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Abstract: The pandemic emergency of the coronavirus disease 2019 (COVID-19) shed light on the 
need for innovative aids, devices, and assistive technologies to enable people with severe disabilities 
to live their daily lives. EEG-based Brain-Computer Interfaces (BCIs) can lead individuals with sig-
nificant health challenges to improve their independence, facilitate participation in activities, thus 
enhancing overall well-being and preventing impairments. This systematic review provides state-
of-the-art applications of EEG-based BCIs, particularly those using motor-imagery (MI) data, to 
wheelchair control and movement. It presents a thorough examination of the different studies con-
ducted since 2010, focusing on the algorithm analysis, features extraction, features selection, and 
classification techniques used as well as on wheelchair components and performance evaluation. 
The results provided in this paper could highlight the limitations of current biomedical instrumen-
tations applied to people with severe disabilities and bring focus to innovative research topics. 

Keywords: motor-imagery (MI), brain-computer interface (BCI), electroencephalography (EEG), 
brain controller wheelchair (BCW) 
 

1. Introduction 
The epidemiological context of the coronavirus disease 2019 (COVID-19) pandemic 

has had wide-reaching impacts on all segments and sectors of society, imposing severe 
restrictions on the individuals’ participation in daily living activities, mobility and 
transport, on access to education, services and healthcare. This scenario is an unprece-
dented opportunity to speed up the development and implementation of innovative de-
vices, biomedical solutions, and assistive technologies (AT) to facilitate persons with se-
vere disabilities regarding their participation in daily life [1]. 

In recent years, the Brain-Computer Interface (BCI) application has been growing 
rapidly, establishing itself as an emerging technology able to translate human intentions 
into control signals and allow disabled people to interact with the external environment 
without any kinesthetic movement [1]. It has mainly targeted patients with neurological 
diseases such as amyotrophic lateral sclerosis (ALS), brainstem stroke, multiple sclerosis, 
and high spinal cord injury. 

ALS is a progressive neurodegenerative disease that mainly affects motor neurons in 
the cerebral cortex, brainstem, and spinal cord. As the disease progresses, it led to a con-
dition characterized by loss of ability in controlling the voluntary muscles. Subjects are 
aware of everything going around (the brain works properly). Still, they show limited 
(LIS: locked-in syndrome) or no motor response (CLIS: completely locked-in syndrome), 
meaning that the movement commands are not transmitted through the body limbs. 

For these people unable to easily transmit their intentions to external devices using 
conventional interfaces such as a mouse or a keyboard, the development of brain-con-
trolled systems could be the optimal solution to allow them to live their daily life [2,3]. 
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Indeed, BCI is a useful tool to establish an additional communication channel between the 
subjects and external devices through users’ cerebral patterns. Thus, this approach can be 
efficiently used to improve their independence and facilitate participation in activities, 
thus enhancing overall well-being, reducing marginalization, and preventing impair-
ments. In the pandemic context, in order to avoid any contamination risk, many public 
places have been forced to adopt specific systems and solutions to let people in and out. 
For subjects with a physical disability like those affected by ASL and for wheelchair users, 
this could mean having to use a longer path or having to deal with narrower halls. In 
addition, ALS patients’ management has become highly complicated [4] due to suspen-
sion or postponement of the outpatient follow-up visits. Several innovative solutions of 
telehealth, telemedicine [4,5], and remote monitoring systems [6] as well as new emerging 
technologies facilitating communication, mobility, and environment interaction/control 
have been proposed, but their full impact is yet to be determined [7]. 

The actual context has therefore strongly focused attention on the need to review the 
existing technologies and solutions for patients with severe disabilities already in place or 
under evaluation, as well as on the exigency to highlight their limitations, paving the way 
for future and helpful research in the BCI field. 

More specifically, we identified a sub-area of interest in the BCI context that focuses 
on electroencephalography (EEG)-based BCIs, particularly those using motor-imagery 
(MI) data, for wheelchair movement and control. 

EEG-based BCI has emerged as a technology with high translational potential owing 
to its desirable traits: direct measures of neural activity, portability, non-invasiveness, and 
inexpensiveness [8]. EEG-based BCI technologies in controlling mobile robots, particu-
larly wheelchair systems, have been the subject of recent research interest. Several contri-
butions have been published during the last decade to provide state-of-the-art wheel-
chairs driven by a brain-computer interface. Two of them [9,10] contain a survey, partially 
connected to this field, on brain-controlled mobile robots, describing the overall systems 
and the key techniques and the evaluation parameters of these robots. The other three 
articles [11–13] presented an extensive overview of current BCI-based wheelchair solu-
tions. A recent paper [14] provides a detailed review of EEG signal processing in robot 
control (mobile robots and robotic arms), mainly based on non-invasive brain-computer 
interface systems. 

Our paper aims to present the state-of-the-art applications of EEG-based BCIs, par-
ticularly those using motor-imagery (MI) data, to wheelchair movement and control in a 
real environment. Focusing on the applicability and feasibility of brain-controlled wheel-
chairs in the pandemic context and highlighting the need for easy usability required for 
disabled people, we considered studies that are based only on motor imagery EEG data 
and that tested the BCI approach on a real wheelchair, or at least a prototype, but not a 
simulator. The review presents a thorough examination of the different studies conducted 
since 2010, focusing on the algorithm analysis, features extraction, features selection, and 
classification techniques used, and wheelchair components and performance evaluation. 

The rest of this paper is organized as follows: Section 2 describes more in detail about 
the methodology used for this review. Section 3 presents a synthetic overview of BCIs 
classifications and applications, identifying our area of interest more precisely. Section 4 
focuses on applying MI EEG-based BCIs in wheelchair movement and control and sum-
marizes the different existing solutions. Section 5 discusses algorithm analysis, features 
extraction, features selection, classification techniques, and software platforms used in the 
selected contributions, while Section 6 focuses on aspects related to performance evalua-
tion criteria of brain-controlled wheelchair systems. Finally, Section 7 presents the main 
conclusions of this study and focuses on the primary challenges of biomedical research 
applied to people with severe disabilities. 
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2. Methodology for this Review 
2.1. Search Strategy 

This systematic review was conducted following the preferred reporting items for 
systematic reviews and meta-analyses [15]. A comprehensive literature search was con-
ducted on 1 March 2021. The most common engineering and medical databases (IEEE 
Xplore, Pubmed, Science Direct and Scopus) were selected for research. The review was 
limited to texts published in English between 2010 and 2021, for which abstracts were 
available. Considering the scope of the systematic review, the specific keywords were de-
fined. This structured search string was used to organize this paper: “motor imagery”-
AND-“EEG-based” OR “electroencephalography-based”-AND-“BCI” OR “Brain-Com-
puter Interface”-AND-“Wheelchair movement”-AND-“control”. To increase the likeli-
hood that all the relevant studies were identified, additional articles identified through 
the reference list of previously retrieved articles were included. 

2.2. Inclusion and Exclusion Criteria 
Articles were considered for inclusion only if: (1) they described brain-computer in-

terface systems based on motor imagery paradigms as mainly EEG acquisition modality; 
(2) they partially or totally demonstrate the feasibility, effectiveness, and applicability of 
MI EEG-based BCIs for wheelchair movement or control in real-world settings; (3) they 
described completed research. 

The articles were also screened for the following exclusion criteria: (1) contributions 
that described BCI systems mainly based on face gestures or intentional blinks to control 
wheelchair; (2) studies that described only a simulated system or virtual environment and 
in which there is no reference to real wheelchair (or prototype) movement and control; (3) 
studies that presented a multimodal-mental approach, that is BCWs that are based on 
more than one type of EEG signal combined together (e.g., ERD/ERS, P300, and SSVEP) 
for their control. Exclusion criteria were also related to papers, books or book chapters, 
letters, review articles, editorials, and short communications. 

2.3. Study Selection 
Our work aims to present state-of-the-art applications of EEG-based BCIs using mo-

tor-imagery data to wheelchair movement and control. Since these interfaces’ target pop-
ulation are older people or patients with impaired motor abilities and considered our in-
terest in assessing applicability in a daily context, only the studies that described a real 
wheelchair, or at least a prototype, but not a simulated system, are investigated and re-
ported. A particular emphasis was given to studies that performed experiment evaluation 
of wheelchair navigation in a real-world environment. 

A total of 134 search results were identified through database searching and addi-
tional sources. After removing all duplicates, 117 studies underwent title and abstract 
screening, and the inclusion criteria were examined. The full texts of 22 papers assessed 
for eligibility were carefully analyzed. Three articles [16–18] were excluded due to the 
exclusion criteria (1), one contribution [19] due to the exclusion criteria (2), and two scien-
tific results [20,21] due to the exclusion criteria (3). Finally, only 16 studies were included 
in the quantitative synthesis. The methodological approach is presented in Figure 1. For 
facilitating analysis and comparisons, we summarized all relevant BCI existing solutions 
and related system parameters in Table 1. In Section 4, we discussed each study, contex-
tualizing the results in the BCI realm. 
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Figure 1. Flow chart of the search strategy and study selection according to PRISMA guidelines. 
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Table 1. Brain-controlled interface studies in wheelchair movement and control applications. 

Reference MI Paradigm 
Types of Con-
trol Command 

EEG System 
Additional 
Biosignals 

Acquisition 

n° of EEG 
Electrodes 

EEG 
Sample 

Frequency 
(Hz) 

EEG Fea-
tures Ex-
traction 

Classifica-
tion Algo-

rithm 

Context and 
Duration of 
the Experi-

mental Tests 

n° of Us-
ers 

Performance § 
Wheelchair Type 

and 
Components 

Obstacle 
Avoidance Sys-

tem 
Software 

Xiong et al. 
2019 [8] 

LH  
RH 

Jaw Clench 

Left 
 Right  

Forward 
 Stop 

OpenBCI’s 
Cyton Bio-

sensing 32-bit 
board 

(also used for 
EMG signal), 

(OpenBCI, 
New York, 
NY, USA) 

EMG 
ECG 
US 

Location 

4: C1, C2, C3, 
C4 

250 PSD 
Logistic Re-

gression 

INDOOR 
(Office/Labor

atory) 
 

Average 
duration:  

5 min (run) * 
4–19 (n° of 

runs) = 20–95 
min 

7 
CTR 

Mean subject 
accuracy:  
60 ± 5% 

Modified version of 
commercially availa-
ble Orthofab Oasis 

2008 wheelchair (Or-
thofab, Anjou, QC, 

Canada) with compo-
nents: 

n° 2 commercial-
grade 40A, 12 V 

PWM controllers con-
nected to an Arduino 

Uno. 
 

Project: 
MILO: Mind Con-
trolled Locomotive 

n° 4 consumer-
grade ultra-

sonic sensors 

OpenBCI Graph-
ical User Inter-

face (GUI) 
Pyton 

Javascript 

Permana et 
al. 2019 [22] 

MI and eye 
motion 

 
-Think mov-
ing forward 
-Think mov-

ing backward 
-Think mov-

ing backward 
while contin-
ually move 

the eyes  
-Think mov-
ing forward 

while contin-
ually move 

the eyes  

Move forward 
Move back-

ward 
Turn left 

Turn right 
Default (mo-

tionless) 

Neurosky 
Mindwave 

Mobile2 
NO 1: Fp1 512 

For MI: 
eSense 
score  

For eyes-
motion: 

high alpha 

n.d. 

INDOOR 
(Office/Labor

atory) 
 

Average 
duration: 

5 min 

5 
CTR 

Success rate 
range: 46, 67–

82.22% 

Modified version of 
JRWD 501 electric 

wheelchair 
NO Matlab 
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-Default (mo-
tionless) 

Yu et al. 2018 
[23] 

LH 
RH 

IDLE STATE 

Move forward 
Turn left 

Turn right 
Accelerate 

Decelerating  
Stopping 

BrainAmp 
DC, (Brain 
Products, 

GmbH, Ger-
many) 

NO 

31: 
F3, F1, Fz, F2, 
F4, FC5, FC3, 

FC1, FCz, 
FC2, FC4, 

FC6, C5, C3, 
C1, Cz, C2, 

C4, C6, CP5, 
CP3, CP1, 
CPz, CP2, 

CP4, CP6, P3, 
P1, Pz, P2, P4 

250 Multi CSP LDA 

INDOOR 
(Office/Labor

atory) 
 

Average 
duration: 

Offline 
training: 8 sec 
(trial) * 15 (n° 
of trials) = 2 

min per 
mental task + 

5 min (rest 
period) 
Online 

wheelchair 
navigation 
experiment 
(navigation 
time): 2106.4 

sec. 

7 
CTR 

Accuracy: >85% 
Success rate: 

94.2% 

Wheelchair proto-
type: 

a chair and an omni-
directional moving 

vehicle 

NO n.d. 

Al-Turabi et 
al. 2018 [24] 

Imagine visu-
ally moving a 

pen 

Forward, 
Backward 

Right 
Left 

Emotiv Epoc NO 

14 (+2 ref): 
AF3; F7; F3; 
FC5; T7; P7; 
O1; O2;  P8; 
T8; FC6; F4; 

F8; AF4 
(+CMS and 

DRL) 

128 PSD 
SVM 
KNN 
ANN 

INDOOR 
(Office/Labor

atory) 
 

Average 
duration:  

n.d. 

1 
CTR 

Accuracy:  
70.8–79.2% 

Wheelchair prototype 
Ultrasonic sen-

sor 
Matlab 

Ron-Angevin 
et al. 2017 

[25] 

RH 
IDLE STATE 

Move forward 
Move back-

ward,  
Turn right  
Turn left 

Acti-CHamp 
amplifier 

(Brain Prod-
ucts GmbH, 

Munich, Ger-
many) 

NO 

9: 
C3, F3, P3, T7, 

Cz, C4, F4, 
P4, T8. 

200 
Average 

signal 
power 

LDA 

INDOOR 
(Laboratory/
University 

room) 
 

Average 
duration:  

Calibration 
session: 30 

min  

17 CTR 
Medium accu-

racy: 
83% 

Customized Invacare 
Mistral3 electric 

wheelchair 

-n° 11 ultra-
sonic range-

finders SRF08  
 

-n° 2 magnetic 
rotary encoders 

AS5048 

Matlab 
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Navigation 
session in a 

VE: 5–10 min 
Navigation 
session in a 

real 
environment 

with the 
BCW: 5–10 

min. 

Zhang et al. 
2016 * [26] 

RH 
LH 

Turn right  
Turn left 

Stop 

EEG-cap 
(Compumed-

ics, Neu-
roscan Inc, 

Abbotsford, 
Australia) 

 
EEG-ampli-

fied 
(NuAmps, 
Neuroscan) 

NO 

15: 
FC3, FCz, 

FC4, C3, Cz, 
C4, CP3, CPz, 
CP4, P3, Pz, 
P4, O1, Oz, 

O2 

250 CSP SVM 

INDOOR 
(room/home 

environment) 
 

Average 
duration  
(time to 

complete a 
destination 

selection 
using the MI-
based BCI):  

-24.3 sec 
(Scenario A) 

-23.8 sec 
(Scenario 

B) 

3 CTR 
(MI- 

based 
BCI ex-

periment) 

Success rate:  
94.7 ± 2.3% 

Mid-wheel drive 
model 888WNLL, 

Pihsiang Machinery 
MFG. Co. Ltd., Tai-

wan,  
with sensors:  

- n° 1 laser range 
finder (SICK LMS 

111) 
- n° 2 encoders, 

which are attached to 
the central driving 

wheels 

n° 2 webcams  
n° 3 ultrasonic 

sensors  
GUI 

Swee et al. 
2016 [27] 

PUSH, PULL, 
LEFT, RIGHT 

Forward 
Backward 

Left 
Right 

Emotiv Epoc NO 

14 (+2 ref): 
AF3; F7; F3; 
FC5; T7; P7; 
O1; O2;  P8; 
T8; FC6; F4; 

F8; AF4 
(+CMS and 

DRL) 

128 n.d. n.d. 
INDOOR  

(Office/La-
boratory) 

5 CTR 
Accuracy:  

<90% 

Wheelchair Prototype 
with components: 

Scooter motors DC 24 
V 

ATmega328P 
microcontroller 
Arduino Uno 

microcontroller board 
Bluetooth Hc-06 

module  

NO 
Emotiv API 

Arduino IDE 

Varona-Moya 
et al. 2015 

[28] 

RH 
RELAX 

Move forward 
Turn right 

Move back-
ward 

actiCHamp 
amplifier 

(Brain Prod-
ucts GmbH, 

NO 
9: F3, F4, T7, 
T8, C3, C4, 
P3, P4, Cz 

200 PSD LDA 

INDOOR  
(Private room 
in the school) 

 

3 CTR n.d. 
Customized Invacare 

“Mistral3” electric 
wheelchair 

n° 11 SRF08 ul-
trasonic range 

finders (i.e., so-
nars) allowed 

Matlab 
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Turn left Munich, Ger-
many) 

Average du-
ration:  

Training 
schedule:  

30 min (first 
phase) + 15 
min (second 
phase) + 20 
min (third 

phase) 
 

Robotic 
wheelchair 
navigation 
tasks (mini-
mum time 

lapse): 
-4 min 38 s 
(for task 1)  
-5 min (for 

task 2) 

to create a real-
time discrete 

grid map of the 
area surround-
ing the wheel-

chair. 
n° 2 AS5048 

magnetic rotary 
encoders were 
attached to the 
wheelchair’s 

driving wheels 
to carry out the 
odometry and 
thus compute 

the wheel-
chair’s heading 

at every mo-
ment. 

Kim et al. 
2013 [29] 

LH 
RH  
F  

F-LH  
F-RH 

Left 
Right  

Forward  
Left-diagonal 

Right- diagonal 

g.tec system 
(an EEG cap 
and a gUS-

Bamp ampli-
fier) 

NO 16  256 OVR CSP 
LDA 

OVR LDA 

INDOOR  
(Office) 

 
Average du-

ration:  
n.d. 

1 CTR n.d. 

Electric wheelchair 
(K2 POWER model of 

WHEELOPIA), 
with components: 

n° 2 permanent mag-
net DC brushed mo-
tors (pMDC motors: 

24 V at 320 W). 
 n° 1 micro controller 

unit (MCV, 
Atmega128). 

NO 
Simulink 
Matlab 

Carlson et al. 
2013 [30] 

RH  
LH 
F 

Turn right  
Turn left 

Keep going 
straight 

EEG device 
(model n.d.) NO 

16: Fz, FC3, 
FC1, FCz, 

FC2, FC4, C3, 
C1, Cz, C2, 

C4, CP3, CP1, 
CPz, CP2, 

CP4 

512 PSD 
Gaussian 
classifier 

INDOOR  
(Office/La-
boratory) 

 
Average du-

ration:  
Online BCI 

session:  
4–5 min 

4 CTR 
Average accu-

racy: 
95% 

Modified version of 
commercial mid-

wheel drive model by 
Invacare Corporation 

(TDX SP2) 

n° 10 close-
range sonar 

sensors  
n° 2 webcams 
to provide en-
vironmental 

feedback to the 
controller. 

n.d. 
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Driving task: 
15–30 min 

Reshmi, et al. 
2013 [31] 

LH 
RH 

RLH  
RLF  

RELAX 

Move left 
 Move right 
 Go forward  
Go backward 

Stop 

RMS EEG 
machine 

NO 3: C3,C4, Cz 256 PSD SVM 

INDOOR  
(Laboratory) 

 
Average du-

ration: 
2.30 min each 

run 

50 CTR n.d. 

Wheelchair Prototype 
with components 

 
ATMEGA 328 micro-

controller 
L293 motor driving 

circuit 

NO Matlab 

Carra et al. 
2013 [32] 

RH 
F 

Forward 
Turn right 

EEG device 
(model n.d.) 

NO 
6: F3, P3, Fz, 

Pz, F4, P4  
256 BPM LDA 

INDOOR  
(Office/La-
boratory) 

 
Average du-

ration: 
5 min (train-
ing test) + 3 
sessions (7 
positions 

each) 

1 CTR 
Average hit 

rate:  
65.7% 

Motorized wheel-
chair 

(model n.d.) 
NO 

LabView 9.0 
Matlab  

Li et al. 2013 
[33] 

RH 
LH 
RLF 

Turn right 
Turn left 

Go forward 

g.tec ampli-
fier  

(Guger Tech-
nologies, 
Austria) 

NO 

14: C5, C3, 
C1, Cz, C2, 

C4, C6, CP5, 
CP3, CP1, 
CPz, CP2, 
CP4, CP6 

256 CSP SVM 

INDOOR  
(Office) 

 
Average du-

ration:  
4 sec (trial) * 
12 (n° of tri-
als) * 4 (n° of 

sessions) 

3 CTR 
Average trial 

accuracy: 
82.56% 

Wheelchair system 
(model n.d.) 

NO Provided GUI 

Choi et al. 
2012 [34] 

LH 
(imagine 

clenching the 
left hand) 

 
RH 

(imagine 
squeezing the 

right hand) 
 

RLF 
 

Turns left  
Turns right 

Moves forward 

g.tec system: 
an EEG cap 
and a gUS-

Bamp ampli-
fier 

(Guger Tech-
nologies, 

Schiedlberg, 
Austria) 

EMG 
5: C3, C4, Cz, 

FC3, FC4 
256 CSFSD SVM 

INDOOR  
(Office) 

 
Average du-

ration: 
Bar-control-
ling experi-

ment:  
5 sec (trial) * 
30 (n° of tri-
als) * 7 (n° of 

sets) 

3 CTR 
Success rate: 

90–95% 

Rear-wheel drive 
type wheelchair: 

JW active 
model of Yamaha 

Motor Co 

NO Matlab 
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STOP: EMG Obstacle 
avoidance ex-
periment: 24–
28 sec (trial) * 
10 (n° of tri-
als) * 7 (n° of 

sets) 

Carrino et al. 
2012 [35] 

RH 
LH 

Turn right 
Turn left 

Emotiv Epoc NO 

14 (+2 ref): 
AF3; F7; F3; 
FC5; T7; P7; 
O1; O2;  P8; 
T8; FC6; F4; 

F8; AF4 
(+CMS and 

DRL) 

128 n.d. LDA 

INDOOR  
(Office) 

 
Average du-

ration: 
n.d. 

1 CTR 

Classification 
rate: 

67.5–91% 
 

on 2 gestures 
(left and right 

inputs) 

Wheelchair prototype NO 
Developed appli-
cation GERBIL. 

OpenVibe 

Tsui, et al. 
2011 [36] 

RH 
LH 

IDLE STATE 

Turn right 
Turn left 

g. tec ampli-
fier (Guger 

Technologies, 
Schiedlberg, 

Austria) 

NO 

10  
(5 bipolar 
EEG chan-

nels): 
C3 (FC3 vs. 

CP3), C1 (FC1 
vs. CP1), Cz 

(FCz vs. CPz), 
C2 (FC2 vs. 

CP2), and C4 
(FC4 vs. CP4) 

250 
Logarith-
mic Band 

Power 
LDA 

INDOOR  
(University of 

Essex’s ro-
botic arena) 

 
Average du-

ration:  
-108.75 sec 

for subject 1 
-114.75 sec 

for subject 2. 

2 CTR n.d. 

Electric-powered 
wheelchair (Ro-

boChair) with com-
ponents: 

 
An on-board DSP 

TMS320LF2407-based 
controller for motion 
control of 2 differen-
tially-driven wheels; 
An on-board embed-
ded PC connected to 
the DSP motion con-
troller via a USB link 

A 24-volt battery 
providing power for 
the DSP controller, 

the PC and drive mo-
tors 

A local joystick con-
troller connected to 
an A/D converter of 
the DSP-based con-

troller 

n° 6 ultrasonic 
range sensors 
for obstacle 
avoidance; 

n° 1 Hokuyo 
URG-04LX la-

ser range finder 
to scan the en-

vironment. 

n.d. 

Associated acronyms: RH: Right Hand; LH: Left Hand; RF: Right Foot; LF: Left Foot; RLF: Right and Left Foot; F: Foot; EMG: Electromyography; ECG: Electrocardiography; US: 
Ultrasound; LDA: Linear Discriminant Analysis; OVR: one versus rest; PSD: power spectral density; KNN: K-nearest neighbor; ANN: Artificial Neural Network; CSFSD: common 
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spatial frequency subspace decomposition; WT: Wavelet Transform; FFT: Fourier Transform; BPM: Band Power Method; GUI: Graphical User Interface; IDE: Integrated Development 
Environment; CTR: control subjects; VE: Virtual Environment; sec: seconds; min: minute; ref: reference; n.d: not defined. * In this paper, author presented an intelligent wheelchair that 
combines an MI- (or, alternatively, P300-) based BCI and an automated navigation system. Only the MI- based BCI solution is taken into account for the scope of the review. § Additional 
information regarding performance evaluation and metrics used can be found in Section 6. MI-BCWs performance evaluation. 



Sensors 2021, 21, 6285 12 of 33 
 

 

3. Brain–Computer Interfaces Classifications and Applications: A Synthetic Overview 
Far from representing an exhaustive and detailed description of BCI systems’ main 

characteristics and classifications, discussed in depth in several contributions [37,38], this 
section aims to frame the area of interest of our review more precisely. According to their 
invasiveness, BCIs can be classified into invasive and non-invasive ones, depending on 
whether sensors used to measure brain activity penetrate the skin or not [39]. In invasive 
BCIs, cerebral signals are acquired inside the brain using electrodes located under the 
skull. The two invasive modalities mainly used in BCI research are intracortical recording 
and electrocorticography (ECoG). 

We focused our research on the non-invasive BCIs in which brain signals are ac-
quired using sensors placed on the scalp. Among various non-invasive brain-imaging 
methods often used to implement BCI systems (EEG, Magnetoencephalography (MEG), 
Positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and 
Functional Near-Infrared Spectroscopy (fNIRS)), over the last couple of decades, EEG has 
been the most widely employed due to its desirable traits, namely non-invasiveness, port-
ability, high temporal resolution, and a relatively low cost compared to other neuroimag-
ing methodologies [37,40]. 

In recent years, up-and-coming practical applications of EEG-based BCI with several 
elaborately designed paradigms [41] are being evaluated [42–47]. Within EEG-based BCI 
paradigms, two groups can be roughly identified: exogenous (or evoked), which use ex-
ternal triggers (flickering LEDs or auditory beeps) to evoke discriminative brain patterns, 
and endogenous (or spontaneous), which use self-regulation of brainwaves without ex-
ternal stimuli [40]. 

Typical examples of exogenous BCI paradigms are the steady-state visual evoked 
potential (SSVEP) [42,43] and the P300 signal [44,45]. P300 [48,49] is a localized brain pat-
tern response to an external attended visual, auditory, or tactile stimulus and is mainly 
measured in the parietal lobe. SSVEP [50,51] is a response to a visual stimulus at a fre-
quency greater than 6 Hz, which can be primarily observed in the occipital area. On the 
other hand, Event-Related Desynchronization/Synchronization (ERD/ERS) changes, elic-
ited during the performance of mental tasks (e.g., motor imagery, mental arithmetic, and 
mental rotation) [46,47], are representative of endogenous BCIs paradigms, as they do not 
use any external stimuli. 

Since controlling a wheelchair requires that the visual channel remains dedicated to 
the maintenance of visual attention on the environment, the endogenous signals, particu-
larly those elicited by MI, are to be preferred. Although learning to modulate endogenous 
signals requires more time for the users, MI paradigms present significant advantages that 
should not be overlooked for this review’s scope. Indeed, they do not require any external 
stimulation. In addition, they can be operated via free self-control and, consequently, they 
are particularly suitable and advantageous for the patients suffering from motor neuron 
diseases [40]. 

In light of these observations, EEG-based BCIs, particularly those using motor image 
paradigms applied to wheelchair apparatus control, represent the sub-area of interest of 
our review (Figure 2). Although they are outside the scope of this work, for completeness 
of discussion, other relevant uses of motor imagery BCI must be cited and analyzed. In-
deed, in addition to managing wheelchair movement and control, a MI BCI has a wide 
range of applications, such as virtual reality, neurorehabilitation, and controlling robotic 
devices [52]. The scientific research on BCI technology has also been focused on other 
medical applications [52–55], with many BCIs intended for the replacement or restoration 
of central nervous system (CNS) functionality lost due to illnesses (such as amyotrophic 
lateral sclerosis and locked-in syndrome) or to trauma (such as spinal cord injury), and 
others focused on therapy and motor rehabilitation [38]. 

Since the neural mechanism involved in an MI-BCI system is connected to the motor 
function, these systems have been thoroughly evaluated and therefore taken into 
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consideration for their potential applications in the fields of motor control, neurological 
rehabilitation training, and motor learning. 

The use of brain–computer interface technology in detecting mental intent and con-
trolling external robotic devices allowed to improve the lives of patients suffering from 
various neurological disorders. As described in depth in a recent comprehensive review 
of Aljalal et al. [14], although a robotic arm is a mechanical device, it has a certain number 
of degrees of freedom (DOF) and ends in a robotic hand, which gives it the functions sim-
ilar to that of human arm. In this context, the purpose of EEG-based BCIs is to translate 
the signals generated by the patient’s mental tasks to allow the movement and control of 
a prosthetic limb, an orthosis, or an exoskeleton as an assistive device. Several exemplary 
applications of MI-EEG-based BCIs in robotic arms control can be found in [14,56,57]. 

In addition to neuroprosthetics, the use of MI-based BCIs attracted considerable in-
terest also as a potential neurorehabilitation technique to restore motor function after 
stroke [38,58,59]. Indeed, the scientific interest in the use of robotics in rehabilitation sce-
nario is increasing considerably due to the growing number of people requiring rehabili-
tation following problems such as stroke and, at the same time, to the insufficient number 
of therapists available to deliver rehabilitation protocols to patients [59]. The main objec-
tive of robotic systems in the rehabilitation field is to allow the robot, rather than the ther-
apist, to guide the exercises provided for in the rehabilitation protocol, thus helping the 
patient to actively undertake a planned movement rather than the patient’s limb, which 
is passively moved [59]. Several studies involving BCI training in which motor imagery-
related EEG activity is translated into movements of an exoskeleton have demonstrated 
improvements in clinical parameters of post-stroke motor recovery [60–63]. 

Another interesting application, rather than focusing on the machine learning aspects 
of MI BCI training, aims at corroborating the importance and efficacy of mutual (or co-
adaptive) learning methodology as a critical factor for the success of motor imagery BCI 
in translation application. Co-adaptive approaches are recently increasing adopted as a 
training strategy [64–68] and require that the user and the embedded decoder engage in a 
mutual learning process [68]. In this context, the success of a BCI-user symbiotic system 
requires that users must learn to generate distinct brain responses for different mental 
tasks, while machine learning techniques to implement and adapt a model to the poten-
tially changing brain patterns associated to these tasks [67]. This feature could lead to a 
BCI system able to succeed in a real-world scenario [68]. 
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Figure 2. A synthetic overview of brain–computer Interface typologies and of biometric signals generally used in BCI systems. The path connecting the opaque colored blocks defines 
the sub-area of interest of the systematic review. 
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4. MI EEG-Based BCIs in Wheelchair Movement and Control: Literature Results 
Over the last years, among various BCI applications, using the human brain in wheel-

chair movement and control is attracting widespread attention in the scientific community 
due to its flexibility and potential to help old and paralyzed individuals gain independ-
ence and potentially improve their quality of life. Since the first demonstrations of feasi-
bility that the “human mind can control a wheelchair” [69,70], several protocols have been 
proposed, and a sophisticated algorithm has been implemented to extend the applications 
of EEG-based BCIs to wheelchair movement and control [12]. Following the definition 
given in [14], the wheelchair is classified as a mobile robot that can navigate two dimen-
sions. 

EEG-based wheelchair system refers to a type of brain–computer interfaces technol-
ogy in which this specific mobile robot is controlled using electroencephalographic pat-
terns collected from the human brain. This technological approach allows the subject to 
reach a particular target using only brain signals. Despite the enormous interest in imple-
menting a brain-controlled wheelchair (BCW) that can improve disabled people auton-
omy allowing them to move through a real environment [11], the number of scientific 
contributions in the field is not very high due to the complexity of developing such an 
elaborate system [25]. 

In presenting the background of recent studies on wheelchair control through the 
acquisition of a user’s brain activity, the groups of Al-qaysi [12] and Fernández-Rodri ́guez 
[11] analyzed several BCW existing solutions: MI-based BCW [23,28,71], P300-based BCW 
[72–76], SSVEP-based BCW [77–80], and hybrid-based BCW [81,82]. Hybridization is a 
relatively new concept in the context of BCI, showing promising and interesting results in 
different domains, as it exploits the conjunction of different brain and body monitoring 
methods to achieve more accurate and comprehensive systems [83,84]. A simple, complete 
and highly accepted definition identifies the hybrid brain computer interface (hBCI) as “a 
system that combines two or more signals from different origins, including at least one 
input recorded directly from the brain” [85]. More specifically, a hybrid-based BCW is 
commonly identified as a system based on one EEG input combined with one or more 
channels (e.g., EEG, electromyography (EMG), electrooculography (EOG), or movement 
detection) to manage control and movement of a wheelchair. All these studies present a 
standard signal acquisition methodology (EEG) to control the system, but different struc-
tural elements: the specific signals used to implement the BCI system, the tasks to be per-
formed by users, the number and type of commands available on the device, the modality 
of navigation, etc. 

As mentioned above, our interest is to prove the feasibility and applicability of a 
brain-controlled wheelchair in a real environment considering, as the target population, 
patients with impaired motor abilities. For this reason, among the four EEG control signals 
models used to handle BCI wheelchairs, those based on motor-imagery task can be con-
sidered the most appropriate choice for achieving the intended purpose. Indeed, a motor-
imagery paradigm does not rely on visual stimuli and does not interfere with navigation’s 
visual task, allowing the user to control the wheelchair spontaneously. The subject is not 
exposed to any stimulation, and thus there is no risk of fatigue. In addition, a brain-con-
trolled wheelchair based on the motor imagery paradigm is more appropriate for use in 
an unknown environment, and several classes of identified motor imagery output can be 
directly transmitted into the directional control of a robotic wheelchair [36]. Finally, the 
use of MI when dealing with motor-disabled patients makes sense since this paradigm 
does not interfere with the patient’s residual capabilities, involving a part of the cortex 
that may have effectively become redundant [30]. 

This systematic review focuses on key issues related to non-invasive EEG-based BCIs 
that use motor imagery as the main paradigm applied to wheelchair movement and con-
trol. 
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Existing Applications of MI EEG BCW 
In this section, several existing applications of MI EEG-based BCIs for wheelchair 

movement and control are illustrated. These studies are carefully analyzed, and the main 
characteristics in terms of signal acquisition, preprocessing, feature extraction, and classi-
fications methods as well as wheelchair performances evaluation are summarized in Table 
1. The studies are tabulated in chronological order. 

Tsui et al. [36] presented a simple two-class self-paced MI-based BCI for wheelchair 
control. With this system, the user was able to make path planning and fully control the 
wheelchair. Based on a laser range finder, an automatic obstacle avoidance system is in-
tegrated with the robotic wheelchair’s control mechanism. After practicing with the sim-
ulator, the system was tested online in the University of Essex’s robotic arena and the 
experiments were carried out with two subjects. 

The work of Carrino et al. [35] proposed a user-friendly, self-paced BCI system that, 
using a commercial EEG headset and a motor imagery approach, allows the user to drive 
an electric wheelchair. Although the low-cost EEG device provided interesting results, the 
authors stated that it could hardly be used for self-paced systems in error sensitive con-
texts. Indeed, the system was tested directly on the wheelchair, and several problems oc-
curred. More specifically, the classification process’s errors produced an unexpected be-
havior of the wheelchair and, thus, a strong perturbation for the user, concentrated in 
motor imagery tasks. Since this problem does not allow any kind of navigation for non-
trained subjects, the test was finally performed involving one subject and using real ges-
tures, less sensitive to emotional perturbations. 

A novel wheelchair system controlled by EEG signals was constructed by Choi et al. 
[34], using effective signal processing methods to allow people paralyzed from the neck 
down to interact with society more freely. The implemented system was evaluated 
through experiments on controlling bars and avoiding obstacles using three subjects. The 
authors confirmed that the proposed wheelchair system demonstrated almost the same 
performance as a wheelchair controlled by a joystick. 

In Li et al. [33], authors evaluated the feasibility of a BCI-based wheelchair, in which, 
users’ thoughts can steer without any additional involvements. In practical driving testing 
in a real environment, which involved three healthy participants, the system achieved a 
good performance, suggesting a potential application to people with disabilities in daily 
life. For future improvements in terms of usability of assistive wheelchair systems, the 
authors considered integrating infrared sensors and adopt other types of EEG signals. 

The group of Carra [32] illustrated the development of a non-invasive experimental 
BCI system. The proposed approach generated commands to move a motorized wheel-
chair using portable and low-cost equipment and capture brain signals from the soma-
tosensory cortex without the involvement of peripheral nerves and muscles. Experimental 
tests, which were performed in an uncontrolled environment and involved only one vol-
unteer, showed promising results, thus enabling a possible future interface with real-life 
situations. 

For designing a BCI system, Reshmi et al. [31] introduced five-class motor imagery 
EEG-based approach. The patterns acquired from the sensory-motor cortex are translated 
into a control signal to manage the directional movement of a wheelchair. Indeed, users’ 
movement intentions are classified according to the limb movements, and the results of 
patterns identification, tested by fifty control subjects, can be used as a command to move 
the wheelchair in the designated directions (right, left, forward, and backward) and to 
stop it. 

Carlson et al. [30] proposed an asynchronous wheelchair system, integrated with ro-
botics and computer vision techniques, which allows the subject to control the wheelchair 
by performing a motor-imagery task spontaneously. This group introduced the notion of 
shared control to integrate the user’s intelligence with the precise capabilities of a robotic 
wheelchair given the context of the surroundings. The authors demonstrated that several 
types of BCI wheelchair operators (four healthy subjects, new and experienced) could 
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complete a navigation task successfully. Moreover, compared with an alternative P300-
based system, the asynchronous MI approach gives users greater flexibility and authority 
over the actual trajectories driven. More specifically, the users can interact with the wheel-
chair spontaneously and can voluntary control the motion at all times, rather than having 
to wait for external cues. Besides, they can dynamically produce intuitive and smooth 
trajectories rather than relying on predefined routes, thus reducing the inactivity naviga-
tion time. 

To overcome some of the limitations of several existing solutions, such as gaze de-
pendence and unnecessary stops, Kim et al. [29] presented an MI-based brain-actuated 
wheelchair system using an extended five-command protocol. The presented wheelchair 
could be driven by the user in both smooth and right-angled turns. The system, validated 
by only one healthy subject, could be integrated with various robotic and computer vision 
sensors via additional channels in the network module, thus providing the user with ap-
propriate feedback and improving safety. This approach can allow the user to cope with 
various environments, reaching a goal point with lower execution time. 

In the study of Varona-Moya et al. [28], the authors tested the feasibility of driving a 
customized robotic wheelchair with an MI-based BCI system and the auditory cues to 
inform the subject of the available navigation command at every moment. To enable ef-
fective and autonomous wheelchair navigation, this group proposed an application inter-
face that, based on a two-class sensorimotor rhythms-BCI paradigm, provided the user 
with four navigation commands. The results, obtained from a sample of three healthy na-
ïve participants, suggested that this system seems to be an effective way of driving a ro-
botic wheelchair autonomously and could provide locked-in patients with a better quality 
of life. 

Swee et al. [27] proposed developing an electric wheelchair that can be directly con-
trolled by the brain and that does not require any physical feedback as controlling input 
from the user. EEG signals, acquired with a commercial headset, are processed and con-
verted into mental commands and a specific implemented algorithm transmitted out the 
controlling signals wirelessly to the electrical wheelchair. The authors anticipated that this 
system, tested by five healthy users, could give a new contribution to physically disabled 
people to regain their mobility. 

Zhang et al. [26] demonstrated the effectiveness of a brain-controlled intelligent 
wheelchair that combines an MI (or alternatively P300)-based BCI and an automated nav-
igation system. For the scope of this review, only the MI-based BCI solution was taken 
into account. The proposed wheelchair, tested by three healthy subjects, has several ad-
vantages: (i) it can adapt to changes in the environment; (ii) once the user selects a desti-
nation with the BCI, the system automatically navigates to it, allowing the workload re-
duction for the user; (iii) during the wheelchair navigation, the user can issue a stop com-
mand via the BCI. 

To provide several navigation commands without worsening the system perfor-
mance, a paradigm based on the discrimination of only two mental tasks to control the 
wheelchair is presented in the study of Ron-Angevin et al. [25]. Such a non-muscular con-
trol system has the peculiarity that it is embedded with an auditory interface that provides 
the user with four navigation commands. The authors suggested that this system, vali-
dated by seventeen healthy participants, could be an effective option to allow wheelchair 
displacement in a controlled environment for potential users with motor neuron diseases 
in the face of more extensive training. 

The group of Al-Turabi [24] described the experience of developing a complete BCI 
system able to instruct a wheelchair to move to different directions using non-invasive 
EEG brain waves. Several machine-learning algorithms are used to classify human inten-
tion to control and move the wheelchair to the desired direction. In light of the experi-
mental results, conducted involving only one neurologically health volunteer, the authors 
proposed their system to control other devices and hypothesized, as a future improve-
ment, a cloud-based system to direct communication from the headset to the wheelchair. 
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In Yu et al. [23], the authors implemented an asynchronous control strategy in which 
the wheelchair commands are generated by a multi-step process based on sequential MI, 
without any external prompt information. Although the system was tested in seven 
healthy subjects, the preliminary experimental results demonstrated this navigation strat-
egy’s potential applicability in enhancing the mobility of people with physical disabilities 
in a real environment. 

Permana’s project purpose [22] was to control the wheelchair using a motor imagi-
nation-based BCI and a portable EEG device. In performing a preliminary experimental 
test using only MI patterns from a single data channel to trigger the wheelchair move-
ment, the authors found some problems. Indeed, due to similarities in EEG patterns re-
lated to different motor paradigms, the classification for several wheelchair control signals 
failed. To overcome this limitation, authors added a new variable (eyes motion) as a dif-
ferentiator of similar data, without obtaining evaluable results. In conclusions, Permana’s 
system, validated by five normal people, still needs to be developed and improved. 

In a recent work of Xiong et al. [8], the authors made several important contributions 
to the state-of-the-art in BCIs. They proposed a wheelchair prototype that uses hand motor 
imagery and jaw clench data collected with a consumer-grade EEG system to generate 
four control commands, bridging the gap between the real-time classification of motor 
imagery and the use of a low-cost apparatus. Additionally, different automated driving 
features, a location tracker, and a heart-rate monitor have been integrated into the system 
to increase usability and safety. A pilot cohort of seven healthy volunteers were recruited 
to collect an MI training data set. Although future experiments and a consistent neu-
rofeedback training procedure were required to validate their prototype, this system 
seems to get closer to the actual context’s needs and demands. The authors highlighted 
that this system’s clinical applications would largely depend on the motor abilities of the 
user (EMG toggle would be inaccessible to patients with more severe disabilities such as 
CLIS) and proposed, as a future piece of work, other integrative non-muscular signals, 
such as electrooculography (EOG). 

5. MI-Based BCW Elements 
In the design and implementation of a brain-based control wheelchair system, four 

stages are necessary to establish the communication between the human brain and the 
external device and to get a useful output to be used in controlling it: brain signals acqui-
sition, preprocessing, features extraction from patterns and features classification. An ex-
ample of brain-controlled wheelchair components and the system application in a real 
environment is illustrated in Figure 3. 

A successful BCI system must be characterized by the best accuracy in extracting EEG 
features and classifying them. Indeed, since the presence of errors can cause the initiation 
of a wrong command that can lead to dangerous situations, a high classification rate and 
accuracy are required [18]. For this reason, features extraction and classification processes 
play a significant role. In this section, we discussed these four stages in more detail, to-
gether with published examples and in the light of summarized results. As integration, 
the software libraries primarily used in the collected studies were illustrated and ana-
lyzed. 
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Figure 3. The general architecture of a brain-controlled wheelchair system and application example in a real environment. Reproduced with permission [86,87]. Graphics by [88]. 
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5.1. Signal Acquisition 
As mentioned above, this systematic review focuses on the non-invasive methods on 

which the applications of EEG-based brain-controlled wheelchair are based. Many EEG 
data acquisition devices are available in commerce, which vary in the number of channels, 
sampling rate, electrode connection type, headset preparation time, and price [14,89,90]. 
Our review results revealed that, in MI-based brain-controlled wheelchair applications, 
the most used devices to capture EEG signals are Epoc [91], produced by Emotiv Systems 
Inc., and the g.tec medical engineering products, such as gUSBamp. 

The Emotiv Epoc is a portable, high-resolution EEG system with 14 dry electrodes 
designed to be quick and easy to fit, taking practical application measurements. Many BCI 
studies used EPOC to control or interact with machines in users’ environments [92], alt-
hough the validity of Emotiv products in clinical research is still a matter of debate. 

On the other hand, g.USBamp RESEARCH [93], a high-performance and high-accu-
racy 16 channel biosignal amplifier, was proposed by g.tec medical engineering to acquire 
and process physiological signals. g.USBamp has become a widely used standard for neu-
rophysiological research, life sciences, neurofeedback, and the brain–computer interface 
approach. 

Also, brain product EEG amplifiers [94], such as BrainAmp DC [23] and Acti-CHamp 
[28], were commonly used for a variety of practical uses in neurophysiological research. 
An overview of other used EEG signal recording devices is presented in Table 1, together 
with examples of associated brain-controlled wheelchairs. 

5.2. Pre-Processing 
Signal preprocessing is a non-trivial step required to clean data and remove any un-

wanted components (noise, artefacts, or interference) embedded within the EEG signals 
[14,37]. A proper preprocessing procedure produces an improvement in the signal quality 
and results in better feature separability and classification performance. 

The most common methods applied in BCIs preprocessing and adopted in the sum-
marized scientific contributions are frequency-domain filtering and spatial filtering. 
Bandpass filters [8,23,25,26,28,31,32], the primary attempts to attenuate artefacts in the 
measured EEG, and notch filters [24,34], used to remove the noise generated by the power 
line, are examples of frequency domain preprocessing solutions. However, only when the 
frequency bands of the signal do not overlap, these methods are effective. 

A spatial filter is an alternative approach to increase the signal-to-noise ratio (SNR) 
of the brain signal. Typical examples of spatial filtering methods are Laplacian filtering 
[30,35], blind source separation (BSS) [34], common average reference (CAR) [29,33], au-
tocorrelation (AC), canonical correlation analysis (CCA), independent component analy-
sis (ICA), minimum energy combination (MEC), and principal component analysis (PCA). 
For real-time BCI applications, automatic methods and low computational cost are re-
quired. Recently emerging algorithms, such as independent vector analysis (IVA), a mod-
ified joint BSS approach (JBSS), a quadrature regression IVA (q-IVA), and the filter-bank-
based supervised machine learning approach, introduced more effective artefact removal 
approaches, paving the way for innovative and helpful research in the BCI field [95]. A 
detailed description of the mentioned methods out of this review’s scope can be found in 
[14,37,38,96,97]. 

5.3. Feature Extraction 
EEG features for MI BCI are related to both spectral and spatial domains. Although 

the feature extraction methods used in the selected studies are quite heterogeneous, anal-
ysis in the spatial domain using Common Spectral Patterns (CSP) resulted in being the 
general approach [24,26,29,33,34]. 

Being employed since 2000 to detect event-related desynchronizations [98], CSP filter 
is mentioned as an effective way to discriminate classes and is one of the most popular 
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feature extraction methods in the BCI field [38]. Specifically, it is widely used for high 
recognition and low computational complexity. This method aims to transform EEG data 
into a new space, maximizing the variance of the (projected) signal from one class and 
simultaneously minimizing it for the other class. More in details, the Wavelet transform 
is applied to the preprocessed EEG data (represented as a matrix of size N × S, where N is 
the number of channels and S is the number of samples per channel). The output of the 
Wavelet transform is the input of the CSP algorithm. It is considered a strong technique 
in MI EEG processing since it enables the extraction of signal information from particular 
frequency bands. However, proper selection of the filtering frequency band dramatically 
affects the performance of CSP, and the optimal frequency band is typically subject-spe-
cific. Thus, it is difficult to select manually. The common spatial frequency subspace de-
composition (CSFSD) method, adopted in Choi et al. [34] and used in Ramoser et al. [98], 
is a modified type of CSP that employs frequency and spatial filtering. The CSFSD aims 
to estimate spatial frequency filters corresponding to left and right movement imagina-
tion. The limit of the CSFSD is that it can be used only for classifying two groups of data. 
For example, in Choi et al. [34], the total set of CSFSD is summed to classify three data 
groups. 

In other summarized BCW systems, the power spectral density (PSD) method is also 
adopted. PSD is the measure of how the power of a signal is distributed over frequency. 
Power spectral density estimation is performed through parametric or non-parametric 
methods. The former is based on the autoregressive model or the adaptive autoregressive 
model. The latter group includes Fast Fourier Transform (FFT)-based methods and varia-
tion of FFT, such as Welch’s method [96]. It is an efficient frequency domain-based feature 
widely used in motor imagery paradigms, but its performance may decrease seriously 
when applied to low SNR data. 

5.4. Pattern Classification 
Implementing a successful BCI approach requires that the system identifies several 

user brain activity patterns, extract from them the most significant features, and classify 
them with the best accuracy. The classification step converts the user’s intention into com-
mand signals for an output device (for example, a wheelchair). 

Especially in third-party device control applications, where errors can lead to dan-
gerous situations, high classification rate and accuracy are mandatory [18]. Although ei-
ther regression or classification algorithms could be employed to achieve the goal above, 
the latter’s use is considered to be the most popular approach [99]. Among the numerous 
classification algorithms commonly used in BCI’s scientific context [37] and especially in 
brain-controlled mobile robots [14], the SVM-based and LDA-based approaches predom-
inate in the studies of this review. 

LDA is an effective statistical technique used as a well-known binary classification 
method for EEG data. It is employed to identify the linear combinations of feature vectors 
that characterize the corresponding signal. This method projects data in a new space and 
uses a hyperplane to distinguish different classes, minimizing the variance within a class 
and maximizing the variance between classes [14]. Thanks to its satisfactory performance, 
very low computational cost, easy use, and no requirement of extensive pretraining, an 
LDA classifier is to be preferred in various BCI systems, for example, in a motor imagery-
based approach. However, its linearity can cause performance degradation and poor re-
sults in a few circumstances containing complex large non-linear EEG data. 

On the other hand, SVM, first proposed by Vapnik et al. [100], is a supervised learn-
ing algorithm used to solve binary classification problems by creating a linear optimal 
hyperplane. To perform a classification process for a given set of training data, SVM con-
structs a hyperplane model in a multidimensional space that separates the patterns be-
longing to the different classes by the widest margin [14]. As reported in Padfield et al. 
[38], the SVM classifier resulted in higher performance when compared to LDA and re-
gression algorithms. 
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In addition to LDA and SVM classification solutions, artificial neural network (ANN) 
and k-nearest neighbor (k-NN) [101] are also adopted. The element that characterizes the 
neural network (NN) lies in their special ability to extract patterns and identify trends 
challenging to find, either by humans or by computerized techniques. A trained NN algo-
rithm, one of the fundamental tools utilized in machine learning, can be recognized as an 
“expert” in performing classification of information that it has been provided to analyze 
[37]. An ANN is a multi-class classifier, widely used in the BCI field, based on a brain-
inspired information system that simulates and replicates the process of human cognition 
[14]. KNN is a supervised learning algorithm that can be used to classify between two or 
more patterns. It is based on the concept that features related to different patterns will 
result in different clusters in the features space, while similar patterns will form conver-
gent or similar clusters. The BCI community does not seem to widely use this method due 
to its sensitivity to the curse-of-dimensionality, which causes it to fail in several experi-
ments. 

5.5. Software Platforms 
Several commercial software platforms, toolboxes, and frameworks were adopted to 

implement the necessary steps for EEG signal processing, such as filtering, artefact cor-
rection, feature extraction, and classification. An overview of the most widely-used BCI 
platforms is presented, together with examples of associated brain-controlled wheelchairs 
(Table 1). In-depth and detailed discussions of the technical characteristics of all platforms 
are reported in other studies [102,103], and as such, is not the main purpose of our work. 
However, we believe it is appropriate to list and highlight, for each of them, several fea-
tures that could be essential in wheelchair control application, such as intended target 
user group, availability on different operating systems, licenses, programming languages 
involved, supported devices, performance, and so on. Typically, the target user group of 
these frameworks consists either of BCI developers, BCI users, or both [102]. As far as 
licenses are concerned, some platforms are released under popular open source ones (such 
as the GNU General Public License [104]), which allow everyone to apply changes and 
redistribute the source code [102]. Moreover, frameworks can be cross-platform (i.e., de-
ployed on several different operating systems) or restricted to either a specific operating 
system and/or require commercial software. 

We have identified some major platforms (OpenVibe, OpenBCI GUI, MATLAB/Sim-
ulink, and LABVIEW) [105–107], that were used in our review results, and other addi-
tional ones (Wyrm, BCI2000, BCILAB and Gumpy) [103,108-114], which, although not 
used in the aforementioned BCW systems, are also specifically aimed at BCI development 
and therefore worth mentioning. 

OpenVibe [105], developed by the French National Institute for Research in Com-
puter Science and Control (INRIA), is a free and open-source platform to design, test, and 
use BCI systems in both real and virtual environments. Adopted in Carrino et al. [35], it 
can be used for real-time processing and analysis of brain signals (acquire, filter, process, 
classify, and visualize data) due to its modularity features, portability, and flexibility. 
OpenViBE is designed for different types of users, including researchers, developers, and 
clinicians. Indeed, its easy-to-use graphical user interface is also suitable for non-program-
mers. This software platform supports several acquisition devices such as EEG or MEG 
amplifiers and can be easily integrated with high-level applications such as virtual reality 
(VR) applications. OpenViBE is licensed under the GNU Affero General Public License 
v3.0 (AGPL-3) and is officially available for Microsoft Windows and Linux (Ubuntu and 
Fedora) platforms. The evaluation of the platform performances allows to conclude that 
OpenViBE could prove a valuable and useful tool to design innovative BCI-based inter-
action devices for VR and confirms its suitability for real-time applications [102]. 

OpenBCI GUI [106], used in Xiong et al. [8], is an OpenBCI software that offers a 
powerful tool for visualizing, recording, and streaming data from the different OpenBCI 
Boards. Data can be transmitted in live-time to third-party software such as MATLAB. As 
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a drawback, this GUI does not provide the possibility of acquiring data under a particular 
BCI paradigm nor does it allow for the on-line process of the biosignals [115]. The 
OpenBCI GUI is provided under the MIT License and is free to modify or adapt to custom 
setup. In addition, it will run as a native application on MacOs X, Windows, and Linux. 

Commercial high-level platforms (MATLAB, Simulink or LabVIEW) have been used 
in several real-time BCI demonstrations. MATLAB (MARrix LABoratory, The Math-
Works, Inc., Natick, MA, USA) is also a powerful tool for researchers to test models and 
algorithms in the BCI field, benefiting from resourceful toolboxes and an easy implemen-
tation process [107]. It is configured with a commercial programming language for nu-
merical computing that supports Linux, Windows, and MacOs X. Sophisticated algo-
rithms for specific application domains can be implemented in MATLAB or a block-dia-
gram can be developed using Simulink, an interactive environment for modeling, analyz-
ing, and testing dynamic systems. Most of the summarized studies adopted this commer-
cial platform because of its ease of use, expansive functionality, and its suitability for de-
veloping, prototyping, testing, and evaluating new algorithms, as well as for real-time 
and online processing methods and applications. 

LabVIEW (Laboratory Virtual Instrument Engineering Workbench-National Instru-
ments, Inc, Austin, TX, USA) is a high-level multiplatform graphical development envi-
ronment also used in our review results to implement a brain-controlled wheelchair [28]. 
It can generally run on Windows and, depending on version used and with limited func-
tionality, on Mac OS X and Linux. The evaluation of some platform performances, which 
are the ability to interface with external instrumentation together with the ability to use 
data acquisition modules for third-part biosignal acquisition systems, allows us to confirm 
that LabVIEW was successfully adopted within the BCI community. 

Although not used in any of the studies summarized in this review, it is worth men-
tioning, within the brain-controlled wheelchair research, other open-source BCI plat-
forms: Wyrm, BCI2000, BCILAB, and Gumpy. 

Wyrm [108,109] is an open-source Python-based BCI package applicable to a broad 
range of neuroscientific problems. The toolbox offers several functionalities to analyze 
and visualize neurophysiological data in offline processing and real-time settings, like an 
online BCI application. More specifically, it implements a wide range of different algo-
rithms, including standard signal processing algorithms, advanced filtering algorithms 
(like the CSP), analysis methods (like single-trial analysis), multivariate pattern analysis 
(MVPA), machine learning algorithms (like the LDA), and many more. The whole system 
runs on all major operating systems and is licensed under the terms of the MIT license. 
Authors confirmed that Wyrm is capable of performing offline and online experiments, 
and that all functions of the toolbox are carefully tested for accuracy and profiled for 
speed, allowing to solve the necessary computations very efficiently. 

BCI2000 [110,111] is an open-source C++ based software developed in 2000 for real-
time BCI systems application. It includes stimulus presentation functionality and provides 
the data acquisition and signal processing modules. Specifically, BCI2000 supports 19 dif-
ferent data acquisition systems by different manufacturers, including all major digital 
EEG amplifiers. Still, some important methods (e.g., discrete wavelet transform) and some 
classification techniques (e.g., deep learning) are not embedded. BCI2000 is available un-
der the GNU General Public License (GPL) v3 and runs on multiple platforms, including 
Windows and Mac OS X, though it is currently fully tested and supported on Windows 
only. Since this software does not directly support other programming languages such as 
Matlab or Python, it is not easy to extend or integrate it with other toolboxes [103]. Despite 
the aforementioned limitations, BCI2000 is adopted in many studies in the fields related 
to BCI research [102] and is also supporting the only existing long-term in-home applica-
tion of BCI technology for people who are severely disabled [116]. 

BCILAB [112,113], developed by “Swartz Center for Computational Neuroscience” 
(SCCN) and distributed free to help researchers in processing signal with Matlab, is 
among the earliest publicly available software packages for research purposes in the BCI 
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community. Because of its MATLAB foundation, the major strength of the toolbox lies in 
implementing rapid prototyping, offline performance evaluation of new BCI applications, 
and real time testing in the same computational framework. BCILAB can boast of an easily 
extensible collection of currently over 100 methods from the literature (including signal 
processing, machine learning, and BCI-specific methods). BCILAB supports Windows, 
Linux, and Mac systems. 

Gumpy [103,114] provides state-of-the-art algorithms, signal processing methods, 
and classification approaches that the scientific community has employed over the last 20 
years. It is designed for a hybrid brain–computer interface and is implemented to chart a 
route ahead for new BCI improvements [103]. It is widely used by machine learning com-
pilers, engineers, and neuroscientists. It is an open-source, easy-to-use, robust, and pow-
erful Python toolbox suitable for EEG and EMG bio signal analysis, visualization, real-
time streaming and decoding. More importantly, in addition to classical machine learning 
algorithms, Gumpy includes different deep learning models such as deep convolutional 
neural networks (CNN) [117], recurrent convolutional neural networks (RCNN), and 
Long Short-Term Memory (LSTM) [118], which can be used to classify sensory-motor 
rhythms from EEG signals. Those approaches have hitherto been rarely investigated in a 
BCI context and it seems that no existing BCI software integrates similar techniques [103]. 
Gumpy’s source code is released under the MIT license and is supported on Linux, Win-
dows, and Mac OS X. 

In light of our overview which also reports currently available platforms and frame-
works for developing and deploying MI-BCW systems, we can conclude that, while some 
platforms offer a great number of features (for example, BCI2000, OpenViBE, and 
Gumpy), each solution presents its unique features and benefits. It is important to note 
that the combination of MATLAB and Simulink is probably one of the most popular com-
mercial general-purpose platforms for developing brain controlled wheelchair applica-
tions. Indeed, many scientific research groups prefer to develop their own MATLAB-cen-
tered solutions for biosignal acquisition and processing, adapting them on different re-
quirements and prospective users. 

 
 

6. MI-BCWs Performance Evaluation 
The performance of a designed brain-controlled wheelchair has a fundamental im-

portance and should be quantified while navigating a predefined set of common obsta-
cles. Achieving high performance in MI-based BCI is a challenge that researchers have 
been working on for years as it increases the responsiveness of the device, prevents user 
frustration, and improve the user’s experience. 

Several performance evaluation criteria were used by researchers, as per their con-
venience. However, researchers have no standard performance metrics that could be 
widely adhered to facilitate comparisons between brain–computer systems. The results of 
our review show that in most of the works, information relating to performance evalua-
tion and the metrics used are often missing or poorly described. However, we believe it is 
appropriate to report, where available, some details on how the BCW’s performance as-
sessment was achieved. 

In Tsui et al. [36], for the experimental test in an arena environment, the task was to 
drive the robotic wheelchair from the “start” position to the “target” position without col-
lisions with obstacles placed in the room. Based on the information provided by the au-
thors, performance was evaluated by the average time to finish a run (108.75 sec for subject 
1 and 114.75 s for subject 2) and the number of interactions (executed commands) required 
to reach all targets (average: 5.38 interactions/min for subject 1 and 4.58 interactions/min 
for subject 2). 

In Choi’s study [34], two types of experiments were conducted. In the first, the subject 
controlled bars on a monitor, following an arrow, by imaginary movement. In this 
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experiment, two subjects achieved a 95.00% success rate, and the one had a 91.66% success 
rate. In the second experiment, the subjects drove a wheelchair on a figure of eight course 
while avoiding two obstacles and they were instructed to reach the original position in 
the shortest distance and time. Success was defined as the subject returning to the original 
position from the starting position without colliding against any obstacle or the wall. Fail-
ure was defined as the subject touching any obstacle or the wall. In this obstacle avoidance 
experiment, all three subjects achieved over 90% success rate. 

Li et al. [33] evaluated the BCW system in terms of accuracies and practical running 
testing in a real environment. In the first part of the protocol, the system recognizes user’s 
movement intentions according to changes in spectral power relevant to user’s mental 
tasks (corresponding to left, right, and feet motor imagery). Trial accuracy was obtained 
by counting the number of trials classified correctly for each participant, reaching an av-
erage value of 82.56%. In the practical driving testing, in which the participant was re-
quired to steer the wheelchair moving along a specific path without hitting the obstacles 
(that are chairs), a good performances in terms of smooth movement and obstacle avoid-
ance was observed. 

The test conducted by Carra et al. [32] consisted of a preliminary procedure in which 
a specific number of tracks (imaginary movement of the foot (front arrow) and right hand 
(right arrow)) are presented to the volunteer who becomes familiar with the experiment. 
The collected data are used for classifier training and to obtain the specific parameters of 
the volunteer. Afterwards, the first series of corresponding route stimuli was presented. 
Wheelchair moves in direction to the stimulus only if the classification result of the corre-
sponding track is correct, while remains standing in place in the opposite case. The subject 
must complete a route of seven predetermined positions three times, with the minimum 
possible tracks. The hit rates for volunteer in each series were evaluated, with an average 
value of 65.7%. 

In Carlson et al. [30], the subjects were instructed to perform an online BCI session 
(the wheelchair remained stationary), after which they were given 15–30 min to familiar-
ize themselves with driving the wheelchair using each of the control conditions: a two-
button manual input, which served as a benchmark, and the BCI system. The task was to 
enter a large open-plan room, navigate to two different tables while avoiding obstacles, 
passing through narrow openings and finishing by reaching a second doorway exit of the 
room. A good level of control was achieved in the stationary online BCI session with an 
average accuracy of 95% on all subjects, as well as in the driving task, completed success-
fully and without collisions. 

Varona-Moya’s experimental procedure [28] consists of a training schedule and a ro-
botic wheelchair navigation phase, in turn divided into two tasks. The first robotic navi-
gation task consisted of driving the real wheelchair from the starting point to the goal 
using the audio-cued interface only. The second robotic navigation task consisted of going 
back along that path, i.e., to return to the starting point. System performance information 
is not provided in the text. For the results, authors confirmed that all participants were 
able to perform at least one robotic wheelchair navigation task via our BCI system. In 
addition: (i) the minimum time lapse for the first and the second robotic navigation task 
was 4 min 38 s and 5 min, respectively, and (ii) the second task required the same number 
of selections as the first task plus two extra ones (turn 90° to the right or to the left). 

Using Emotiv EPOC headset in the system proposed by Swee et al. [27], the brain-
waves in EEG form were translated into the metrics (facial expression, performance met-
rics, and mental commands) by means of different detection tools. More specifically, the 
mental command detection suite is used to interpret the user’s mental commands (push, 
pull, left, and right) in order to control the electrical wheelchair movement. The testing 
result for mental commands, involving five users, showed that the processed EEG data 
provide up to 90% of accuracy. 

To validate the effectiveness of the intelligent wheelchair, Zhang et al. [26] conducted 
an experiment (Exp. 1 for the MI-based BCI) that involved two different environments 
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(Scenario A and the complex Scenario B). In Scenario A, the subjects were required to 
consecutively perform three tasks in a room equipped with a few pieces of furniture. Au-
thors validated the feasibility of the wheelchair system in a relatively complex home en-
vironment, namely, Scenario B (with more obstacles than Scenario A). More specifically, 
to evaluate Zhang’s intelligent wheelchair system, several performance metrics were 
adopted: concentration time (CT), concentration time for each selection (CTFES), false des-
tination selection (FS), response time (RT), success rate (SR), error distance (ED), and false 
activation rate (FA) [26]. For experiment 1 (MI-based BCI) and the more complex home 
environment (Scenario B), the average performance indices are: CT: 23.8 sec; CTFES: 4.3 
sec; FS: 0; SR: 94.7%; ED: 9.5 sec; and FA: 0 (see Tables 1 and 2 in [26] for additional infor-
mation). 

The experimental procedure used in the study of Ron-Angevin et al. [25] involved a 
total of three sessions: (i) an initial calibration session, (ii) a navigation session in a VE 
(control of a virtual wheelchair), and finally, (iii) a navigation session in a real environ-
ment with the BCW. The real experimental trial, which we are most interested in, con-
sisted of two navigation tasks: to drive the real wheelchair from the starting point to the 
goal (task 1) and to return along the same path to the starting point (task 2). Referring to 
the performance evaluation during navigation, the following metrics are used: recall 
(user’s ability to select the desired command); specificity (user’s ability to avoid unwanted 
commands; precision (which of the user’s selections are correct); Negative Predictive 
Value (NPV) (which of the users’ non-selections are correct); and accuracy (level of overall 
performance). On the real wheelchair control session, subjects achieved a medium accu-
racy level above 0.83 (see Table 4 in [25] for additional results). 

Al-Turabi et al. [24] performed experimental tests comparing acquired EEG data, 
measured with a commercial device, while the volunteer thought for four seconds about 
each direction (left, right, forward, and backward), with the EEG reference data. If the 
reference data is smaller than the current data, the control signal is to stop the wheelchair 
(the user is not focusing in any direction). Otherwise, mu and beta frequency bands were 
extracted and given as input of machine learning algorithm. Several algorithms (SVM, 
KNN, and ANN) were tested to predict the output to be transferred wirelessly to the 
wheelchair and control it into the different directions. However, SVM algorithm showed 
the highest accuracy with 79.2%. 

The experimental procedures adopted in Yu et al. [23] consist of offline training (for 
calibration of the classifiers’ parameters), simulated experiments, and online wheelchair 
navigation experiments. The online experiments were conducted to evaluate the overall 
control performance of the proposed wheelchair navigation strategy in a real-world in-
door environment. The subjects were required to navigate the wheelchair from the start-
ing point to the destination position following the pre-established route, while passing 
through six waypoints and avoiding obstacles. The authors measured the following per-
formances metrics: tasks accomplished (times of accomplishment of the navigation exper-
iment); time taken (the average time to accomplish each task); waypoint missed (number 
of waypoints missed); commands taken (number of commands used to accomplish each 
experiment); distances travelled (distances travelled to accomplish each experiment); an-
gle explored (total turning angle to accomplish an experiment); and collisions (number of 
collisions with the obstacles). In summary (see Table 3 in [23] for more details), the seven 
subjects accomplished 99 of the 105 experimental trials and the success rate was 94.2%. 

MILO system, described in Xiong et al. [8], implemented a novel user interface to 
allow its user to switch between fully autonomous driving (wheelchair can move roughly 
forward through its environment while automatically avoiding objects in its path) and a 
brain-controlled driving mode (control requires inferring left and right imagined hand 
movement in real-time with machine learning algorithms). Experimental protocol was de-
veloped to collect MI data for three conditions: (1) imagined left hand movement, (2) im-
agined right hand movement, and (3) rest, where participants were asked to not imagine 
moving either hand. Experiments allowed to decode the three target states based on µ-
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wave power. Using a logistic regression classifier, only two scalp electrodes and a two 
second window size, a mean subject accuracy of 60 ± 5% is achieved. 

Unfortunately, no in-depth or confusing information is given on this issue in the 
study of Carrino et al. [35] as well as in Kim et al. [29], Reshmi et al. [31], and Permana et 
al. [22]. 

The results of our review show that the scientific community interested in the field 
of BCI should make a greater effort in identifying standard performance metrics that 
could facilitate comparisons between BCW systems. 

7. Conclusions 
Our scientific research group’s interest has been focused for years on the develop-

ment of innovative technological solutions and assistive systems designed to preserve 
communication and interaction with the external world in people with ALS [6,86,87,119–
123]. 

The pandemic emergency of COVID-19 has shed light on the needs of people with 
severe disabilities regarding their participation in daily living activities, mobility and 
transport, on access to education, services, and healthcare. Therefore, in this context, it 
was necessary to highlight the limitations of current biomedical instrumentations applied 
to people with severe disabilities to pave the way for future and helpful research in the 
BCI field. This systematic literature review aims to prove the feasibility and applicability 
of a brain-controlled wheelchair in a real environment considering, as the target popula-
tion, patients with impaired motor abilities. 

Wheelchairs are among the most appropriate equipment that can promote mobility 
and improve people’s autonomy, providing valuable aid, particularly to the elderly and 
people with physical impairments, to move through a real environment and to do daily 
routines and tasks with ease. 

In implementing an efficient brain-controlled wheelchair, three main challenges need 
to be considered: (i) system control is multi-objective, including numerous and different 
commands (start and stop, direction and speed). The system based on a navigation ap-
proach with a specific mental task can offer only a few navigation commands. On the 
other hand, a high number of cognitive tasks increases the number of navigations com-
mands, but it can worsen the BCI system’s performance. Producing numerous control sig-
nals is challenging for an EEG-based BCI and making an accurate control command is a 
time-consuming process. (ii) The efficacy and the performance of a BCI system largely 
depend on the user, who often fails to perform the MI required to produce direction con-
trol signals. (iii) Continuous control of wheelchair navigation may produce a large mental 
workload for the user, especially for disabled people. 

Despite the enormous interest in implementing a brain-controlled wheelchair, the 
current solutions do not seem to fully satisfy the demands in today’s context, mainly due 
to the complexity of developing such an elaborate system. Although innovative techno-
logical solutions of considerable importance have been implemented in MI-BCI research, 
some critical issues still need to be resolved [97]. Firstly, as most of the published studies 
are based on synchronized MI-BCI in offline modality, there is a need to give more prom-
inence to online BCI studies. In addition, the performance of a designed brain-controlled 
wheelchair should be quantified while navigating a predefined set of common obstacles. 
Several performance evaluation metrics were used by researchers, as per their conven-
ience. However, researchers have no standard performance metrics that could be widely 
adhered to facilitate comparisons between brain–computer systems. Improving the per-
formance of BCW is still a critical issue even after two decades of research. Taking ad-
vantage of sophisticated algorithms’ availability, future research in MI-BCI should con-
centrate more on reducing long calibration, on increasing the number of commands with-
out, however, producing a large mental workload for the user. BCI illiteracy, reported in 
[97] as the users’ inability to produce required oscillatory pattern during motor imagery 
paradigm, leads to poor performance of MI-BCI. The current trend of researchers is to 
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predict whether a user falls under BCI illiterate category or not and to use this information 
to improve the implementation of an optimal algorithm for decoding MI and design a 
better training protocol for enhancing user skills. 

Several technical suggestions can be considered for the potential improvements of 
BCWs. Although some MI-BCI wheelchairs also include sensors for navigation aids, the 
results are limited. Specifically, the experiments were mostly done with healthy subjects 
and in controlled environments. Regarding this first point, it is necessary to understand 
whether the performance of disabled users is comparable to that of healthy ones. The pos-
sibility of the use of environmental control systems by people with severe disabilities has 
been investigated in very few studies. In non-structured environments, a complete control 
system with navigation components, including mapping, location, route planning, and 
obstacle avoidance, is needed. Moreover, to improve the safety of disabled people in the 
use of wheelchairs, even in unstructured environments, it could be useful to investigate 
the possibility of integrating telemonitoring systems. Second, existing BCIs offer rather 
poor ITR (Information Transfer Rate), the widely used evaluation metric for command 
BCI systems. The problem of poor information transfer rate of BCIs and its effect on re-
ducing the commands user, restricts BCI utilization for locked-in persons. Therefore, fu-
ture research should focus on increasing the ITR of BCI systems. Finally, in order to im-
prove the classification performances, moving from conventional machine learning mod-
els to deep learning approaches could be the optimal solution. 

In summary, compared to several contributions published during the last decade to 
provide state-of-the-art wheelchairs driven by a brain-computer interface [9–14], our re-
view presents strengths and novelties as it aims: 
- to define the sub-area of interest in BCI context, rather than proving a wide overview 

of brain–computer interface typologies and applications; 
- to present the state-of-the-art applications of EEG-based BCIs, particularly those us-

ing motor-imagery data, to wheelchair movement and control in a real environment; 
- to highlight the need for easy usability required for disabled people and to focus the 

attention on the applicability and feasibility of brain-controlled wheelchair in a real 
context; 

- to analyze MI EEG-based BCIs applied to wheelchair movement and control, not only 
in terms of algorithm analysis, features extraction, features selection, classification 
techniques, and software used, but also adding information about wheelchair type 
and components, obstacle avoidance systems, and wheelchair performances evalua-
tion; 

- to make assumption and provide suggestions on potential improvements of these 
devices. 
In conclusion, we hope the results provided in this paper will highlight the limita-

tions of current biomedical instrumentations applied to people with severe disabilities 
and bring focus to innovative research topics. 

Author Contributions: Conceptualization, A.P.; Methodology, A.P. and V.G.; Writing—original 
draft preparation, V.G. and B.C.; Writing—review and editing, V.G., B.C., and N.I.; Supervision, 
A.P. All authors have read and agreed to the published version of the manuscript. 

Funding: This work has been funded by the SIMpLE (Smart solutIons for health Monitoring and 
independent mobiLity for Elderly and disable people) project (Cod. SIN_00031 - CUP 
B69G14000180008), a Smart Cities and Communities and Social Innovation project, funded by the 
Italian Ministry of Research and Education (MIUR). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 



Sensors 2021, 21, 6285 29 of 33 
 

 

References 
1. Smith, E.M.; Hernandez, M.L.T.; Ebuenyi, I.D.; Syurina, E.V.; Barbareschi, G.; Best, K.L.; Danemayer, J.; Oldfrey, B.; Ibrahim, 

N.; Holloway, C.; et al. Assistive Technology Use and Provision During COVID-19: Results From a Rapid Global Survey. Int. J. 
Heal. Policy Manag. 2020, 210, 1–10, doi:10.34172/ijhpm.2020.210. 

2. Lazarou, I.; Nikolopoulos, S.; Petrantonakis, P.C.; Kompatsiaris, I.; Tsolaki, M. EEG-Based Brain–Computer Interfaces for Com-
munication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21st Century. Front. Hum. Neurosci. 
2018, 12, 14, doi:10.3389/fnhum.2018.00014. 

3. Vaughan, T.M. Brain-computer interfaces for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. Basis Tech. Asp. 2020, 
168, 33–38, doi:10.1016/b978-0-444-63934-9.00004-4. 

4. De Marchi, F.; Sarnelli, M.F.; Serioli, M.; De Marchi, I.; Zani, E.; Bottone, N.; Ambrosini, S.; Garone, R.; Cantello, R.; Mazzini, L.; 
et al. Telehealth approach for amyotrophic lateral sclerosis patients: The experience during COVID-19 pandemic. Acta Neurol. 
Scand. 2021, 143, 489–496, doi:10.1111/ane.13373. 

5. De Marchi, F.; Contaldi, E.; Magistrelli, L.; Cantello, R.; Comi, C.; Mazzini, L. Telehealth in Neurodegenerative Diseases: Op-
portunities and Challenges for Patients and Physicians. Brain Sci. 2021, 11, 237, doi:10.3390/brainsci11020237. 

6. Palumbo, A.; Calabrese, B.; Ielpo, N.; Demeco, A.; Ammendolia, A.; Corchiola, D. Cloud-based biomedical system for remote 
monitoring of ALS patients. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 
Seoul, Korea, 16–19 December 2020; pp. 1469–1476. 

7. Pinto, S.; Quintarelli, S.; Silani, V. New technologies and Amyotrophic Lateral Sclerosis—Which step forward rushed by the 
COVID-19 pandemic? J. Neurol. Sci. 2020, 418, 117081, doi:10.1016/j.jns.2020.117081. 

8. Xiong, M.; Brandenberger, A.; Bulger, M.; Chien, W.; Doyle, A.; Hao, W.; Jiang, J.; Kim, K.; Lahlou, S.; Leung, C.; et al. A Low-
Cost, Semi-Autonomous Wheelchair Controlled by Motor Imagery and Jaw Muscle Activation. In Proceedings of the IEEE In-
ternational Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2180–2185. 

9. Bi, L.; Fan, X.-A.; Liu, Y. EEG-Based Brain-Controlled Mobile Robots: A Survey. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 161–176, 
doi:10.1109/tsmcc.2012.2219046. 

10. Krishnan, N.M.; Mariappan, M.; Muthukaruppan, K.; Hijazi, M.H.A.; Kitt, W.W. Electroencephalography (EEG) Based Control 
in Assistive Mobile Robots: A Review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 
2016; Volume 121, p. 012017. 

11. Fernández-Rodríguez, Á.; Velasco-Álvarez, F.; Ron-Angevin, R. Review of real brain-controlled wheelchairs. J. Neural Eng. 2016, 
13, 61001, doi:10.1088/1741-2560/13/6/061001. 

12. Al-Qaysi, Z.; Zaidan, B.; Zaidan, A.; Suzani, M. A review of disability EEG based wheelchair control system: Coherent taxonomy, open 
challenges and recommendations. Comput. Methods Programs Biomed. 2018, 164, 221–237, doi:10.1016/j.cmpb.2018.06.012. 

13. Leaman, J.; La, H.M. A Comprehensive Review of Smart Wheelchairs: Past, Present, and Future. IEEE Trans. Hum.-Mach. Syst. 
2017, 47, 486–499, doi:10.1109/thms.2017.2706727. 

14. Aljalal, M.; Ibrahim, S.; Djemal, R.; Ko, W. Comprehensive review on brain-controlled mobile robots and robotic arms based on 
electroencephalography signals. Intell. Serv. Robot. 2020, 13, 539–563, doi:10.1007/s11370-020-00328-5. 

15. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The 
PRISMA Statement. J. Clin. Epidemiol. 2009, 62, 1006–1012, doi:10.1016/j.jclinepi.2009.06.005. 

16. Dev, A.; Rahman, A.; Mamun, N. Design of an EEG-Based Brain Controlled Wheelchair for Quadriplegic Patients. In Proceed-
ings of the 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; pp. 1–5. 

17. Xin, L.; Gao, S.; Tang, J.; Xu, X. Design of a Brain Controlled Wheelchair. In Proceedings of the IEEE 4th International Conference 
on Control Science and Systems Engineering (ICCSSE), Wuhan, 24–26 August 2018; pp. 112–116. 

18. Abiyev, R.H.; Akkaya, N.; Aytac, E.; Günsel, I.; Çağman, A. Brain-Computer Interface for Control of Wheelchair Using Fuzzy 
Neural Networks. BioMed Res. Int. 2016, 2016, 9359868, doi:10.1155/2016/9359868. 

19. Huang, Q.; Zhang, Z.; Yu, T.; He, S.; Li, Y. An EEG-/EOG-Based Hybrid Brain-Computer Interface: Application on Controlling 
an Integrated Wheelchair Robotic Arm System. Front. Neurosci. 2019, 13, 1243, doi:10.3389/fnins.2019.01243. 

20. Yu, Y.; Zhou, Z.; Liu, Y.; Jiang, J.; Yin, E.; Zhang, N.; Wang, Z.; Liu, Y.; Wu, X.; Hu, D. Self-Paced Operation of a Wheelchair 
Based on a Hybrid Brain-Computer Interface Combining Motor Imagery and P300 Potential. IEEE Trans. Neural Syst. Rehabil. 
Eng. 2017, 25, 2516–2526, doi:10.1109/tnsre.2017.2766365. 

21. Long, J.; Li, Y.; Wang, H.; Yu, T.; Pan, J.; Li, F. A Hybrid Brain Computer Interface to Control the Direction and Speed of a 
Simulated or Real Wheelchair. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 720–729, doi:10.1109/tnsre.2012.2197221. 

22. Permana, K.; Wijaya, S.K.; Prajitno, P. Controlled wheelchair based on brain computer interface using Neurosky Mindwave 
Mobile 2. Proc. Int. Symp. Curr. Prog. Math. Sci. 2019, 2168, 020022, doi:10.1063/1.5132449. 

23. Yu, Y.; Liu, Y.; Jiang, J.; Yin, E.; Zhou, Z.; Hu, D. An Asynchronous Control Paradigm Based on Sequential Motor Imagery and Its 
Application in Wheelchair Navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2367–2375, doi:10.1109/tnsre.2018.2881215. 

24. Al-Turabi, H.; Al-Junaid, H. Brain Computer Interface for Wheelchair Control in Smart Environment. In Proceedings of the 
Smart Cities Symposium 2018, Bahrain, 22–23 April 2018; p. 23. 

25. Ron-Angevin, R.; Velasco-Álvarez, F.; Fernández-Rodríguez, Á.; Díaz-Estrella, A.; Blanca-Mena, M.J.; Vizcaíno-Martín, F.J. 
Brain-Computer Interface application: Auditory serial interface to control a two-class motor-imagery-based wheelchair. J. Neu-
roeng. Rehabil. 2017, 14, 49, doi:10.1186/s12984-017-0261-y. 



Sensors 2021, 21, 6285 30 of 33 
 

 

26. Zhang, R.; Li, Y.; Yan, Y.; Zhang, H.; Wu, S.; Yu, T.; Gu, Z. Control of a Wheelchair in an Indoor Environment Based on a Brain–
Computer Interface and Automated Navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24, 128–139, 
doi:10.1109/tnsre.2015.2439298. 

27. Swee, S.K.; Kiang, K.D.T.; You, L.Z. EEG Controlled Wheelchair. In Proceedings of the MATEC Web of Conferences, Amster-
dam, The Netherlands, 23–25 March 2016; Volume 51, p. 02011. 

28. Varona-Moya, S.; Velasco-Alvarez, F.; Sancha-Ros, S.; Fernández-Rodríguez, Á.; Blanca, M.J.; Angevin, R.R. Wheelchair navi-
gation with an audio-cued, two-class motor imagery-based brain-computer interface system. In Proceedings of the 7th Interna-
tional IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015; pp. 174–177. 

29. Kim, K.-T.; Carlson, T.; Lee, S.-W. Design of a robotic wheelchair with a motor imagery based brain-computer interface. In 
Proceedings of the 2013 International Winter Workshop on Brain-Computer Interface (BCI), Pacific Grove, CA, USA, 3–7 June 
2013; pp. 46–48, doi:10.1109/iww-bci.2013.6506625. 

30. Carlson, T.; Millan, J.D.R. Brain-Controlled Wheelchairs: A Robotic Architecture. IEEE Robot. Autom. Mag. 2013, 20, 65–73, 
doi:10.1109/mra.2012.2229936. 

31. Reshmi, G.; Amal, A. Design of a BCI System for Piloting a Wheelchair Using Five Class MI Based EEG. In Proceedings of the 
Third International Conference on Advances in Computing and Communications, Kochi, India, 29–31 August 2013; pp. 25–28. 

32. Carra, M.; Balbinot, A. Evaluation of sensorimotor rhythms to control a wheelchair. In Proceedings of the 2013 ISSNIP Biosignals 
and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC); Institute of Electrical and Electronics 
Engineers (IEEE), Rio de Janeiro, Brazil, 18–20 February 2012; pp. 1–4. 

33. Li, J.; Liang, J.; Zhao, Q.; Li, J.; Hong, K.; Zhang, L. Design of assistive wheelchair system directly steered by human thoughts. 
Int. J. Neural Syst. 2013, 23, 1350013, doi:10.1142/s0129065713500135. 

34. Choi, K. Control of a vehicle with EEG signals in real-time and system evaluation. Graefe Arch. Clin. Exp. Ophthalmol. 2011, 112, 
755–766, doi:10.1007/s00421-011-2029-6. 

35. Carrino, F.; Dumoulin, J.; Mugellini, E.; Khaled, O.A.; Ingold, R. A self-paced BCI system to control an electric wheelchair: 
Evaluation of a commercial, low-cost EEG device. In Proceedings of the ISSNIP Biosignals and Biorobotics Conference: Biosig-
nals and Robotics for Better and Safer Living (BRC), Rio de Janeiro, Brazil, 18–20 February 2012; pp. 1–6. 

36. Tsui, C.S.L.; Gan, J.; Hu, H. A Self-Paced Motor Imagery Based Brain-Computer Interface for Robotic Wheelchair Control. Clin. 
EEG Neurosci. 2011, 42, 225–229, doi:10.1177/155005941104200407. 

37. Rashid, M.; Sulaiman, N.; Majeed, A.P.P.A.; Musa, R.M.; Nasir, A.F.A.; Bari, B.S.; Khatun, S. Current Status, Challenges, and 
Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Front. Neurorobot. 2020, 14, 25, 
doi:10.3389/fnbot.2020.00025. 

38. Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V.; Ren, J. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques 
and Challenges. Sensors 2019, 19, 1423, doi:10.3390/s19061423. 

39. Steyrl, D.; Kobler, R.J.; Müller-Putz, G.R. On Similarities and Differences of Invasive and Non-Invasive Electrical Brain Signals 
in Brain-Computer Interfacing. J. Biomed. Sci. Eng. 2016, 9, 393–398, doi:10.4236/jbise.2016.98034. 

40. Han, C.-H.; Kim, Y.-W.; Kim, D.Y.; Kim, S.H.; Nenadic, Z.; Im, C.-H. Electroencephalography-based endogenous brain–com-
puter interface for online communication with a completely locked-in patient. J. Neuroeng. Rehabil. 2019, 16, 18, 
doi:10.1186/s12984-019-0493-0. 

41. Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A comprehensive review of EEG-based brain–computer interface para-
digms. J. Neural Eng. 2018, 16, 011001, doi:10.1088/1741-2552/aaf12e. 

42. Müller-Putz, G.R.; Scherer, R.; Brauneis, C.; Pfurtscheller, G. Steady-state visual evoked potential (SSVEP)-based communica-
tion: Impact of harmonic frequency components. J. Neural Eng. 2005, 2, 123–130, doi:10.1088/1741-2560/2/4/008. 

43. Han, C.; Xu, G.; Xie, J.; Chen, C.; Zhang, S. Highly Interactive Brain–Computer Interface Based on Flicker-Free Steady-State 
Motion Visual Evoked Potential. Sci. Rep. 2018, 8, 5835, doi:10.1038/s41598-018-24008-8. 

44. Sellers, E.W.; Krusienski, D.J.; McFarland, D.J.; Vaughan, T.M.; Wolpaw, J.R. A P300 event-related potential brain–computer 
interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biol. Psychol. 2006, 73, 242–252, 
doi:10.1016/j.biopsycho.2006.04.007. 

45. Xu, M.; Xiao, X.; Wang, Y.; Qi, H.; Jung, T.-P.; Ming, D. A Brain–Computer Interface Based on Miniature-Event-Related Poten-
tials Induced by Very Small Lateral Visual Stimuli. IEEE Trans. Biomed. Eng. 2018, 65, 1166–1175, doi:10.1109/tbme.2018.2799661. 

46. Onose, G.; Grozea, C.; Anghelescu, A.; Daia, C.; Sinescu, C.J.; Ciurea, A.; Spircu, T.; Mirea, A.; Andone, I.; Spânu, A.; et al. On 
the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm 
control: A clinical test and long-term post-trial follow-up. Spinal Cord 2012, 50, 599–608, doi:10.1038/sc.2012.14. 

47. Shin, J.; Kwon, J.; Im, C.-H. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation 
Patterns during Mental Arithmetic, Motor Imagery, and Idle State. Front. Aging Neurosci. 2018, 12, 5, 
doi:10.3389/fninf.2018.00005. 

48. Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication 
and control. Clin. Neurophysiol. 2002, 113, 767–791, doi:10.1016/s1388-2457(02)00057-3. 

49. Serby, H.; Yom-Tov, E.; Inbar, G. An improved P300-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 
13, 89–98, doi:10.1109/tnsre.2004.841878. 

50. Middendorf, M.; McMillan, G.; Calhoun, G.; Jones, K. Brain-computer interfaces based on the steady-state visual-evoked re-
sponse. IEEE Trans. Rehabil. Eng. 2000, 8, 211–214, doi:10.1109/86.847819. 



Sensors 2021, 21, 6285 31 of 33 
 

 

51. Wang, Y.; Wang, R.; Gao, X.; Hong, B.; Gao, S. A practical VEP-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. 
Eng. 2006, 14, 234–240, doi:10.1109/tnsre.2006.875576. 

52. Pichiorri, F.; Mattia, D. Brain-computer interfaces in neurologic rehabilitation practice. Brain-Comput. Interfaces 2020, 168, 101–
116, doi:10.1016/b978-0-444-63934-9.00009-3. 

53. Cheng, N.; Phua, K.S.; Lai, H.S.; Tam, P.K.; Tang, K.Y.; Cheng, K.K.; Yeow, R.C.-H.; Ang, K.K.; Guan, C.; Lim, J.H. Brain-Com-
puter Interface-Based Soft Robotic Glove Rehabilitation for Stroke. IEEE Trans. Biomed. Eng. 2020, 67, 3339–3351, 
doi:10.1109/tbme.2020.2984003. 

54. Chaudhary, U.; Mrachacz-Kersting, N.; Birbaumer, N. Neuropsychological and neurophysiological aspects of brain-computer-
interface (BCI) control in paralysis. J. Physiol. 2021, 599, 2351–2359, doi:10.1113/jp278775. 

55. Pulliam, C.L.; Stanslaski, S.R.; Denison, T.J. Chapter 25—Industrial perspectives on brain-computer interface technology. In 
Handbook of Clinical Neurology; Ramsey, N.F., Millán, J.D.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 168, pp. 
341-352. 

56. Edelman, B.; Meng, J.; Suma, D.; Zurn, C.; Nagarajan, E.; Baxter, B.; Cline, C.C.; He, B.J.S.R. Noninvasive neuroimaging en-
hances continuous neural tracking for robotic device control. Sci. Robot. 2019, 4, 31. 

57. Elstob, D.; Secco, E.L. A Low Cost Eeg Based Bci Prosthetic Using Motor Imagery. Int. J. Inf. Technol. Converg. Serv. 2016, 6, 23–
36, doi:10.5121/ijitcs.2016.6103. 

58. Kruse, A.; Suica, Z.; Taeymans, J.; Schuster-Amft, C. Effect of brain-computer interface training based on non-invasive electro-
encephalography using motor imagery on functional recovery after stroke—A systematic review and meta-analysis. BMC Neu-
rol. 2020, 20, 385, doi:10.1186/s12883-020-01960-5. 

59. Baniqued, P.D.E.; Stanyer, E.C.; Awais, M.; Alazmani, A.; Jackson, A.E.; Mon-Williams, M.A.; Mushtaq, F.; Holt, R.J. Brain–
computer interface robotics for hand rehabilitation after stroke: A systematic review. J. Neuroeng. Rehabil. 2021, 18, 15, 
doi:10.1186/s12984-021-00820-8. 

60. Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Läer, L.; Yilmaz, Ö.; Msc, F.L.B.; Liberati, G.; Curado, M.R.; Garcia-Cossio, E.; 
Vyziotis, A.; et al. Brain-machine interface in chronic stroke rehabilitation: A controlled study. Ann. Neurol. 2013, 74, 100–108, 
doi:10.1002/ana.23879. 

61. Ang, K.K.; Guan, C.; Ephua, K.S.; Ewang, C.; Ezhou, L.; Etang, K.Y.; Joseph, G.J.E.; Ekuah, C.W.K.; Echua, K.S.G. Brain-computer 
interface-based robotic end effector system for wrist and hand rehabilitation: Results of a three-armed randomized controlled 
trial for chronic stroke. Front. Neuroeng. 2014, 7, 30, doi:10.3389/fneng.2014.00030. 

62. Ono, T.; Eshindo, K.; Ekawashima, K.; Eota, N.; Eito, M.; Eota, T.; Emukaino, M.; Efujiwara, T.; Ekimura, A.; Eliu, M.; et al. Brain-
computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. 
Front. Neuroeng. 2014, 7, 19, doi:10.3389/fneng.2014.00019. 

63. Frolov, A.A.; Mokienko, O.; Lyukmanov, R.; Biryukova, E.; Kotov, S.; Turbina, L.; Nadareyshvily, G.; Bushkova, Y. Post-stroke 
Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Ran-
domized Controlled Multicenter Trial. Front. Neurosci. 2017, 11, 400, https://doi.org/10.3389/fnins.2017.00400. 

64. Hiremath, S.; Chen, W.; Wang, W.; Foldes, S.; Yang, Y.; Tyler-Kabara, E.C.; Collinger, J.L.; Boninger, M.L. Brain computer inter-
face learning for systems based on electrocorticography and intracortical microelectrode arrays. Front. Integr. Neurosci. 2015, 9, 
40, doi:10.3389/fnint.2015.00040. 

65. Merel, J.; Fox, R.; Jebara, T.; Paninski, L. A multi-agent control framework for co-adaptation in brain-computer interfaces. In 
Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 De-
cember 2013; pp. 2841–2849. 

66. Mladenović, J.; Mattout, J.; Lotte, F. A generic framework for adaptive EEG-based BCI training and operation. In Brain-Computer 
Interfaces Handbook: Technological and Theoretical Advances; Chang, S.N., Anton, N., Fabien, L., Eds.; Brain-Computer Interfaces 
Handbook: Technological and Theoretical Advances; CRC Press: Boca Raton, FL, USA, 2017; Volume 1. 

67. Millàn, J.D.R. Brain-Machine Interfaces: The Perception-Action Closed Loop: A Two-Learner System. IEEE Syst. Man Cybern. 
Magazine 2015, 1, 14. 

68. Perdikis, S.; Tonin, L.; Saeedi, S.; Schneider, C.; Millán, J.D.R. The Cybathlon BCI race: Successful longitudinal mutual learning 
with two tetraplegic users. PLoS Biol. 2018, 16, e2003787, doi:10.1371/journal.pbio.2003787. 

69. Millán, J.D.R.; Renkens, F.; Mouriño, J.; Gerstner, W. Noninvasive Brain-Actuated Control of a Mobile Robot by Human EEG. 
IEEE Trans. Biomed. Eng. 2004, 51, 1026–1033, doi:10.1109/tbme.2004.827086. 

70. Tanaka, K.; Matsunaga, K.; Wang, H. Electroencephalogram-based control of an electric wheelchair. IEEE Trans. Robot. 2005, 21, 
762–766, doi:10.1109/tro.2004.842350. 

71. Tang, J.; Liu, Y.; Hu, D.; Zhou, Z. Towards BCI-actuated smart wheelchair system. Biomed. Eng. Online 2018, 17, 111, 
doi:10.1186/s12938-018-0545-x. 

72. Rebsamen, B.; Burdet, E.; Guan, C.; Teo, C.L.; Zeng, Q.; Ang, M.; Laugier, C. Controlling a wheelchair using a BCI with low 
information transfer rate. In Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The 
Netherlands, 13–15 June 2007; pp. 1003–1008. 

73. Iturrate, I.; Antelis, J.M.; Kubler, A.; Minguez, J. A Noninvasive Brain-Actuated Wheelchair Based on a P300 Neurophysiological 
Protocol and Automated Navigation. IEEE Trans. Robot. 2009, 25, 614–627, doi:10.1109/tro.2009.2020347. 

74. Alqasemi, R.; Dubey, R. A 9-DoF Wheelchair-Mounted Robotic Arm System: Design, Control, Brain-Computer Interfacing, and 
Testing. In Advances in Robot Manipulators; InTech: London, UK, 2010. 



Sensors 2021, 21, 6285 32 of 33 
 

 

75. Shin, B.-G.; Kim, T.; Jo, S. Non-invasive brain signal interface for a wheelchair navigation. In Proceedings of the International 
Conference on Control, Automation, and Systems (ICCAS), Gyeonggi-do, Korea, 27–30 October 2010; pp. 2257–2260. 

76. Lopes, A.; Pires, G.; Nunes, U.J.C. Assisted navigation for a brain-actuated intelligent wheelchair. Robot. Auton. Syst. 2013, 61, 
245–258, doi:10.1016/j.robot.2012.11.002. 

77. Mandel, C.; Luth, T.; Laue, T.; Rofer, T.; Graser, A.; Krieg-Bruckner, B. Navigating a smart wheelchair with a brain-computer 
interface interpreting steady-state visual evoked potentials. In Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, St Louis, MI, USA, 10–15 October 2009; pp. 1118–1125. 

78. Xu, Z.; Li, J.; Gu, R.; Xia, B. Steady-State Visually Evoked Potential (SSVEP)-Based Brain-Computer Interface (BCI): A Low-
Delayed Asynchronous Wheelchair Control System. In Algorithms and Data Structures; Springer International Publishing: Ber-
lin/Heidelberg, Germany, 2012; Volume 7663, pp. 305–314. 

79. Müller, S.M.T.; Bastos, T.F.; Filho, M.S. Proposal of a SSVEP-BCI to Command a Robotic Wheelchair. J. Control Autom. Electr. 
Syst. 2013, 24, 97–105, doi:10.1007/s40313-013-0002-9. 

80. Duan, J.; Li, Z.; Yang, C.; Xu, P. Shared control of a brain-actuated intelligent wheelchair. In Proceedings of the 11th World 
Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 341–346. 

81. Li, Y.; Pan, J.; Wang, F.; Yu, Z. A Hybrid BCI System Combining P300 and SSVEP and Its Application to Wheelchair Control. 
IEEE Trans. Biomed. Eng. 2013, 60, 3156–3166, doi:10.1109/tbme.2013.2270283. 

82. Cao, L.; Li, J.; Ji, H.; Jiang, C. A hybrid brain computer interface system based on the neurophysiological protocol and brain-
actuated switch for wheelchair control. J. Neurosci. Methods 2014, 229, 33–43, doi:10.1016/j.jneumeth.2014.03.011. 

83. Trambaiolli, L.R.; Falk, T.H. Chapter 10 Hybrid brain–computer interfaces for wheelchair control: A review of existing solu-
tions, their advantages and open challenges. In Smart Wheelchairs and Brain-Computer Interfaces; Academic Press: Cambridge, 
MA, USA, 2018; pp. 229–256. 

84. Pfurtscheller, G.; Allison, B.Z.; Bauernfeind, G.; Brunner, C.; Escalante, T.S.; Scherer, R.; Zander, T.O.; Mueller-Putz, G.; Neuper, 
C.; Birbaumer, N. The hybrid BCI. Front. Neurosci. 2010, 4, 30, doi:10.3389/fnpro.2010.00003. 

85. Allison, B.Z.; Neuper, C. Could Anyone Use a BCI? In Human–Computer Interaction Series; Springer Science and Business Media 
LLC.: Berlin/Heidelberg, Germany, 2010; pp. 35–54. 

86. Ing. Arrigo Palumbo, PhD website and publications. Available online: https://arrigopalumbo.com/pubblicazioni/ (accessed on 
7 August 2021). 

87. SIMpLE Project. Available online: https://biomedical.arrigopalumbo.com/progetto-simple/ (accessed on 7 August 2021). 
88. Alessio Forlano Designer website. Available online: http://www.alessioforlano.com/ (accessed on 7 August 2021). 
89. Soufineyestani, M.; Dowling, D.; Khan, A. Electroencephalography (EEG) Technology Applications and Available Devices. 

Appl. Sci. 2020, 10, 7453, doi:10.3390/app10217453. 
90. Gu, X.; Cao, Z.; Jolfaei, A.; Xu, P.; Wu, D.; Jung, T.-P.; Lin, C.-T. EEG-based Brain-Computer Interfaces (BCIs): A Survey of 

Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications. IEEE/ACM 
Trans. Comput. Biol. Bioinform. 2021, Early access, doi:10.1109/tcbb.2021.3052811. 

91. Emotiv-Epoc. Available online: https://www.emotiv.com/epoc/ (accessed on 7 August 2021). 
92. Williams, N.S.; McArthur, G.M.; Badcock, N.A. 10 years of EPOC: A scoping review of Emotiv’s portable EEG device. BioRxiv 

2020, doi:10.1101/2020.07.14.202085%JbioRxiv. 
93. G.Tec-USBamp. Available online: https://www.gtec.at/product-configurator/g-usbamp/ (accessed on 7 August 2021). 
94. Brainproducts. Available online:https://www.brainproducts.com/products_by_apps.php?aid=5 (accessed on 7 August 2021). 
95. Jiang, X.; Bian, G.-B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Sensors 2019, 19, 987, doi:10.3390/s19050987. 
96. Aggarwal, S.; Chugh, N. Signal processing techniques for motor imagery brain computer interface: A review. Array 2019, 1, 

100003, doi:10.1016/j.array.2019.100003. 
97. Singh, A.; Hussain, A.; Lal, S.; Guesgen, H. A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery 

Based Electroencephalography Brain-Computer Interface. Sensors 2021, 21, 2173, doi:10.3390/s21062173. 
98. Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. 

IEEE Trans. Rehabil. Eng. 2000, 8, 441–446, doi:10.1109/86.895946. 
99. Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A review of classification algorithms for EEG-based brain–com-

puter interfaces. J. Neural Eng. 2007, 4, R1–R13, doi:10.1088/1741-2560/4/2/r01. 
100. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer Inc.: New York, NY, USA, 1995. 
101. Tyagi, A.; Nehra, V. Classification of motor imagery EEG signals using SVM, k-NN and ANN. CSI Trans. ICT 2016, 4, 135–139, 

doi:10.1007/s40012-016-0091-2. 
102. Brunner, C.; Andreoni, G.; Bianchi, L.; Blankertz, B.; Breitwieser, C.; Kanoh, S.i.; Kothe, C.A.; Lécuyer, A.; Makeig, S.; Mellinger, 

J.; et al. BCI Software Platforms. In Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-
World Applications, Allison, B.Z., Dunne, S., Leeb, R., Del R. Millán, J., Nijholt, A., Eds.; Springer Berlin Heidelberg: Berlin, 
Heidelberg, 2013; pp. 303-331 

103. Tayeb, Z.; Waniek, N.; Fedjaev, J.; Ghaboosi, N.; Rychly, L.; Widderich, C.; Richter, C.; Braun, J.; Saveriano, M.; Cheng, G.; et al. 
Gumpy: A Python toolbox suitable for hybrid brain–computer interfaces. J. Neural Eng. 2018, 15, 065003, doi:10.1088/1741-
2552/aae186.  

104. The GNU General Public License v3.0. Available online: http://www.gnu.org/licenses/gpl-3.0.html (accessed on 8 September 
2021). 



Sensors 2021, 21, 6285 33 of 33 
 

 

105. OpenVibe. Available online: http://openvibe.inria.fr/ (accessed on 7 August 2021). 
106. The OpenBCI Gui. Available online: https://docs.openbci.com/Software/OpenBCISoftware/GUIDocs/ (accessed on 7 August 

2021). 
107. Matanga, Y.; Djouani, K.; Anish, K. A Matlab/Simulink framework for real time implementation of endogenous brain computer 

interfaces. In Proceedings of the 2017 IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017; pp. 100–105. 
108. Venthur, B.; Dähne, S.; Höhne, J.; Heller, H.; Blankertz, B. Wyrm: A Brain-Computer Interface Toolbox in Python. Neuroinfor-

matics 2015, 13, 471–486, doi:10.1007/s12021-015-9271-8. 
109. Wyrm. Available online: https://github.com/bbci/wyrm (accessed on 7 August 2021). 
110. Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J. BCI2000: A General-Purpose Brain-Computer Interface 

(BCI) System. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043, doi:10.1109/tbme.2004.827072. 
111. BCI2000. Available omline: https://www.bci2000.org/mediawiki/index.php/Main_Page (accessed on 7 August 2021). 
112. Kothe, C.A.; Makeig, S. BCILAB: A platform for brain–computer interface development. J. Neural Eng. 2013, 10, 056014, 

doi:10.1088/1741-2560/10/5/056014. 
113. BCILAB. Available online: https://www.nitrc.org/projects/bcilab/ (accessed on 7 August 2021). 
114. Gumpy. Available online: http://gumpy.org/ (accessed on 7 August 2021). 
115. Peterson, V.; Galván, C.; Hernández, H.; Spies, R. A feasibility study of a complete low-cost consumer-grade brain-computer 

interface system. Heliyon 2020, 6, e03425, doi:10.1016/j.heliyon.2020.e03425. 
116. Sellers, E.W.; Vaughan, T.M.; Wolpaw, J. A brain-computer interface for long-term independent home use. Amyotroph. Lateral 

Scler. 2010, 11, 449–455, doi:10.3109/17482961003777470. 
117. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444, doi:10.1038/nature14539. 
118. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780, doi:10.1162/neco.1997.9.8.1735. 
119. Palumbo, A.; Vizza, P.; Veltri, P.; Gambardella, A.; Pucci, F.; Sturniolo, M. Design of an electronic device for brain computer 

interface applications. In Proceedings of the 2009 IEEE International Workshop on Medical Measurements and Applications, 
Washington, DC, USA, 2009; pp. 99–103, doi:10.1109/memea.2009.5167963. 

120. Palumbo, A. An Embedded System for EEG Acquisition and Processing for Brain Computer Interface Applications. In Wearable 
and Autonomous Biomedical Devices and Systems for Smart Environment: Issues and Characterization; Lay-Ekuakille, A., Mukhopadh-
yay, S.C., Eds; Springer: Berlin/Heidelberg, Germany, 2010; pp. 137–154. 

121. Schettini, F.; Aloise, F.; Mecella, M.; Caruso, M.; Palumbo, A.; Pizzimenti, A.; Inghilleri, M.; Cincotti, F. From Keyboard to Brain-
Computer Interface: The Brindisys Project; GNB2012: Rome, Italy, 2012; ISBN: 978-88-555-3182-5. 

122. Schettini, F.; Riccio, A.; Simione, L.; Liberati, G.; Caruso, M.; Calabrese, B.; Ielpo, N.; Palumbo, A.; Frasca, V.; Mecella, M.; et al. 
The Brindisys Project: Brain-computer interface devices to support individual autonomy in locked-in individuals. In 3° 
Convegno Arisla: Nuove Prospettive di Ricerca per un Futuro Senza; SLA: Milano, Italia, 2012. 

123. Schettini, F. The Brindisys project: Brain Computer Interfaces as assistive technology for people with ALS. In Proceedings of 
the Fifth International Brain-Computer Interface Meeting, Pacific Grove, CA, USA, 2013. doi:10.3217/978-3-85125-260-6-186. 
 

 


