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Abstract: As the intensity of work increases, many of us sit for long hours while working in the
office. It is not easy to sit properly at work all the time and sitting for a long time with wrong
postures may cause a series of health problems as time goes by. In addition, monitoring the sitting
posture of patients with spinal disease would be beneficial for their recovery. Accordingly, this paper
designs and implements a sitting posture recognition system from a flexible array pressure sensor,
which is used to acquire pressure distribution map of sitting hips in a real-time manner. Moreover,
an improved self-organizing map-based classification algorithm for six kinds of sitting posture
recognition is proposed to identify whether the current sitting posture is appropriate. The extensive
experimental results verify that the performance of ISOM-based sitting posture recognition algorithm
(ISOM-SPR) in short outperforms that of four kinds of traditional algorithms including decision
tree-based (DT), K-means-based (KM), back propagation neural network-based (BP), self-organizing
map-based (SOM) sitting posture recognition algorithms. Finally, it is proven that the proposed
system based on ISOM-SPR algorithm has good robustness and high accuracy.

Keywords: sitting posture recognition; flexible pressure array; self-organizing map; unsupervised
self-learning algorithm

1. Introduction

As everyone knows, sedentary behavior is becoming more common, while most
white-collar workers spend a lot of time sitting down in front of computer and not moving.
The ensuing problems are inevitable with the widespread existence of sedentary lifestyles,
and the harm to human health is gradually increasing [1]. Modern medical studies have
shown that long-term slouching has a direct influence on the cervical spine unevenness,
oppressing the stretching of the neck muscle, etc. [2]. The link between a poor sitting
posture and bad health consequences is growing with clear evidence, including obesity,
cardiovascular and metabolic diseases, and even cancer. In addition, sedentary behavior
with abnormal posture has an impact not only on physical health but also on psychosocial
health. Sanchez-Villegas et al. [3] provide a positive correlation between sedentary behavior
and the risk of developing a mental disorder, with those at the highest level of the sedentary
index having a 31% higher risk of mental disorder when compared with less sedentary
individuals. Among them, inappropriate sitting postures are the main causes for the above
health problems [4,5]. As a result, the innovative research on sitting posture recognition
system is of great significance to the sedentary crowd’s health.

According to the existing literature, two types of methods are often used to distinguish
sitting posture: wearable [6–10] and non-wearable [11–14]. The detection sensors of the
former are mainly relying on an accelerometer, inertial sensor, and gyroscope [6]. In this
approach, wearable sensors are attached either to the user’s back [7], shoulders [8], or
legs [9] to collect human motion state. Hence it may be inconvenient and uncomfortable to
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wear such electronic devices for a normal person [10], leading to narrow applicability and
less maneuverability. The latter can be further divided into two categories, the first method
is based on machine vision, and the other is based on simple pressure distribution [11].
The machine vision-based posture recognition approach gets information from cameras
covering sitting people, and then identifies the sitting posture by image processing [12]
or machine learning [13]. However, it is difficult to ensure robustness depending on the
light conditions and shooting angles [14], and it also involves some privacy issues. The
simple pressure distribution-based approach is to place sensors at some specific locations
of a chair or backrest and use feature information collected by these sensors to recognize
sitting postures [15]. This method may be uncomfortable and low accurate. Experimental
results of [16] shows that the overall accuracy of this method is 85.9%, and the accuracy
rate reaches 83.33% in [17]. As an exploration and improvement, we study the method of
sitting posture recognition based on the flexible array pressure sensor for real-time and
accurate sitting posture recognition. Many algorithms have been applied to sitting posture
recognition in existing papers, Benocci et al. [18] use the k-nearest neighbor (kNN) for
sitting postures recognition, the derived accuracy degree is 92.7%. Liu et al. [19] apply the
convolutional neural network (CNN) to the sitting posture recognition and can achieve
95.5% accuracy. Kim et al. [15] also apply CNN to the sitting posture recognition and
compare it with decision tree (DT), multinomial logistic regression (MLR), etc. The average
accuracy is 95.3%. Unfortunately, the complexity of the CNN algorithm is relatively high,
so it is difficult to apply it in real-time recognition. We use SOM algorithm as the basic
algorithm for the recognition of sitting postures. The simple network structure of SOM
ensures the real-time recognition of the system for sitting postures. The data collected by
our self-made data acquisition system is similar for the same sitting posture. Considering
the characteristics of sitting posture data, the output speed of the proposed system using
SOM algorithm will be fast and accurate.

The main contributions of this paper are:

1. This paper proposes one novel sitting posture recognition system based on a flexible
array pressure sensor and overcomes the dependence on the environment of the
sitting posture recognition method based on machine vision.

2. This paper introduces the SOM algorithm for sitting posture recognition for the first
time, and an improvement of SOM issued to optimize connected weights, therefore,
it solves the problem of the low recognition rate of the traditional method based on
simple pressure distribution.

The rest of this document is organized as follows. Section 2 proposes detailed system
framework of sitting posture recognition. In Section 3, SOM based sitting posture pressure
recognition algorithm is described in detail. Moreover, an improved SOM considering
the optimization of weights is proposed to overcome the limitations of SOM network
structure and to achieve better results. Experimental results are presented in Section 4, and
a summary of the whole paper is made in Section 5.

2. System Model

One novel sitting posture recognition system composed of flexible array pressure
sensor and cloud platform is designed in this paper. The whole system consists of three
main components: pressure acquisition circuit, cloud platform service and analysis and
monitoring software. The pressure acquisition circuit is responsible for pressure data
collection, and then transmits the pressure data to the cloud platform according to the
user’s wishes, while the cloud platform saves the data and transfers real-time data to
the analysis and monitoring software, and finally receives the recognition results. The
analysis and monitoring software is responsible for the visualization of pressure distri-
bution of sitting postures, and the implementation of some sitting postures recognition
algorithms. During the process of data analysis, we constructed a variety of sitting posture
recognition algorithms, and an improved SOM algorithm for postures classification is
discussed. After testing and analyzing, the sitting posture recognition algorithm based on
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improved SOM (ISOM-SPR) has strong robustness and high accuracy compared with other
existing algorithms.

The framework of the proposed sitting posture recognition system is shown in Figure 1.
Each user is sitting on a special chair equipped with a flexible array pressure sensor, and
we self-made data acquisition system to collect real-time pressure values and users have
the power to choose whether to transmit it to the Internet. If certain user agrees, his sitting
posture information would be uploaded to the cloud platform for better management.
Users can check information about their sitting postures via their cell phones or computers,
the recognition and monitoring software provides a visual display of real-time data.

Figure 1. System framework.

The block diagram of the sitting posture recognition system is described in Figure 2,
which is composed of three main parts: pressure acquisition circuit, cloud platform and
analysis and monitoring software.

Figure 2. The block diagram of the sitting posture recognition system.
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The pressure acquisition circuit mainly includes a STM32 MCU based data acquisition
board and a flexible array pressure sensor in Figure 3. The array pressure sensor is a
large-area flexible pressure sensor. The sensor has a total of four sets of interfaces, each
interface has 16 pins, so there are a total of 32 row pins and 32 column pins. The pins are
designed to achieve efficient data acquisition with the minimum number of pins. There
are 1024 independent induction units distributed within a 400 mm × 400 mm square, and
each induction point is 8.5 mm × 8.5 mm in size. The size of sensor array is designed by
combining the size of actual seat and area of contact between buttocks and seat when users
sit down. One point’s resistance of this strain gauge-designed sensor will change when the
pressure it receives changes.

Figure 3. Flexible array pressure sensor.

Since the applied flexible array pressure sensor has 1024 independent sensing point,
we could not have access to all the points at one time. We acquire the data of one sensing
point with multi-channel switch CD74HC4076. We provide a strobe signal for multi-
channel, only one row pin and one column pin are strobed at the same time as shown in
Figure 4. The output signal at this moment is the pressure information of the sensor node
corresponding to the row and column.

Figure 4. Schematic diagram of analog switch connection.
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The pressure is then obtained by high-precision A/D convertor [20]. The resistance
of each point is Rij. Considering the different softness of different seats, we first filtered
the collected data in the process of data collection. Hence, the resistance change caused by
the sensor deformation is much less than that caused by human body pressure. We set a
threshold, and only data above that threshold will be collected. The relational expression
between output voltage uo and resistance Rij of each induction point is illustrated in
Equation (1).

uo = Vref ×
Rij

Rij + RIM
, (i, j = 1, 2, . . . , 32), (1)

where Vref is 5 V, the impedance matching resistance RIM is 200 kΩ, so it has both good
linearity and the relatively wide voltage range. The change of resistance Rij is determined
by the pressure at the corresponding induction point, the relationship between pressure pij
and resistance Rij is shown in Figure 5, which could be expressed as pij = 1690/Rij − 3.379
with actual measurement.

Figure 5. The characteristic curve of array pressure sensor. The left shows the pressure is directly
proportional to the resistance 1/R; The right shows the pressure is inversely proportional to R.

The analysis and monitoring software is mainly responsible for the implementation of
some sitting postures recognition algorithms, real-time display of pressure distribution.
Users will be alerted if they are sitting with inappropriate postures, it also alerts users
if they are sitting with some posture for too long time. The pressure detection system
interface is shown in Figure 6. Users can also save the current sitting posture pressure map.
The entire system will still work without an Internet connection and the data will only be
stored on the user’s PC, not available from the phone. Each pressure acquisition circuit has
the ability of transmitting sensory data to the cloud platform service with Wi-Fi. The cloud
platform service will receive and save these sensory data for each user in a confidential
manner. Users can also check the information through their cell phones if the users agree to
upload the data to the cloud platform. It is convenience for users to view records anytime
and anywhere. In this case, users such as the elderly or patients with cervical Spondylosis
can get better help and comprehensive supervision. The interface on the phone is shown in
Figure 7. We divided the whole sensor array into four regions, namely, upper right, upper
left, lower right and lower left, corresponding to pressure zone 1–4, respectively. It also
helps the user numerically check how he or she is sitting.
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Figure 6. The software interface of analysis and monitoring application.

Figure 7. The interface on the phone.

To improve classification accuracy, the self-organizing map algorithm [21], one un-
supervised artificial neural network method, is introduced into the designed recognition
algorithm of sitting postures. The self-organizing map (SOM) network structure has two
layers: the input layer and the output layer. The SOM generates a low-dimensional, dis-
crete map by learning data in the input space. The number of neurons in the input layer
is determined by the dimension of the input vector

⇀
x = (x1, x2, . . . , xi). The structure

diagram of SOM and classification results are described in Figure 8. With self-learning by
SOM, the more similar the data, the more likely it is fall into the same category.
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Figure 8. The SOM network structure diagram.

3. SOM Based Sitting Posture Recognition Algorithm

The principle of the sitting posture recognition process is demonstrated in Figure 9.
The original data collected by the pressure acquisition circuit are taken as the original
dataset. Each set of data is a matrix with rows and columns of 32. Due to a large amount of
data, the sensible first step is to reduce the dimension of data. However, the characteristics
of the data should be preserved as much as possible while the data volume is reduced.
After the data are reduced in dimensionality, it is classified using the SOM algorithm. SOM
algorithm, on the one hand, can put similar data in the same category, on the other hand,
maps the input data into two-dimensional discrete graphics in the output layer. These
characteristics apply well to the data processing of sitting posture. The collected data
are divided into training part and testing part. The actual sitting posture of the human
body corresponding to the pressure distribution received by the pressure sensor array
is described in Figure 10. Six sitting postures, namely standard sitting, lean left, lean
right, waist bow, right cross-legs, and left cross-legs [22] are common sitting postures, so
classification and detailed data analysis are carried out for these six sitting postures.

Figure 9. The principle of proposed algorithm.
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Figure 10. Sitting posture and pressure distribution.

3.1. Dimensionality Reduction for Original Data

The number of neurons in the output layer is positively correlated with the number of
categories of training samples. If the number of neurons is less than that of categories, it
is not enough to distinguish all the categories, hence the results of training are bounded
to combine the similar classes into one. On the contrary, if there are more neurons than
categories, it is possible to divide them excessive or to have “dead nodes”, i.e., one node
never wins and is far away from other winning nodes during the training process, so their
weights will never update.

The original pressure distribution data area matrix with 32 rows and 32 columns
as following, so the number of input nodes in this network is 1024 theoretically. As a
time-varying matrix, P is changing over time. The following descriptions are all in the state
of time t. For the sake of clarity, the variable t is omitted.

P =




p1,1 p1,2 . . . p1,32
p2,1 p2,2 . . . p2,32

. . . .

. . . .

. . . .
p32,1 p32,2 . . . p32,32




. (2)

Excessive data input may introduce unnecessary noises, increase computation com-
plexity, thus slow down the speed of data processing. Therefore, we pre-process the input
data and compress the data by principal component analysis (PCA) [23].
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P = (P1, P2, . . . , P32) can also be thought of as 32-dimensional vectors, each of which
has 32 elements, Pk = (p1,k, p2,k, . . . , p32,k)

T . The covariance matrix is defined as follows:

R =




r1,1 r1,2 . . . r1,32
r2,1 r2,2 . . . r2,32

. . . .

. . . .

. . . .
r32,1 r32,2 . . . r32,32




. (3)

Every member rmn in the covariance matrix is a covariance between pm and pn, the
calculation method [24,25] is as follows:

rmn = cov(pm, pn) =
∑m

k=1 (pk − pm)(pk − pn)

m− 1
, (m, n = 1, 2, . . . , 32). (4)

The eigenvectors ϕ1, ϕ2, ϕ3, . . . , ϕ32 and their corresponding eigenvalues of the matrix
R are calculated. If the eigenvectors are over-reserved, the noise will also be retained, and
the amount of data will not be reduced significantly, thus the calculation speed will be
negatively affected. However, the difference between the samples will not be observed if
too few eigenvectors are selected. After calculation and analysis, the top 8 eigenvectors
were selected without affecting the characteristics of the data, and the calculation speed
of classification is improved at the same time. The 8 eigenvectors corresponding to the
8 largest eigenvalues are constructed into a matrix A = (ϕk|ϕk ∈ Top8(ϕi), i = 1, 2, . . . , 32).
Finally, the data matrix Pr after dimensionality reduction is calculated as follows:

Pr = PA. (5)

Pr is a 32 by 8 matrix, the amount of data has been reduced from 1024 to 256.

Pr =




pr1,1 pr1,2 . . . pr1,8
pr2,1 pr2,2 . . . pr2,8

. . . .

. . . .

. . . .
pr32,1 pr32,2 . . . pr32,8




. (6)

3.2. Data Classification

PCA is a traditional data compression method under the condition of retaining data
characteristics to the maximum extent. After the data arecompressed, the noise will be
reduced, and the calculation speed of the SOM network will be improved.

The elements of the matrix Pr are connected from head to tail to construct the input vec-
tor of the SOM network. Each vector in the input layer has 256 elements. The input vector

can be written as
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3.2. Data Classification

PCA is a traditional data compression method under the condition of retaining data
characteristics to the maximum extent. After the data arecompressed, the noise will be
reduced, and the calculation speed of the SOM network will be improved.

The elements of the matrix Pr are connected from head to tail to construct the input vec-
tor of the SOM network. Each vector in the input layer has 256 elements. The input vector
can be written as

⇀
p ri =

{
⇀
p ri :

⇀
p ri = (pri 1,1, pri 1,2, . . . , pri 1,8, pri 2,1, pri 2,2, . . . , pri 2,8, . . . , pri 32,1, pri 32,2, . . . , pri 32,8), m = 1, 2, . . . , 32, n = 1, 2, . . . , 8, i = 1, 2, . . . , M

}
,

Mdenotes the number of input neurons, which is the number of training samples, the con-
nected weights between input neuron i and j in the competitive layer can be written
as

⇀
w j =

{
⇀
w j :

⇀
w j =

(
wj1, wj2, . . . , wj256

)
, j = 1, . . . , N

}
, where N is the number of output

neurons, since the output layer is designed to have 6 nodes, so N is set to 6.
The first step is to normalize the selected samples and weights as Equation (7) and

Equation (8) [26]. Normalization eliminates the adverse effects caused by singular samples
and different data sizes, helps to improve the solution convergence speed, and improves
the efficiency of model training.

⇀
−
p ri =

⇀
p ri

‖⇀p ri‖
, (i = 1, 2, . . . , M). (7)
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Equation (8) [26]. Normalization eliminates the adverse effects caused by singular samples
and different data sizes, helps to improve the solution convergence speed, and improves
the efficiency of model training.

⇀
−
p ri =

⇀
p ri

‖⇀p ri‖
, (i = 1, 2, . . . , M). (7)

, Mdenotes the number of input
neurons, which is the number of training samples, the connected weights between input
neuron i and j in the competitive layer can be written as
⇀
w j =

{
⇀
w j :

⇀
w j =

(
wj1, wj2, . . . , wj256

)
, j = 1, . . . , N

}
, where N is the number of output

neurons, since the output layer is designed to have 6 nodes, so N is set to 6.
The first step is to normalize the selected samples and weights as Equation (7) and

Equation (8) [26]. Normalization eliminates the adverse effects caused by singular samples
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and different data sizes, helps to improve the solution convergence speed, and improves
the efficiency of model training.

⇀
p ri =

⇀
p ri

‖⇀p ri‖
, (i = 1, 2, . . . , M). (7)

⇀
w j =

⇀
w j

‖⇀w j‖
, (j = 1, 2, . . . , N). (8)

The Euclidean distance dij between the input
⇀
p ri and the weight

⇀
w j [26] is calculated

as following:

dij =

∥∥∥∥
⇀
p ri −

⇀
w j

∥∥∥∥, (i = 1, 2, . . . , M, j = 1, 2, . . . , N), (9)

dc = min
(
dij
)
, (i = 1, 2, . . . , M, j = 1, 2, . . . , N), (10)

where dc is the smallest distance among dij, and the neuron with the minimal distance will
be the winner c.

The neighborhood function is used to determine the influence of the winning node on
its near neighbor node, hence update range of each node in the winning neighborhood.
The most common choice is the Gaussian function [26].

hij = exp
(
−D2

ij − 2s2
)

. (11)

Dcj =
∥∥rc − rj

∥∥. (12)

The Gaussian based winning neighborhood function is shown in Equation (11), where
Dcj is the distance between neuron c and neuron j, rc denotes the location of winning neu-
ron c, and rj denotes the location of the near neighbor neuron j. Nc(t) refers to the number
of neurons centered on the winning neuron, which is determined by the neighborhood
function. Nc(0) is the initial neighborhood value.

We use the exponential function to define the wining neighborhood function’s
decay rate,

σ(t) = σ0exp(−t/ts). (13)

The learning rate is η(t) ∈ (0, 1), the initial value is η0. The updates are applied for all
the training process. Finally, we will iterate the process until the learning rate converges
to 0.

η
(
t) =η0exp

(
−t/τη

)
. (14)

The weight is adjusted to all neurons in the winning neighborhood. If one neuron is
in the winner’s neighborhood, the weight will change as the first equation of Equation (15);
otherwise, the weight will change as the second equation of Equation (15).





⇀
wij(t+1) =

⇀
wij(t) + η(t)hij(t)

(
⇀
p ri −

⇀
w j

)
, j ∈ Nc(t)

⇀
wij(t+1) =

⇀
wij(t), j /∈ Nc(t)

. (15)

3.3. SOM Based Sitting Posture Recognition Algorithm (SOM-SPR)

The arrangement form of neuron nodes in the output layer depends on the needs of
practical applications, and the arrangement form should reflect the physical meaning of
practical problems as intuitively as possible.

Six sitting postures, including left cross legs, right cross legs, lean left, lean right, waist
bow, and standard sitting, are arranged to identify, so the number of output nodes is 6.
Moreover, the neurons are connected via hexagonal topology [27], as Figure 11. All the data
are distributed on a two-dimensional plane. If the posture is similar, the distance will be
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closer in topology. For instance, the center is “standard sitting”, “left cross legs” and “lean
left” are above “standard sitting”. This structure is also in line with human experience
and cognition.

Figure 11. The SOM-SPR topology of the output layer.

The results of Figure 12 show that the sitting posture clustering results make two
classes with high similarity closer to each other, the more similar the two categories are,
the closer the distance is. As shown in Figure 12, the color ranges from red to orange and
then to yellow. The lighter the color, the higher the similarity of their features. As a result,
the distance between “standard sitting” and “waist bow” is very small, while the distance
between “standard sitting” and “waist bow” is very big. In terms of results, the accuracy
of SOM-SPR is excellent, however, we have made improvements to the SOM network in
pursuit of better results, details in Section 3.4.

Figure 12. The SOM-SPR neighbor nodes distance.
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3.4. Improved SOM Based Sitting Posture Recognition Algorithm (ISOM-SPR)

As we know, SOM algorithm is an unsupervised learning method, which has good
characteristics of self-organizing and visualization. However, there are still some appar-
ent limitations, such as the network structure is fixed and cannot change dynamically.
Therefore, an improved SOM approach to solve this problem is studied to achieve better
recognition results of sitting posture.

Once the SOM-SPR algorithm finished once clustering, the weights will not change.

Therefore, we recalculate the Euclidean distances between the input
⇀
p ri and the fixed

weight
⇀
w j.

dnewij =

∥∥∥∥
→
p ri −

→
w j

∥∥∥∥. (16)

Hence, the difference ejk between adjacent nodes of the same data is calculated. j and
k are the labels of two adjacent nodes, respectively.

ejk =
∣∣dnewij − dnewik

∣∣, (i = 1, 2, . . . , M, j, k =1, 2, . . . , N, k 6= j). (17)

rjk =
ejk

dnewij + dnewik
. (18)

The degree of differentiation of the same data relative to two nodes is defined as rjk.
As the number rjk gets bigger, the difference gets bigger and bigger. Onthecontrary, the
smaller the rjk, the less significant the difference. The corresponding set of data will be
removedwhen rjk is less than certain threshold value rmin. The flow charts of SOM-SPR
algorithm and ISOM-SPR algorithm are shown in Figure 13.

Figure 13. Flow charts of two algorithms. (a) Flow chart of SOM-SPR. (b) Flow chart of ISOM-SPR.
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After that, we use the retained data to complete the learning process again. In this
way, the result characteristics of final clustering will be more obvious. In other words, the
distance between nodes in the output layer will be larger, as Figure 14.

Figure 14. The ISOM-SPR neighbor nodes distance.

The parameters in the training process for SOM-SPR and ISOM-SPR algorithms are
listed in Table 1.

Table 1. SOM-SPR and ISOM-SPR parameters.

Parameter Symbol Optimal Value

Number of the output neurons N 6 (2 × 3)
Initial learning rate η0 0.6

The time constant of the learning rate τη 1000
Learning gain σ0 10

The time constant of the exponential function τσ 2
Initial neighborhood size Nc(0) 3

Total sample number M 3600
The degree of differentiation rmin 0.15

4. Experiment Results
4.1. Data Sets

In our experiments, 40 volunteers participated, including 10 females and 30 males.
The heights of the volunteers ranged from 1.58 m to 1.81 m, and the weights ranged from
45 kg to 80 kg. Participants were asked to sit with six different positions, and we recorded
data on each participant’s six sitting postures. During the test, the volunteers sat on the
sensor as shown in Figure 15. The whole system is shown in Figure 16a, and the self-made
data acquisition circuit is exhibited in Figure 16b.

For the sake of clarity, different sitting postures are labeled respectively, left cross-legs
as LC, right cross-legs as RC, lean left as LL, lean right as LR, waist bow as WB, and
standard sitting as SS. We saved around 30 frames for each pose and had a total of 8000 sets
of data to form Dataset 1.

The general idea of training is as follows: firstly, all data samples are divided into
55% as training samples and 45% as test samples. In each sample, the data from the used
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flexible pressure array sensor are taken as input vectors, and the corresponding sitting
posture is taken as the output.

Figure 15. Experimental scene.

Figure 16. The data acquisition system and circuit. (a) The data acquisition system. (b) Pressure
acquisition circuit.
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4.2. Confusion Metrics

The confusion matrix is a measure used while solving classification problems [28]. It
can be applied to binary classification as well as for multi-class problems. A multi-class
confusion matrix for “left cross-legs” is shown in Table 2.

Accuracy =
TP + TN

TP + TN + FP + FN
. (19)

Recall =
TP

TP + FN
. (20)

Precision =
TP

TP + FP
. (21)

Table 2. Multi-class confusion matrix for “left cross-legs”.

Actual
Predicted

LC RC LL LR WB SS

LC TP FN FN FN FN FN
RC FP TN TN TN TN TN
LL FP TN TN TN TN TN
LR FP TN TN TN TN TN
WB FP TN TN TN TN TN
SS FP TN TN TN TN TN

4.3. Experimental Result

In the test phase, we compare five traditional methods for sitting posture recognition,
namely Decision tree-based SPR(DT-SPR) [15], K-means based SPR (KM-SPR) [29], BP
neural network based SPR(BPNN-SPR) [30], SOM network based SPR(SOM-SPR), and the
improved SOM network based SPR(ISOM-SPR). Table 3 shows the precision comparable
results of different SPR algorithms. It is obvious that the performance of DT-SPR is the
worst, ISOM-SPR has the highest average precision.

Table 3. The precision of five SPR algorithms for Dataset 1.

Sitting Posture DT-SPR KM-SPR BP-SPR SOM-SPR ISOM-SPR

LC 92.47% 96.77% 96.26% 94.94% 97.40%
RC 91.69% 96.62% 95.59% 93.17% 97.88%
LL 83.47% 93.15% 90.59% 93.50% 96.47%
LR 89.55% 93.27% 90.51% 92.65% 95.89%
WB 72.99% 87.89% 87.72% 89.66% 91.60%
SS 77.40% 91.41% 88.76% 90.60% 94.58%

Ave. 84.60% 93.19% 91.57% 92.42% 95.64%
Std. 0.0325 0.0056 0.0063 0.0019 0.0026

Table 4 compares the recall rate of different SPR algorithms. For postures LC and RC,
three algorithms have a 100% recall rate. The performance of ISOM-SPR is better than all
the other algorithms in terms of average recall rate.

Since training data and test data come from the same group of volunteers, there is a
certain degree of similarity in the dataset, which may lead to the overfitting phenomenon.
Therefore, we collected 3000 sets of data from 15 people who had never participated in the
experiments and named this dataset Dataset 2. The new dataset is used to test the trained
model. Table 5 shows the precision of the five SPR algorithms with new dataset. Table 6
shows the recall rate of the ISOM-SPR in comparison with the rest algorithms. Consistent
with expected results, the precision and recall rate of all SPR algorithms have decreased.
However, the results of ISOM-SPR are still the best of five SPR algorithms.
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Table 4. The recall rate of five SPR algorithms for Dataset 1.

Sitting Posture DT-SPR KM-SPR BP-SPR SOM-SPR ISOM-SPR

LC 94.17% 100.00% 94.33% 100.00% 100.00%
RC 95.67% 100.00% 93.83% 100.00% 100.00%
LL 84.17% 95.17% 94.67% 93.50% 95.67%
LR 85.67% 94.67% 93.83% 92.50% 97.33%
WB 75.67% 84.67% 84.50% 83.83% 90.83%
SS 72.50% 85.17% 88.17% 85.17% 90.17%

Ave. 84.64% 93.28% 91.56% 92.50% 95.67%
Std. 0.0442 0.0236 0.0089 0.0242 0.0094

Table 5. The precision of the five SPR algorithms for Dataset 2.

Sitting Posture DT-SPR KM-SPR BP-SPR SOM-SPR ISOM-SPR

LC 90.31% 95.84% 91.50% 94.94% 95.87%
RC 89.31% 94.87% 91.53% 93.17% 96.01%
LL 82.39% 89.78% 87.74% 93.50% 93.00%
LR 85.67% 90.11% 87.98% 92.65% 93.82%
WB 72.03% 86.87% 88.81% 89.66% 90.34%
SS 79.15% 89.88% 88.38% 90.60% 93.37%

Ave. 83.14% 91.22% 89.32% 92.42% 93.74%
Std. 0.0236 0.0059 0.0015 0.0019 0.0022

Table 6. The recall rate of the five SPR algorithms for Dataset 2.

Sitting
Posture DT-SPR KM-SPR BP-SPR SOM-SPR ISOM-SPR

LC 93.17% 96.00% 93.33% 95.33% 96.83%
RC 94.67% 95.50% 93.67% 95.17% 96.33%
LL 82.67% 93.67% 91.83% 92.17% 95.17%
LR 83.67% 94.17% 91.50% 91.83% 96.17%
WB 73.83% 83.83% 82.00% 85.50% 88.83%
SS 71.50% 84.33% 83.67% 84.83% 89.17%

Ave. 83.25% 91.25% 89.33% 90.81% 93.75%
Std. 0.0456 0.0158 0.0132 0.0106 0.0069

For the two data sets, the accuracy comparison of five SPR algorithms shows in Table 7.
The accuracy of ISOM-SPR is the highest among all algorithms, regardless of Dataset 1 or
Dataset 2. Consistent with expectations, test results are worse using Dataset 2 than Dataset
1, but the result of ISOM-SPR is still the best.

Table 7. The accuracy of five SPR algorithms.

DT-SPR KM-SPR BP-SPR SOM-SPR ISOM-SPR

Dataset 1 84.64% 93.28% 91.56% 92.50% 95.67%
Dataset 2 83.25% 91.25% 89.33% 90.81% 93.75%

We conduct further analysis of ISOM-SPR; the confusion matrix of ISOM-SPR using
Dataset 1 is shown in Table 8, while Dataset 2 is shown in Table 9. The precision and recall
rates of all results using Dataset 1 are above 90%. It is clear from Tables 8 and 9 that the
identification results of LC and RC are the best, the result of LL’s misidentification is mostly
LC, while the result of LR’s misidentification is mostly RC. The identification of WB and SS
are the worst, with the misidentification of WB is mostly SS, while WB is always mistaken
for SS.
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Table 8. The confusion matrix of ISOM-SPR using Dataset 1.

Dataset 1 LC RC LL LR WB SS Total Recall

LC 600 0 0 0 0 0 600 100.00%
RC 0 600 0 0 0 0 600 100.00%
LL 15 0 574 0 7 4 600 95.67%
LR 0 11 0 584 4 1 600 97.33%
WB 1 2 12 14 545 26 600 90.83%
SS 0 0 9 11 39 541 600 90.17%

Total 616 613 595 609 595 572
Precision 97.40% 97.88% 96.47% 95.89% 91.60% 94.58%

Table 9. The confusion matrix of ISOM-SPR using Dataset 2.

Dataset 1 LC RC LL LR WB SS Total Recall

LC 581 0 16 0 3 0 600 96.83%
RC 0 578 0 18 4 0 600 96.33%
LL 18 0 571 0 10 1 600 95.17%
LR 0 18 0 577 5 0 600 96.17%
WB 3 6 11 10 533 37 600 88.83%
SS 4 0 16 10 35 535 600 89.17%

Total 606 602 614 615 590 573
Precision 95.87% 96.01% 93.00% 93.82% 90.34% 93.37%

5. Conclusions

In this paper, we designed a real-time sitting posture recognition system using flex-
ible array pressure sensor and improved SOM classification method. The analysis and
monitoring software can display the sitting posture pressure values and distributions,
identify whether the sitting position is appropriate, and upload the data to the Cloud
platform. The results of six kinds of sitting posture classification verified that the accuracy
of ISOM-SPR reaches 95.67%, much better than DT-SPR, KM-SPR, BP-SPR, and SOM-SPR
methods. The whole system has a great performance in using ISOM-SPR algorithm. High
accuracy recognition of sitting posture can help users better check their sitting habits, so
that users can consciously change some of their bad behaviors.

In future work, the number of samples can be further increased, in this way, the
network model will have better applicability.
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