis

According to the task force’s [12] guideline, frequency domain measures of HRV
can be categorized into four bands, ultra-low-frequency (ULF, ≤0.003 Hz), very low-
frequency (VLF, 0.003–0.04 Hz), low-frequency (LF, 0.04–0.15 Hz), and high-frequency (HF,
0.15–0.4 Hz). It is also suggested that VLF, LF, and HF rhythms are distinct components
for a 2–5 min short-term ECG recording. Hence, there were eight parameters calculated
in the study: (i) VLF power, (ii) LF power, (iii) HF power, (iv) total power, (v) normalized
VLF (VLF norm), (vi) normalized LF (LF norm), (vii) normalized HF (HF norm), and (viii)
the ratio of LF to HF (LF/HF). The total power is a sum of the VLF, LF, and HF absolute
power. The normalized HRV power is defined as the proportion of one power range to
the total power in absolute values and allows to compare individuals and various data
lengths appropriately. To estimate HRV power spectral analysis, both Welch’s method [37]
and Lomb–Scargle periodogram [38,39] were applied. Welch’s method utilizes fast Fourier
transform (FFT) and is advantageous for low a computation workload. The original signal
with N data points is split into K segments, X1(j), . . . , XK(j). Each segment has a length of
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L and is apart from the previous segment in the distance of D such that N can be written
as Equation (2).

N = (K− 1)D + L. (2)

The overlapped segments are helpful to mitigate the loss. The windowed finite Fourier
transform Ak(n) is applied to each segment (k = 1, 2, . . . , K) with a data window W(j)
where j = 0, . . . , L− 1 as Equation (3):

Ak(n) =
1
L

L−1

∑
j=0

Xk(j)W(j)e−
2kijn

L n = 0, . . . ,
L
2

, (3)

where Xk(j)W(j) is the windowed segment sequences and i =
√
−1. Therefore, the

modified periodogram, Pk( fn), for each segment, can be written as Equation (4).

Pk( fn) =
L2|Ak(n)|2

∑L−1
j=0 W2(j)

fn =
n
L

n = 0, . . . ,
L
2

. (4)

And Welch’s method is estimated as the average of the periodogram values as
Equation (5).

〈P(fn)〉 =
1
K

K

∑
k=1

Pk( fn). (5)

The Lomb–Scargle periodogram is inspired by the Fourier transform and a least-
squares method known for identifying periodicity. It offers advantages in dealing with
unevenly sampled data and allows ectopic or missing beats [40–42].

2.7. Nonlinear Methods

We investigated several nonlinear variability methods such as Poincaré plots, fractal
dimension, Lyapunov exponent, and entropy in the study.

2.7.1. Poincaré Plot

The Poincaré plot is a nonlinear technique that can depict HRV in a two-dimensional
graphic. It visualizes the beat-to-beat detail to dispersion and provides quantitative infor-
mation on cardiac performances. Popular approaches to quantify Poincaré plot include
ellipse fitting, histogram, and correlation coefficient. The study characterized the R-R
interval as illustrated by the Poincaré plot by fitting an ellipse as in Figure 3 [43–45].
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A new set of the coordinate plane, x1 and x2, is formed at the intersection of the ellipse
center (Equation (6)). [

x1
x2

]
=

[
cos θ − sin θ
sin θ cos θ

][
RRn

RRn+1

]
(6)

SD1 and SD2 represent the distribution of points perpendicular and parallel to the
line-of-identity of the fitted ellipse, which indicates the level of short- and long-term
variability [46,47]. Mathematically, SD1 and SD2 are the standard deviations around x1
and x2, respectively. They were computed by using linear measures of HRV as shown in
Equations (7) and (8) [47]:

SD12 = Var(x1) = Var
(

1√
2

RRn − 1√
2

RRn+1

)
= 1

2 Var(RRn − RRn+1) =
1
2 SDSD2

(7)

SD22 = 2SDNN2 − 1
2

SDSD2, (8)

where the standard deviation of the differences between adjacent RR intervals is denoted
by SDSD. The axis ratio SD1/SD2 indicates the relationship of the instantaneous interval
variation to the long-term variation.

2.7.2. Approximate Entropy

Approximate entropy (ApEn) is a method to quantify the complexity of time-series
data. Its application is limited to data lengths greater than 100 data points [48,49]. Com-
plexity can quantify variability to indicate the unpredictability of HR fluctuations. To assess
complexity, ApEn was computed as the difference between the probability of the series of
a vector with a fixed data length m and the probability of the series of another vector with
a similar length (m + 1) that both fall within a tolerance r as Equation (9):

ApEn(m, r, N) = Φm+1(r)−Φm(r), (9)

where Φm(r) from the element in Eckmann–Ruelle (E–R) entropy [50] is defined in
Equation (10):

Φm(r) =
1

N −m + 1

N−m+1

∑
i=1

logCm
i (r), (10)

where Cm
i (r) is the conditional probability of vector length m.

Pincus et. al. recommended that given 1000 data points, using parameters m = 2
and an r value between 0.1 and 0.25 of data standard deviation provide a robust result of
ApEn [48,51]. Hence, ApEn was applied to different quantities of R-R interval time series
with the values m = 2 and r = 0.2 in this study.

2.7.3. Sample Entropy

Sample entropy (SampEn) was initially introduced 9 years after ApEn [52]. With a
similar goal, SampEn is a useful mathematical algorithm that measures the predictability
in time series and can be viewed as a refinement of ApEn. SampEn addressed ApEn’s
shortcoming as its ability to have independence for different data lengths and showed
robustness for the change in data lengths [52–54]. Richman and Moorman defined the
negative natural logarithm of the probability using vector length m, tolerance r, and signal
data length N from ApEn (Equation (11)):

SampEn(m, r, N) = −ln
A
B

, (11)
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where A and B are (N−m)(N−m−1)
2 times the sum of all the conditional probabilities, Cm+1

i
and Cm

i , divided by N −m without considering the self-matches.

2.7.4. Multiscale Entropy

The traditional multiscale entropy (MSE) algorithm [55,56] is conducted in two parts:
(i) a coarse-graining procedure for different scaled time series from an original signal;
(ii) SampEn is used to calculate each time series scale. However, some disadvantages of
traditional MSE had been issued [57]. Therefore, several newly developed MSE methods
were reported [29,58–60]. However, most of the solutions suggested modifying the first
step’s time-series scale with different algorithms or using other entropies for the second
step instead [61]. Therefore, instead of the conventional MSE, a composite multiscale
entropy (CMSE) [60] was used to evaluate cardiovascular complexity in the study. Tradi-
tional MSE computed SampEn with the first coarse-grained time series of each scale only
(Equation (12)):

SampEn(m, r, N) = −ln
A
B

, (12)

where x is the original one-dimensional time series, τ is the scale factor, and the same
parameters m and r from computing SampEn. Equation (13) is the first coarse-grained time
series y1

(τ) which is defined as:

y1,j
(τ) =

1
τ

jτ

∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N
τ

. (13)

Nevertheless, the SampEn of the first coarse-grained time series derives poor reliability.
The CMSE algorithm was then introduced to overcome the problem [60]. Therefore, instead
of using the first coarse-grained time series, All the coarse-grained time series SampEn are
considered in CMSE as shown in Equation (14):

CMSE(x, τ, m, r) =
1
τ

τ

∑
k=1

SampEn
(

yk
(τ), m, r

)
, (14)

where yk
(τ) represents the coarse-graining procedure determined from xk, the kth data

point from the original signal (Equation (15)).

yk,j
(τ) =

1
τ

jτ+k−1

∑
i=(j−1)τ+k

xi, 1 ≤ j ≤ N
τ

, 1 ≤ k ≤ τ. (15)

2.7.5. Detrended Fluctuation Analysis

In the time series analysis, the detrended fluctuation analysis (DFA) is used to estimate
self-similarity. It is calculated as the root-mean-square error of the least-squares line fitted
in separate non-overlapping windows of the cumulative integral of the original time series.
For example, given the interbeat intervals of an original ECG signal in time series x with
length N, the cumulative integral of the signal y(k) is written as Equation (16):

y(k) =
k

∑
i=1

(x(i)− 〈x〉), (16)

where 〈x〉 denotes the average of x, y(k) is then divided into segments of equal length n.
The root-mean-square fluctuation F as a function of the window sizes n is computed by
Equation (17):

F(n) =

√√√√ 1
N

N

∑
k=1

[y(k)− yn(k)]
2, (17)
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where yn(k) is the y-coordinate of the linear fitted line in each of the segments.
The fluctuation is indicated as the slope of F(n) versus n in a logarithmic scale by a

scaling exponent α. Peng’s work found that there is a significant difference in α over a
wide range of window sizes (20 ≤ n ≤ 1000) among the interbeat interval time series of 15
severe heart failures and 12 controls [62].

2.7.6. Recurrence Quantification Analysis

The research of recurrences is commonly used to understand the complexity of a
nonlinear dynamical system. The RQA is known for being able to handle short and
nonstationary data. The recurrence plot (RP) and its quantification measures are the tools
to visualize and quantify the recurrence behavior of the state space trajectory [63–65]. RP
was first introduced in 1987, allowing the recurrences of higher dimensional phase space to
be visualized by a two-dimensional representation [66]. It is an effective way to understand
the behavior of a dynamic system. Mathematically, it shows the phase space vectors

⇀
xi that

recur at time i and another time j (Equation (18)):

Ri,j = Θ
(

εi −
∣∣∣∣∣∣⇀xi −

⇀
xj

∣∣∣∣∣∣),
⇀
xi ∈ Rm, i, j = 1, . . . , K, (18)

where K is considered size for the recurrence matrix, m is the highest dimension being
investigated, εi is a threshold distance, and Θ(.) is the Heaviside function.

To infer RQA, there are three parameters that need to be taken into consideration,
a time delay τ, the embedding parameter D, and a threshold distance ε. The time-delay
parameter of the Takens embedding theorem [67] brings the original one-dimensional time
series into multiple dimensional manifolds. Here, the average mutual information (AMI)
is used to estimate τ [68]. Essentially, AMI calculates the least dependent information in
the time-delayed coordinates. Then, the embedding parameter comes in to reconstruct the
phase space vector since a time delay is applied to the raw data. The choice of a deficient D
may lead to unwanted results such as the false bifurcation points [68]. Hence, false nearest
neighbors [69], which inspects whether there’s a significant change in the distance between
two adjacent data points with embedding dimensions, was used to determine D here. In
our work, the time delay and embedding parameters were chosen as the median values
across 14 studies (τ = 22 and D = 2). Lastly, the threshold distance parameter defines
who the RP neighbors are as the radius of a sphere. To select a sufficient threshold, distance
can be critical, it may lose the key information of the recurrence structure or include a lot of
artifacts if ε is chosen too small or too large [13,70]. It is suggested that a proper selection of
ε should correspond to a specific range of the percent recurrence (%REC), a quantification
measure is discussed in detail in the next paragraph [64,71].

In comparing various subsets of data, the recommended threshold parameter should
be chosen so that a typical %REC is in the range of 5% to 10% and the minimum is at least
1% [71]. The threshold of 8 fulfilled the guideline in the study. The quantification measures
are used to characterize the information in RPs. Four of them, %REC, percent determinism
(%DET), the average diagonal line length (ADL), and the maximum diagonal line length
(MDL), were reported in the paper. %REC quantifies the percentage of recurrent points in
a RP (Equation (19)).

%REC =
sum of recurrent points

size of RP
∗ 100. (19)

The minimum (0%) and maximum (100%) represent that no points and all the points
are fallen into the ε-defined recurrent sphere, respectively. The second parameter, %DET,
measures the percent of recurrent points occurring in connected trajectories, which is of
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the total counts of recurrent points (Equation (20)). The connected trajectories are formed
by the continuous adjacent of two or more points that follow the diagonal lines.

%DET =
sum of diagonally adjacent recurrent points

sum of recurrent points in RP
∗ 100. (20)

ADL calculates the average length of connected trajectories. MDL simply counts the
length of the longest connected trajectory in the RP.

2.7.7. Lyapunov Exponent

The Lyapunov exponent (LE) of a dynamical system is a quantity that measures
how fast two infinitesimally close trajectories separate in phase space based on the initial
condition. For instance, one point would exponentially diverge from another if the system
is chaotic. Given two close trajectories, x(t) and y(t) are a function of time, Equation (21)
shows the next iteration ε after time t separates their distance exponentially:

|x(t + ε)− y(t + ε)| = |x(t)− y(t)|eλ1ε, (21)

where λ1 represents as the first LE (Equation (22)). Hence, the first LE can be written as:

λ1 = lim
ε→∞

lim
|x(t)−y(t)|→0

1
ε

ln
(
|x(t + ε)− y(t + ε)|
|x(t)− y(t)|

)
. (22)

The rate of separation, LE, may vary for different orientations of the initial two close
trajectories. λ with a positive value (λ > 0) means the trajectories diverge exponentially.
On the contrary, two nearby points converge exponentially, which leads to a negative value
of λ (λ < 0). That is to say, the larger the value of LE, the lower the predictability for
a dynamical system. The largest Lyapunov exponent (LLE) is commonly referred to as
the indicator of chaos. There are various computational methods to quantify LLE. Two
widely used algorithms, Wolf and Rosenstein methods, are included in the study. Both of
them track the divergence of nearest neighbors over time. However, Wolf’s algorithm [72]
takes one trajectory as the reference only (Equation (23)). Thus, each point on the reference
trajectory iterates with its single nearest neighbor’s trajectory over time until their distance
apart from each other grows beyond a threshold:

||z(ti)− x(ti)|| = L(i), (23)

where i is the increment, L is the difference in two trajectories, x is the point on the reference
trajectory, and z is the nearest neighbor of the corresponding point. The reference point
re-evaluates the new single nearest neighbor once the previous trajectory’s separation is
large. Following the nearest neighbor and replacing it with another trajectory completes
at the end of the reference trajectory. The distance between the reference point and the
beginning and last point of each new nearest neighbor trajectory is denoted as L and L′,
respectively. The LLE by Wolf’s algorithm, λ1, tracks all the L and L′ (Equation (24)):

λ1 '
1
K

M−1

∑
i=0

ln
L′ i
Li

, (24)

where M represents the number of nearest neighbor trajectories and K is the total number
of iterations in the reference trajectory.

Instead of focusing on a single nearest neighbor, Rosenstein’s method [73] finds the
nearest neighbor overall points on the trajectory. The distance of a certain reference point,
Xj, to its nearest neighbor Xj

′ can be expressed as Equation (25):

dj(0) = minXj
′
∣∣∣∣Xj − Xj

′∣∣∣∣, (25)
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where dj(0) means the initial distance between the jth point and the nearest neighbor.
The LLE by Rosenstein’s work can be estimated as the average speed of nearest neighbor
separation (Equation (26)).

dj(i) ≈ Cjeλ1(i∆t), (26)

where ∆t is the period of each iteration, i is the number of iterations, and Ci as the initial
separation.

In our approach, the original one-dimensional signal was reconstructed using the
methods mentioned above to define parameters, time delay τ and embedding dimension
D (details in RQA section). To compare different data lengths, each τ and D in a particular
data length group was obtained as the median values across all participants. The selected
values of τ and D in each group are referenced in Table 1.

Table 1. The values of time delay and embedding dimension used in different data lengths.

Length (R Peaks) Time Delay Embedding Dimension

60 2 2
100 3 2
150 2 3
200 3 3
300 2 3
400 3 4
500 3 4
750 3 4

1000 4 4
1500 3 4
2000 5 5

2.8. Statistical Analysis

A total of 34 HRV indices were computed in this study. The indices were divided
into three groups: the effect of data length on (i) time domain, (ii) frequency domain,
and (iii) nonlinear HRV measures. Descriptive data are presented as means and standard
deviations (SDs) for continuous HRV variables. Normal distribution of all time/frequency
domain, linear/nonlinear variables was tested using the Kolmogorov–Smirnov test and
visually inspected histograms and Q-Q plots. HRV parameters from ECG recordings did
not exhibit normal distributions and were analyzed as non-parametric. To understand
the robust/optimal minimum data length that can be utilized to quantify HRV in the
methods as mentioned above, each data set size was compared against the most extended
(2000 R peaks or 750 s) using the Mann–Whitney U test in R. Moreover, HRV measures
were then calculated with several randomly chosen segments and compared against each
other using the Mann–Whitney U test to eliminate the possibility of biased results from
short data length selection. The critical value was chosen at the 0.05 level of significance.

3. Results
3.1. Time-Domain HRV

Among the four time-domain HRV measures presented in the paper, we find SDNN,
RMSSD, and pNN50 are consistent for a very short-term HRV analysis (Table 2). SDNN
in 100 R peaks was not significantly different from SDNN at 2000 R peaks. Similarly,
a minimum of 60 R peaks of RMSSD and pNN50 were found consistent with longer
(2000 R peaks) HRV recordings. The HRV triangular index, however, is recommended to
be used with at least 1000 R peaks. This means that if one were an adult with a normal
resting HR, a 10 to 16-min recording would have no statistically significant difference
compared with a 20 to 33-min recording.
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Table 2. Mann–Whitney U test results for comparing HRV measures at 2000 R peaks with shorter data lengths. Data length
is in R peaks. Statistical significant differences (p < 0.05) and statistical highly significant differences (p < 0.001) are color
labeled in lighter and darker gray with bold font, respectively.

Length 60 100 150 200 300 400 500 750 1000 1500

Time-domain HRV

Geometric measure
Triangular index 0.000 0.002 0.004 0.004 0.005 0.008 0.017 0.048 0.148 0.800

Statistical measure
SDNN 0.016 0.056 0.056 0.069 0.056 0.062 0.104 0.094 0.265 0.946
RMSSD 0.982 0.804 0.667 0.734 0.734 0.701 0.701 0.635 0.769 1.000
pNN50 0.946 0.909 0.730 0.872 0.836 0.765 0.909 0.836 0.909 0.982

Frequency-domain HRV

Welch’s periodogram
VLF 0.000 0.002 0.002 0.002 0.001 0.003 0.006 0.009 0.104 0.734
LF 0.035 0.050 0.104 0.056 0.044 0.048 0.044 0.044 0.210 0.839
HF 0.603 0.804 0.910 0.839 0.874 0.910 0.874 0.946 0.982 0.982
Total power 0.016 0.039 0.050 0.050 0.044 0.035 0.057 0.050 0.210 0.910
VLF norm 0.000 0.000 0.000 0.000 0.000 0.001 0.005 0.009 0.103 0.646
LF norm 0.946 0.701 0.734 0.927 0.804 0.769 0.748 0.946 0.734 0.890
HF norm 0.008 0.003 0.008 0.014 0.019 0.024 0.044 0.085 0.137 0.734
LF/HF 0.137 0.062 0.085 0.062 0.069 0.085 0.113 0.183 0.306 0.839

Lomb–Scargle’s periodogram
VLF 0.945 0.121 0.188 0.105 0.256 0.306 0.418 1.000 0.069 0.728
LF 0.000 0.000 0.006 0.004 0.013 0.050 0.188 0.188 0.798 0.694
HF 0.000 0.000 0.001 0.001 0.003 0.011 0.030 0.112 0.982 0.963
Total power 0.000 0.000 0.001 0.000 0.001 0.013 0.073 0.140 0.645 0.890
VLF norm 0.000 0.000 0.000 0.002 0.002 0.010 0.056 0.040 0.358 0.804
LF norm 0.137 0.435 0.839 0.807 1.000 0.982 0.910 0.769 0.890 0.982
HF norm 0.027 0.077 0.048 0.062 0.081 0.094 0.178 0.198 0.511 0.818
LF/HF 0.839 0.541 0.482 0.511 0.520 0.401 0.520 0.804 0.734 0.982

Nonlinear HRV

Poincaré plot
SD1 0.667 1.000 0.890 0.963 0.908 0.874 0.910 0.769 0.854 0.910
SD2 0.009 0.031 0.021 0.027 0.014 0.014 0.031 0.044 0.198 0.910
SD1/SD2 0.004 0.002 0.008 0.011 0.009 0.014 0.039 0.085 0.150 0.667

Entropy
SampEn 0.046 0.009 0.006 0.007 0.035 0.021 0.031 0.077 0.329 0.734
ApEn 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.541 0.701 0.511
MSE 0.005 0.125 0.012 0.003 0.002 0.003 0.007 0.035 0.164 0.839
CMSE 0.000 0.002 0.007 0.002 0.009 0.004 0.009 0.062 0.164 0.839

Fractal
DFA 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.002 0.667
Lyapunov exponent
Wolf 0.000 0.000 0.000 0.035 0.000 0.001 0.069 0.085 0.002 0.701
Rosenstein 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

3.2. Frequency-Domain HRV

Both Welch and Lomb–Scargle periodograms were included in the HRV power spectral
analysis (Table 2). With Welch’s method, the appropriate minimum length for acquiring
VLF power, LF power, total power, and VLF norm was 1000 R peaks. The HF norm analysis
can use 750 R peaks. The HF power, LF norm, and LF/HF ratio had no change from
60 to 2000 R peaks. On the contrary, the lengths required to calculate HRV measures
by the Lomb–Scargo periodogram were shorter than Welch’s in general. However, the
recommended lengths to obtain VLF norm, LF norm, and LF/HF ratio remained same.
Furthermore, using 200, 500, 500, and 750 R peaks for HF norm, LF power, total power, and
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HF power, respectively, were acceptable. VLF power with the Lomb–Scargle algorithm had
no statistically significant difference using very short-term recordings.

3.3. Nonlinear HRV

The statistical results of nonlinear HRV indices were separated into two tables. The
majority of nonlinear HRV indices are shown in Table 2. The measures of RQA are listed
in Table 3. As a whole, the adequate lengths of nonlinearly-assessed HRV measures were
longer than those of linearly-assessed methods.

Table 3. Mann–Whitney U test results for comparing measures of RQA at 750 s with shorter data
lengths. No significant differences show in any length considered.

Length (s) 60 100 150 200 300 400 500 600

%REC 0.910 0.910 1.000 0.946 1.000 0.874 0.946 0.982
%DET 1.000 0.982 0.946 1.000 1.000 0.946 1.000 0.946
MDL 0.982 0.769 0.839 0.982 0.804 1.000 1.000 0.982
ADL 0.701 0.910 0.982 0.982 0.946 0.946 0.982 0.946

Poincaré plots, when compared with different data lengths, did not show any dif-
ferences with SD1. However, the minimum lengths of 1000 and 750 R peaks were not
significantly different compared with the maximum (2000 R peaks) for SD2 and SD1/SD2,
respectively (Table 2). Furthermore, as entropy-based approaches, using 750 R peaks to
quantify SampEn, ApEn, and CMSE showed no significant differences compared with
maximum length (2000 R peaks); however, traditional MSE was significantly different until
750 R peaks and was robust for longer data lengths. Statistical results showed that DFA
and Wolf and Rosenstein’s LE were affected due to the data length. The minimum data
length for DFA and Wolf’s LE was 1500 R peaks such that no significant difference was
found compared with 2000 R peaks (maximum data length). However, Rosenstein’s LE
showed significantly different values in all the data lengths when compared with full data
length (2000 R peaks). Four parameters of RQA (Recurrence (REC), determinism (DET),
Maximum Diagonal Length (MDL) and Average Diagonal Length (ADL)) were computed
for different data lengths to compare with the maximum (ECG data of 750 s or 12.5 min)
data. The results did not show any significant differences among 1 min and 12.5 min of
%REC, %DET, MDL and ADL.

Table 4 shows recommended minimum data length suggesting consistency and unbi-
ased to maximum data length (2000 R peaks) using the Mann–Whitney U test. We reported
time- and frequency-domain HRV measures and minimum data length with consistency.
We found that most of nonlinear variables required a minimum data length of 1000 or
1500 R peaks. However, this was not the case for SD1 of Poincaré plot and RQA measures.
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Table 4. The recommended minimum data length of each HRV measure.

HRV Parameters Recommended Minimum Data Length (R Peaks)

Time-domain HRV

Geometric measure
Triangular index 1000

Statistical measure
SDNN 100
RMSSD 60
pNN50 60

Frequency-domain HRV

Welch’s periodogram
VLF 1000
LF 1000
HF 60
Total power 1000
VLF norm 1000
LF norm 60
HF norm 750
LF/HF 60

Lomb–Scargle’s periodogram
VLF 60
LF 500
HF 1000
Total power 500
VLF norm 1000
LF norm 60
HF norm 500
LF/HF 60

Nonlinear HRV

Poincaré plot
SD1 60
SD2 1000
SD1/SD2 1000

Entropy
SampEn 1000
ApEn 1000
MSE 1000
CMSE 1000

Fractal
DFA 1500

Lyapunov exponent
Wolf 1500
Rosenstein -

We investigated the effects of data length HRV measures on 14 participants utilizing
the Mann–Whitney U test. Box plots were used to summarize the distribution in each HRV
measure per data length (Figure 4). Figure 4a shows how data length affects the complexity
(ApEn) of the R-R interval data. With the data length increasing from 60 to 2000 R peaks,
the overall value of ApEn showed a linear trend and reached a plateau around 750 R peaks.
The median values and the 25–75 percentile range among 750 to 2000 R peaks remained
consistent, contrasting with 60 to 500 R peaks (showed increasing linear trend). Unlike the
pattern in ApEn, Rosenstein’s LE showed inconsistency while the data lengths increased.
In Figure 4b, the box plots of Rosenstein’s LE show scattered values with the observation
of the outlier quantity. Both MSE (Figure 4c) and CMSE (Figure 4d) had more extensive
percentile ranges in shorter data lengths and a similar variation in median values after
200 R peaks.
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Figure 4. Bar plots of (a) ApEn, (b) Rosenstein’s LE, (c) MSE, and (d) CMSE with different numbers of R peaks. Different 
R-peaks are represented with different colors for four nonlinear methods. The error bars represent standard deviation 
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4. Discussion

In this study, we investigated the effects of ECG data series length on the consistency
of HRV parameters. Conventionally, short assessments of five minutes of ECG data are
used for analysis (approximately 360 R-R intervals) [12], and in this study, we evaluated
the statistical differences of HRV measures at different data lengths to maximum data
length (2000 R peaks). We investigated 34 HRV measures in this study, including (a)
time domain, (b) frequency domain, and (c) nonlinear analysis variables. We found that
a length of 1000 R peaks or more can precisely estimate HRV for time and frequency
domain variability features. Moreover, we found all variables were affected by ECG data
length. For example, in the general frequency domain variables are more unstable for up
to 750 R peaks of data length.

4.1. Use of HRV Measures in Pathology Differentiation

Previous studies suggested that HRV measures can be an indicator to differentiate the
pathologies from the healthy controls or to predict the severity of disease. Patients with
common neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease
were found to have significantly reduced time- and frequency-domain HRV measures
regardless of the data length [74–77]. Valappil and coworkers discussed patients with REM
sleep behavior disorder; considering premotor Parkinson’s disease, they used five-minute
ECG recording and found significantly lower HRV in SDNN, pNN50, LF, HF, SD1 and
SD2 in the Poincaré plot compared with controls [78]. The interest in studying the use of
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HRV measures in other pathologies is also widespread. For instance, linear and nonlinear
variability such as complexity, measured by SampEn, reduced in patients with type 1
diabetes mellitus using 3200 R peaks [79]. Mussalo and coworkers demonstrated that
both patients with mild and severe essential hypertension had lower time- and frequency-
domain HRV measures computed with at least 250 R peaks in the 10-min recordings [80].
In addition, there was the study presented that a five-minute ECG recording can show
differences in nonalcoholic fatty liver disease with diabetes and controls [81]. Most of the
studies had focused on whether linear HRV measures can stratify pathologies. To further
understand how to assess not only linear but nonlinear HRV in a short time, it is crucial to
investigate the effect of data lengths.

4.2. Importance of Short Data Sets and R-R Intervals

Various studies have demonstrated very short-term (less than 5 min) or short-term
(5 min) data lengths for HRV analysis [20,29–32,34,75,77–79,82–85]; others have vouched
for using longer data lengths for HRV analysis [74,76,86]. However, the knowledge of how
data length affects different HRV linear and nonlinear measures is presently unknown. This
research is essential since variation in ECG recording length may result in differences in
outcomes of HRV analysis in all temporal, frequency-based and linear/nonlinear analyses.
When recordings with different duration are compared, it should be considered to use the
most prolonged duration as a standard of comparison for stable HRV values. This allows
us to identify the minimum length of ECG data that can capture system dynamics without
significantly differing results from long data sets. A quick HRV analysis may serve as a
promising diagnostic tool in healthcare. An effort to shorten ECG data recording is critical
since HRV features add essential information for cardiac functioning. Our study highlights
that most of the HRV measures are sensitive to changes in the data length. We found the
sensitivity of each HRV measure was affected by the change in data lengths. It is important
to note that a faster HR leads to a smaller HRV [20]. Hence, unlike most others using time
as the length reference, the quantity of R peaks ranging from 60 to 2000 was used instead
to avoid HR variation [87].

4.3. Linear ECG Variability Measures

Chen and coworkers conducted a study with 3387 adult participants with ECG record-
ings of longer than two minutes, but reported that such long ECG recording may not be
required since the valid results of RMSSD and SDNN can be attained from 10 and 30 s of
ECG recordings, respectively [29]. The robustness of RMSSD from 10 s recordings was also
corroborated in Thong’s work [30]. However, 10 s based SDNN assessment was found
inconsistent by both studies concluding that linear variability measure such as SDNN was
more sensitive to data length than RMSSD. Similarly, some other studies reported similar
results of RMSSD and SDNN when comparing data lengths of 3 and 5 min [20], 50-s [31]
and 5-min [32,83,84] measurements as the reference. On the other hand, pNN50 evaluated
from three and five minutes showed similar values [20]. Short ECG data sets of 20 s of
pNN50 can reliably estimate similar to 150 s [31]. Thus, our results indicate that RMSSD
and pNN50 were the least sensitive to data lengths. A shorter ECG data length of 30 s for
SDNN evaluation can potentially replace existing guidelines by the task force [12]. The
HRV triangular index was affected by data length, which was consistent with previous
findings [83].

4.4. Frequency-Domain Analysis

The frequency-domain HRV measures were evaluated as per standard techniques
defined by the task force [12]. We investigated two frequency domain HRV analysis
methods using the Welch periodogram and Lomb–Scargle. Previously, Thong investigated
10-s HRV data for HF band variables and reported results unreliable for accuracy [30].
McNames and Aboy concluded that the performances of HF variable ranging from 10 s
to 10 min compared with the 5-min estimation were comparable with the results in mean
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HR [83]. In addition, the study showed that 40-s HF and 50-s LF/HF, LF norm and HF norm
were reliable to monitor mental stress under a mobile setting [31]. Similar to Salahuddin’s
work, we found 60 R peaks (36- to 60-s) LF/HF and LF norm had no significant differences
with 2000 R peaks using either Welch or Lomb–Scargle algorithm. In addition, the task
force manual suggested that it can be inappropriate to assess VLF in short-term recordings
(≤5 min). However, our findings show that the optimum data length to estimate VLF
depends on the methods of power spectral density (for example, 1000 and 60 R peaks in
using the Welch and Lomb–Scargle algorithm, respectively).

4.5. Nonlinear Variability Analysis

Most of the nonlinear methods were proposed 30 years ago. However, there are
not literatures investigating the sensitivity on data length as the linear HRV analysis. A
shorter data length of Poincaré plot, MSE, and CMSE were reported and discussed for
different purposes without providing any suggestions to minimum data length for reliable
measurements. For instance, the short-term assessment of the Poincaré plot was applied in
different stress levels, yet was concluded as promising results [88,89]. For an entropy-based
HRV analysis, SampEn and ApEn were compared and discussed together in most instances
since SampEn was introduced to improve the unreliable outcome of ApEn due to data
length. It was suggested that a minimum data length of 100 and 250 RR intervals of SampEn
and ApEn can distinguish healthy from congestive heart failure patients [34]. Another
group studied in the range of 2 min to the 20 min data length. The authors concluded
that SampEn was a lot less sensitive to data length compared with ApEn [35]. McNames
and Aboy considered several time domain and frequency domain HRV variables with
ApEn and indicated that ApEn was the most unreliable one [83]. Although, SampEn was
reported independent of data length compared with ApEn. However, we found 1000 R
peaks to be optimum for estimating ApEn or SampEn.

The results of DFA (α) represent the relationship of F(n) and the window sizes n.
Obviously, n cannot be larger than the length of the data set. Therefore, the data length is
an essential factor of the accuracy of α. Moreover, a crossover phenomenon was observed
when DFA was proposed [62]. Therefore, Peng suggested that at least a 24-h recording was
required for diagnostic purposes since the crossover phenomena can play an essential role
consistent with our results.

To calculate LLE, the parameters τ and D need to be defined first. In this study, both τ
and D increases with the data lengths in HRV. Gao’s works suggested that D = 2 should
be used when analyzing a finite HRV data set [90–92]. However, others reported larger
parameters for longer data sets and shorter parameters for shorter data sets. For instance,
Signorini and Cerutti calculated long-term HRV (N = 20, 000) with τ = 7 and D = 10 [86].
Li’s group used τ = 1 and D = 3 for less than 5 min data sets (N = 200− 355) [85].
Moreover, regarding the method differences in LE, Rosenstein’s LE is fast and easy to
implement and applicable to small data sets [73]. A minimum of 200 consecutive R-R
intervals was suggested as the optimum data length for calculating HRV [85]. However, Li
and coworkers did not report any statistical evidence supporting their conclusion. On the
contrary, we found that data length is significantly different from LLE of 2000 R peaks.

The varying data lengths required for nonlinear and chaos HR analyses can be partially
explained by different autonomic heart control system aspects that complexity (ApEn,
SampEn and MSE) and LLE can measure. For instance, MSE can measure deviations
or differences at different time scales thus offering insightful information on temporal
dynamical variations in the autonomic HR control system. In our laboratory pilot studies
we found strenuous exercises significantly decreased the complexity of HR R-R interval
data. However, LLE detects the presence of chaos in heart dynamical control systems by
quantifying LEs (exponential divergence of initially close state space trajectories). The
computation of LLE utilizing multiple LEs derived from divergence curves requires larger
data sets for stable values. Additionally, DFA is an indicator of statistical persistence and
antipersistence of HR time series. Persistence indicates the deviation in HR time series is
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statistically more likely followed by subsequent deviation in the same direction (increase
in HR is followed by a subsequent increase in HR or decrease is followed by another
decline of HR). On the other hand, antipersistence implies that the deviation is followed by
subsequent deviation in the opposite direction (increase in HR is followed by a decrease in
HR and vice-versa). Since supraspinal mechanisms involuntarily control HR, it is likely the
HR control mechanism will naturally produce long-range correlated HR time series, thus
requiring at least 1500 data points for robust and stable DFA values.

4.6. Limitations

The findings of this study must be seen together with the limitations. Firstly, our
study is limited with sample size. Additionally, the subjects were within a limited range of
age thus the study is limited in external validity to other age ranges. We will conduct a
study with a larger number of participants and broader age ranges in the future. Secondly,
this study investigated optimum data length for HRV measures only limited to a healthy
group. Hence, a future study with pathological groups would be interesting to embolden
our findings.

5. Conclusions

An ECG-based analysis of cardiac rhythm is critical for the diagnosis of a heart condi-
tion and disease management. In addition, novel clinical decision support systems require
quick ECG analysis to assist clinicians. Our effort to shorten the ECG recording duration is
vital to improve efficiency and save time and effort for patients and clinical care providers.
This can be more critical for patients with frequent artifacts and HRV physiological features
extracted from short ECG recordings with high confidence. Our study suggests that ECG
data length collected from wearable devices must be optimized and selected such that
more consistent and reliable results can be attained with existing laboratory-grade measure-
ments. In conclusion, this study suggests ultra-short data sequences can be collected and
analyzed for quick HRV assessments retaining the rich information from linear/ non-linear
variability structure, but with caution since HRV variables are affected differentially to
the data length. Chaotic HR analyses such as LLE (Rosenstein and Wolf) and long-range
correlation through DFA required longer data set lengths than other nonlinear variability
measures such as ApEn, SampEn, and MSE.
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