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Abstract: Medical image registration is an essential technique to achieve spatial consistency geomet-
ric positions of different medical images obtained from single- or multi-sensor, such as computed
tomography (CT), magnetic resonance (MR), and ultrasound (US) images. In this paper, an improved
unsupervised learning-based framework is proposed for multi-organ registration on 3D abdominal
CT images. First, the explored coarse-to-fine recursive cascaded network (RCN) modules are embed-
ded into a basic U-net framework to achieve more accurate multi-organ registration results from 3D
abdominal CT images. Then, a topology-preserving loss is added in the total loss function to avoid a
distortion of the predicted transformation field. Four public databases are selected to validate the
registration performances of the proposed method. The experimental results show that the proposed
method is superior to some existing traditional and deep learning-based methods and is promising to
meet the real-time and high-precision clinical registration requirements of 3D abdominal CT images.

Keywords: registration; convolutional neural network; medical image; abdominal CT

1. Introduction

Sensors and sensing systems play important roles in various medical applications,
including disease diagnosis, monitoring, preoperative planning, surgical navigation, and
so on [1–4]. Registration is one of the fundamental technologies that enable the sensing
systems to be used in the above-mentioned applications [5–8]. Abdominal images taken
from inter individuals are different in shape and texture, due to the complex intensity
distribution of multi-organ, susceptibility of respiratory movement, and so on. Most exist-
ing methods cannot simultaneously meet the clinical requirements of high-accuracy and
real-time performance for full abdominal image registration. To solve the above problems,
many researchers pay attention to the segmented-based abdominal image registration
methods. For example, Li et al. [9] proposed a liver MR image registration method based
on the respiratory sliding motion segmentation that achieves more accurate registration
results. Xie et al. [10] proposed a lung and liver 4D-CT image registration method based
on tissue features and ROI segmentation, which can be implemented on clinical data.

In clinical practice, experts usually delineate the regions of interest (ROIs) of the target
organ and organs at risk for treatment planning, and thereby the multi-organ ROIs of the
abdominal medical images can be naturally obtained. For the registration stage, the tradi-
tional registration methods usually obtain the optimized deformation field by iteratively
minimizing the custom energy function including data and regularization terms [11–14],
and the deformation field of each pair of fixed and moving images is calculated inde-
pendently by the traditional methods. The registration time of the traditional methods is
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always substantial, especially when the pair-wise images have a large anatomical difference.
For example, the registration time of the methods including Demons [15], Elastix [16], and
free-form deformation with b-splines [17] on medical images are ranged from minutes
to hours.

To address this issue, many researchers have begun to pay more attention to the
learning-based registration methods implemented by convolutional neural networks
(CNNs), which can be divided into supervised and unsupervised [18–21]. These learning-
based methods use the CNN model to obtain good initialization parameters for medical
image registration. Most supervised methods require ground truth of deformation fields
or anatomical segmentation masks, which are obtained from the traditional registration
tools or manual delineation. These approaches entail much effort on data labeling, and the
registration performance is influenced by the quality of the labels.

The unsupervised methods can directly use the unlabeled data to train CNNs model,
avoiding the expensive and time-consuming labeling work. For example, Lei et al. [22]
presented a multi-scale unsupervised registration framework for abdominal 4D-CT images.
It has three loss functions to train the global and local subnetworks, including the similarity,
adversarial, and regularization losses. Heinrich et al. [23] used a discrete displacement
layer to improve the accuracy of the unsupervised learning-based 3D abdominal CT image
registration framework. Balakrishnan et al. [24] proposed a U-net unsupervised registration
framework, namely Voxelmorph, for 3D brain MR images. The regular similarity and
regularization loss functions are used to train the framework, and then an auxiliary data
loss function is added in the testing stage. Zhao et al. [25] proposed a U-net unsupervised
registration framework for liver CT and brain MR images, namely VTN. Specifically, the
affine transformation is integrated into the framework as a subnetwork to reduce the pre-
processing time. Subsequently, the recursive cascaded networks (RCNs) by Zhao et al. [26]
can be embedded into any base network as general architecture. Both Kuang et al. [27] and
Mok et al. [28] emphasized that the distortion of the transformation field is non-negligible.
They integrated the topology-preserving loss into the total loss functions for preventing
the distortion.

Aiming at avoiding the time-consuming pre-processing and maintaining the topology-
preserving property of the transformation, we developed an unsupervised learning-based
registration framework for the segmented multi-organ from 3D abdominal CT images.
First, the recursive cascaded network (RCN) modules are embedded into a basic U-net
framework for promoting the unsupervised end-to-end learning. Secondly, the affine
transformation subnetwork is cascaded with the subsequent fine registration subnetworks
to implement the integration of the transformation field prediction from coarse to fine.
Then, a topology-preserving loss is added in the total loss function for the training the
registration framework, and then the transformation field is obtained for abdominal multi-
organ registration.

The main contributions of this paper are as follows. First, an unsupervised learning-
based registration framework is proposed, which can automatically learn from unlabeled
data avoiding the time-consuming expert labeling work. Secondly, the coarse-to-fine RCN
modules are embedded into the framework, which can efficiently deal with the large-scale
deformation and improve the accuracy of the transformation field prediction. Moreover, an
additional loss is integrated into the total loss function, which can ensure the registration
with the property of the topology preservation. Finally, the proposed method proved to be
more precise and faster than some existing registration methods on multi-organ from 3D
abdominal CT images.
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2. Methods

The essential of image registration is to find the mapping relationship between the
fixed image I f and the moving image Im, which enables the Im align to the I f with a rea-
sonable transformation T. Generally, the energy function of optimizing T is as follows [29]:

T̂ = argmin
T

LS(I f , Im ◦ T) + λLR(T) (1)

where LS denotes the similarity term, LR represents the regularization term to constraint
the LS, and λ is the empirical constant. The uniform image domain of Im, I f , and T is
Ω→ R in D-dimension, where the value of D is 3.

2.1. Optimization Problem Formulation

In this paper, the optimal parameters for transformation T are estimated by an im-
proved unsupervised learning-based model. The task of the model is to use a flow pre-
diction function F(Im, I f ) to obtain the transformation field T(Im, I f ) during a recursive
procedure. As shown in Figure 1, there are n modules cascaded in the model. Each module
contains a predicted transformation field T in a subnetwork. Therefore, the final warped
Im can be written as [25]:

Warped(n)m = Im ◦ F(Im, I f ) (2)

and the output of the model is composited by:

F(Im, I f ) = T1 ◦ · · · ◦ Tn (3)

where T1, . . . , Tn represent the transformation field of the modules from 1st to nth, re-
spectively. For instance, the kth predicted transformation field Tk can be represented as
Tk = fk(Warped(k−1)

m , I f ), where fk is the kth prediction function of F. Therefore, the
moving image is gradually warped by the modules.

Figure 1. Framework of the proposed method.

2.2. Architecture of the Unsupervised Learning-Based Networks

First, we embed the coarse-to-fine modules of RCNs into the basic U-net framework,
intending to improve its registration performance on multi-organ from 3D abdominal
CT images. The RCN modules can be used to successively predict their corresponding
flow field f , as shown in Figure 1. Then, we integrate a topology-preserving loss into
the total loss function to avoid the distortion of the predicted transformation T of the
registration framework.
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2.2.1. Coarse Registration

Affine transformation is widely applied to coarsely register the pair-wise medical im-
ages as pre-processing because it can reduce the registration errors caused by the difficulty
of predicting the large deformation between the two images. Researchers commonly use
the conventional software to perform the above process in a traditional way. However,
it is time-consuming and requires researchers’ manual operations. To solve the above
problems, the framework of the proposed method assigns the first subnetwork (namely
coarse-subnetwork), to predict the affine transformation field with a small computational
burden. The coarse-subnetwork contains a series of downsampling operations followed by
a fully connected layer. The architecture of the network is the same as that of [25]. First,
the input images are sequentially resampled to 643, 323, 163, 83, and 43 by the convolution
layers with the uniform kernel size as 33 and stride as 2. Then, the flow transformation
field is predicted according to the output parameters of the fully connected layer. The flow
transformation field is represented as [25]:

T(x) = Ax + b (4)

where x denotes the voxel in the image domain Ω, A is a transform matrix, and b is
a displacement vector. The moving image Im is first warped by the predicted affine
transformation parameters, and then becomes the initial input for the fine registration
subnetworks (namely fine-subnetworks).

2.2.2. Fine Registration

For fine registration, each subnetwork has the same encode–decoder architecture
as U-net [30]. Both of them contain five resolutions to obtain multiple receptive fields,
including 643, 323, 163, 83, and 43. The skip connection is used to concatenate the features
of the same resolution from the encoding to the decoding stages, enabling the subnetwork
to obtain more accurate predictions for the transformation field. For a pair of images,
the transformation prediction is implemented by first extracting features in the encoding
stage, and then restoring the image resolution in the decoding stage. The uniform kernel
size and stride of the subnetworks are 33 and 2, respectively. All the subnetworks are
used to progressively predict the flow transformation field for fine registration except the
coarse-subnetwork.

2.3. Loss Functions

The unsupervised learning-based networks are trained by minimizing the following
loss function:

LTotal = LCoarse + LFine (5)

LCoarse = LS + λ1LR1 + λ2LR2 (6)

LFine = LS + λ3LR3 + λ4LR4 (7)

where LTotal denotes the total loss, LCoarse and LFine represent the subtotal losses for the
coarse- and the fine-subnetworks, respectively. LS is the similarity loss of both LCoarse and
LFine. LR1 to LR4 are the regularization terms of their corresponding subtotal loss functions.
λ1 to λ4 are the empirical constants.

2.3.1. Similarity Loss

For mono-modal medical images, the correlation coefficient (CC) is suitable to be the
similarity loss LS both for LCoarse and LFine, which is defined as:

LS = 1− CC(I f , Im ◦ T) (8)

CC[I f , Im ◦ T] =
σ[I f , Im ◦ T]√

σ[I f , I f ]
√

σ[Im ◦ T, Im ◦ T]
(9)
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where σ[•] denotes the covariance. The values of CC ranges from −1 to 1, indicating that
the degree of correlation between two images changes from completely anti-correlated
to correlated.

2.3.2. Regularization Terms for the Coarse-Subnetwork

Dealing with the large-scale deformation, we first employ the coarse-subnetwork to
implement the affine transformation of the moving image Im. To avoid over non-rigid
transformation field prediction, the orthogonality loss LR1 and determinant loss LR2 are
used to regularize the similarity loss LS in the coarse-subnetwork, as shown in Equation (6).
The LR1 and LR2 are respectively defined as [25,26]:

LR1 = −6 +
3

∑
i=1

µ2
i + µ−2

i (10)

LR2 = (−1 + det(A + I))2 (11)

where µi is the singular values obtained from A + I, i = {1, 2, 3}. I is the identity matrix,
and A is the affine transform matrix.

2.3.3. Regularization Terms for the Fine-Subnetworks

Generally, researchers only use a regular regularization term to penalize the similarity
measure, such as L1 norm, L2 norm, and total variation. The smoothness property of the
transformation field can be maintained by the above-mentioned term. First, we combine
the similarity loss LS and the smooth loss LR3 as a conventional group for transformation
field prediction. However, one of the desirable properties of the transformation field is
always ignored, namely topology-preserving. The relevant regularization term imposing
on the similarity measure can prevent the distortion of the transformation field. Therefore,
we integrate the topology-preserving loss LR4 into the conventional group, aiming to obtain
a more physically possible and accurate transformation field, as shown in Equation (7).
The L2 variation loss LR3 is defined as [31]:

LR3 =
1

3N ∑
x

3

∑
i=1

(T(x + ρi)− T(x))2 (12)

where N is the total number of voxel x, ρi forms the basis of R, i = {1, 2, 3}.
Since the Jacobian determinant or its variations are commonly used to evaluate the

topology preservation of the dense vector field, they can be used as a regularization loss for
avoiding the distortion of the transformation field. Therefore, we use the negative Jacobian
determinants as the topology-preserving loss LR4 to further constrain the similarity loss of
the fine-subnetworks. The LR4 is defined as [27,28]:

LR4 =
1
N ∑

x∈Ω
σ(|JT(x)| − JT(x)) (13)

where N is the total number of voxel x, JT(x) denotes the Jacobian determinant; σ(•) is de-
fined as max(0, •) that can linearly activate the positive values and change the others from
negative to zero. Therefore, σ(•) decides whether LR4 will penalize x. If the orientation of
x is inconsistent with those of the neighbors, LR4 can be activated (and vice versa).

3. Results and Discussion
3.1. Database

We selected 30, 22, 19, and 5 abdominal CT volumes from the publicly available
training datasets from BTCV [32], LiTS [33], Sliver07 [34], and 3Dircadb [35], respectively,
to validate the proposed method. The original size of the volumes is 512× 512× depth.
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BTCV is a dataset for the performance comparisons of 3D abdominal CT image
segmentation methods. Its training dataset contains 30 objects with the liver, left kidney,
right kidney, and spleen segmentation masks. All of them were selected for this study.

LiTS is a challenging dataset for liver tumor segmentation. A total of 130 training
objects are provided with the liver and tumor segmentation masks. In this study, our
experts randomly selected 22 objects and manually supplemented the corresponding left
kidney, right kidney, and spleen masks.

Sliver07 is a challenging dataset for liver segmentation. Its training dataset includes
20 objects with liver segmentation masks. First, one of the objects was excluded considering
the unclear structure of the spleen. Then, the remaining 19 objects were selected for
this study, and our experts manually supplemented their left kidney, right kidney, and
spleen masks.

3Dircadb is a 3D abdominal CT images dataset. It contains 20 training objects with
multiple structures’ segmentation masks, including liver, left kidney, liver tumor, and so
on. In this study, six objects were selected that simultaneously include liver, left kidney,
right kidney, and spleen segmentation masks.

Therefore, 76 abdominal multi-organ CT volumes were formed by combining the
above selected original volumes with their masks. One of them was used as the atlas (i.e.,
the fixed image), which is randomly selected from LiTS. A total of 15 volumes were evenly
selected from LiTS, BTCV, and Sliver07, and paired with the atlas as the testing groups. The
remsining 60 volumes were paired with the atlas as the training groups. The training and
testing data were unified to 1283 due to the limited memory usage of the GPU (NVIDIA
RTX 2080 Ti, 11G).

3.2. Evaluation Indexes

For registration analysis, the global intensity differences between two images are
first evaluated by the root mean squared error (RMSE) and the peak signal-to-noise ratio
(PSNR) [36]:

RMSE(I f , Im ◦ T) =
√

MSE (14)

PSNR = 10× log10(
MAX2

I
MSE

) (15)

where N is the total number of voxel x. MAXI is the maximum possible voxel value of the
image, MSE = 1

N ∑
x∈Ω

(I f (x)− Im ◦ T(x))2.

Secondly, the local intensity differences between two images are evaluated by the
structural similarity index (SSIM) [36]:

SSIM(I f , Im ◦ T) =
(2µI f µIm◦T + c1)(2σI f Im◦T + c2)

(µ2
I f
+ µ2

Im◦T + c1)(σ
2
I f
+ σ2

Im◦T + c2)
(16)

where µI f and µIm◦T are the mean values, σ2
I f

and σ2
Im◦T are the variances, and σI f Im◦T is the

covariance for I f and Im ◦ T; ci = (kiL)
2 denotes the constant, which i = {1, 2}, k1 = 0.01,

k2 = 0.03, and L is the range of voxel value.
Moreover, the dice coefficient (DICE), Haustorff distance (HD), contour mean dis-

tance (CMD), intersection over union (IOU), sensitivity (SS), and specificity (SC) are also
included [37]:

DICE =
X ∩Y
|X|+ |Y| (17)

HD = max{h(X, Y), h(Y, X)} (18)

CMD = max{h(Xb, Yb), h(Yb, Xb)} (19)

IOU =
TP

TP + FN + FP
(20)
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SS =
TP

TP + FN
(21)

SC =
TP

TN + FP
(22)

where X and Y are the multi-organ segmentation masks of the fixed and warped im-
ages, respectively; Xb and Yb are the boundaries for X and Y, respectively TP, TN,
FN, and FP is the true positive, true negative, false negative, and false positive vox-
els in the multi-organ segmentation masks of the fixed and warped images, respectively.
h(X, Y) = max

x∈X
min
y∈Y
‖x− y‖ is the distance from X to Y, and h(Xb, Yb) = max

x∈Xb
min
y∈Yb
‖x− y‖

the distance from Xb to Yb.

3.3. Experimental Analysis
3.3.1. Internal Comparisons

We use the basic U-net (namely Base-Net) integrated with our total loss function to
explore the optimal number of the RCN modules. First, the coarse-subnetwork-related
module is integrated into the Base-Net without counting. Then, the Base-Net is cascaded
with 1, 2, 3, 5, and 7 RCN modules, namely Base-Net-1, Base-Net-3, Base-Net-5, and
Base-Net-7, respectively, for experimental analysis. The maximum number of the RCN
modules is determined by the memory usage of the GPU. Subsequently, we chose the best
performing model as the proposed method for external comparisons, i.e., Base-Net-7. The
values of λ1 and λ2 are the same as those in [25], and the value of λ4 is the same as that
in [27], i.e., λ1 = 10−1, λ2 = 10−1, and λ4 = 10−5. The optimal value of λ3 is selected
according to the experimental results. The uniform batch size, epoch, and learning rate of
these comparison models are set as 2, 5, and 10−4, respectively.

Figure 2 shows the total loss trends of different models on the training dataset. The
curves of the Baseline and Baseline-RCNs-Topology are obtained from the Base-Net and the
Base-Net-7, respectively. The curve of the Baseline-RCNs is acquired from the same model
as the Base-Net-7 without the topology-preserving loss. Compared with the Baseline, the
Baseline-RCNs has lower total loss values, indicating that the RCN modules are effective
in decreasing the registration errors; meanwhile, the Baseline-RCNs-Topology proves
that the topology-preserving loss function modules can further improve the multi-organ
registration performance on 3D abdominal CT images. Furthermore, Figure 3 displays
the total loss trends of the Base-Net-7 with different values of λ3. It can be seen that the
Base-Net-7 with λ3 = 10−5 achieves the optimal performance on the training dataset.
Therefore, the value of λ3 is set as 10−5 in the proposed method.

Figure 2. Total loss curves of different models.
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Figure 3. Total loss curves of the Base-Net-7 with different values of λ3.

Table 1 presents the internal comparisons of embedding different number of the RCNs
modules into our Base-Net. As observed, the average values of the RMSE, HD, and CMD
obtained by the Base-Net-1, 3, and 7 are smaller than those of the Base-Net. Meanwhile,
the values of the PSNR, SSIM, DICE, IOU, SS, and SC obtained by the Base-Net-1, 3, 5,
and 7 are higher than those of the Base-Net. It may be because the architecture of the
Base-Net is changed to a recursive one by embedding the RCN modules, and the improved
Base-Net can progressively predict a more accurate transformation field. Besides, the
RMSE, HD, and CMD from Base-Net-7 are 54.01%, 31.45%, and 82.01% lower than those
of the Base-net, respectively. The PSNR, SSIM, DICE, IOU, SS, and SC from Base-Net-7
are 38.16%, 7.92%, 33.81%, 65.66%, 17.52%, and 48.29% higher than those of the Base-Net,
respectively. Moreover, the Base-Net-7 outperforms all of the other models on the multi-
organ registration from 3D abdominal CT images. It can be therefore concluded that the
optimal number is seven for embedding the RCNs modules into the Base-Net.

Table 1. The average metrics of abdominal multi-organ registration results with the different number
of RCN modules.

Metric Base-Net Base-Net-1 Base-Net-3 Base-Net-5 Base-Net-7

RMSE 0.0898 0.0516 0.0430 0.0419 0.0413
PSNR 21.3938 26.8639 28.9574 29.3259 29.5584
SSIM 0.9018 0.9572 0.9701 0.9720 0.9732
DICE 0.7305 0.9155 0.9621 0.9724 0.9775
IOU 0.5772 0.8451 0.9272 0.9445 0.9562
SS 0.8494 0.9757 0.9944 0.9974 0.9982
SC 0.6459 0.8631 0.9320 0.9468 0.9578

HD (mm) 17.8924 15.0090 13.1231 12.6245 12.2646
CMD (mm) 21.8383 7.0733 4.7972 4.3341 3.9296

Figure 4 displays the registration progress of the proposed method on the 41st, 57th,
65th, 73rd, and 81st slices of the randomly selected testing group, where T1 is the affine
transformation field, and T2 to T8 are the transformation field obtained by 1st to 7th RCN
modules, respectively. It can be observed that there exist big intensity differences between
the fixed image I f and the moving image Im. However, the RCN modules can help the
model progressively obtain the final warped images, which are exactly similar to the
fixed images. Therefore, the proposed method has good performance on multi-organ
registrations from 3D abdominal CT images.
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Figure 4. Visualization of a randomly selected testing group on the proposed method.

3.3.2. External Comparisons

We compared our method against three traditional methods, Demons [38], Hybrid [39],
MSI [40], and two state-of-art unsupervised learning-based methods, VTN [25] and Voxel-
morph [24]. We ran the experimental methods on an Intel i5-GTX1060 CPU and an NVIDIA
RTX 2080 Ti GPU, respectively.

Table 2 shows the external comparisons of the abdominal multi-organ registration
results on different methods. As observed, the proposed method performs comparably
to MSI in terms of RMSE, and is superior to Demons, Hybrid, VTN, and Voxelmorph.
Moreover, the average values of PSNR, SSIM, DICE, IOU, SS, SC, HD, and CMD from the
proposed method are 29.5584, 0.9732, 0.9775, 0.9562, 0.9982, 0.9578, 12.2646, and 3.9296,
respectively, which are better than those of the traditional and unsupervised learning-based
methods. The registration time in Table 2 illustrates that the unsupervised learning-based
methods are obviously faster than the traditional ones. Although VTN achieves the shortest
registration time, its performances on the other evaluation indicators are barely satisfactory.
Generally, the proposed method gives a good compromise to meet the real-time and
high-accuracy clinical requirements.

Figures 5 and 6 directly display the histograms and boxplots of the evaluation metrics
of 15 pair-wise testing groups’ registration results with different methods, respectively. It
can be found that the distributions of the RMSE, PSNR, DICE, CMD, and IOU values in
Figures 5 and 6 are consistent with those in Table 2. Hence, the proposed method has stable
registration performance, and is superior to the other competing methods in the above
evaluation indicators.
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Table 2. The average metrics of abdominal multi-organ registration results with different methods.

Metrics Demons Hybrid MSI VTN Voxelmorph Proposed

RMSE 0.0987 0.0474 0.0355 0.0928 0.0906 0.0413
PSNR 20.6969 26.9121 29.3418 20.7456 21.3212 29.5584
SSIM 0.8925 0.9412 0.9592 0.8769 0.9009 0.9732
DICE 0.6678 0.5891 0.8715 0.7078 0.7253 0.9775
IOU 0.5113 0.5833 0.8386 0.5569 0.5709 0.9562
SS 0.8077 0.9189 0.9268 0.8256 0.8450 0.9982
SC 0.5836 0.6137 0.8997 0.6268 0.6407 0.9578

HD (mm) 27.7843 30.7378 25.7123 18.1536 17.7319 12.2646
CMD
(mm) 55.6456 80.7641 10.7022 20.8790 21.8432 3.9296

CPU (s) 381.0294 510.1189 - 7.5612 8.6247 9.8922
GPU (s) - - 536.4378 1.3998 1.5212 1.6371

Figure 5. Evaluation metrics of 15 pair-wise testing groups’ registration results with different
methods. (a) RMSE; (b) PSNR; (c) DICE; (d) CMD; (e) IOU.
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Figure 6. Boxplots for evaluation metrics of 15 pair-wise testing groups’ registration results with
different methods. (a) RMSE; (b) PSNR; (c) DICE; (d) CMD; (e) IOU.

Figure 7 presents the intensity differences between the fixed and moving images
from four randomly selected testing groups. The intensity values of the image range
from 0 to 255 and its corresponding color varies from blue to red. As shown in Figure 7,
all pair-wise groups have significant differences before registration. Then, the Demons,
VTN, and Voxelmorph methods produce considerable differences, indicating that their
performances may be influenced by the noise and artifacts in the abdominal CT images.
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Moreover, the proposed method produces the smallest differences and outperforms the
other competing methods. It can be concluded that our method can avoid the impact of the
noise and artifacts and perform more accurately and robustly on multi-organ registration
for 3D abdominal CT images.

Figure 7. The intensity differences between the fixed and moving images from the paired testing
groups with different methods.
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4. Conclusions

In this paper, we present an improved unsupervised learning-based framework for
multi-organ registration from 3D abdominal CT images. The coarse-to-fine RCNs modules
are embedded into a basic U-net model, which can hence inherit the advantages of the
recursive model and achieve better performance on multi-organ registration from 3D
abdominal CT images. In addition, a topology-preserving loss is added in the total loss
function, which can penalize the similarity loss to avoid the distortion of the predicted
transformation field. The experimental results show that the proposed method has the
optimal PSNR, SSIM, DICE, IOU, SS, SC, HD, and CMD average values and is competitive
with the traditional and unsupervised learning-based methods, and therefore has the
potential to be used in clinical practice.
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