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Abstract: Deep learning has helped achieve breakthroughs in a variety of applications; however, the
lack of data from faulty states hinders the development of effective and robust diagnostic strategies
using deep learning models. This work introduces a transfer learning framework for the autonomous
detection, isolation, and quantification of delamination in laminated composites based on scarce
low-frequency structural vibration data. Limited response data from an electromechanically coupled
simulation model and from experimental testing of laminated composite coupons were encoded into
high-resolution time-frequency images using SynchroExtracting Transforms (SETs). The simulated
and experimental data were processed through different layers of pretrained deep learning models
based on AlexNet, GoogleNet, SqueezeNet, ResNet-18, and VGG-16 to extract low- and high-level
autonomous features. The support vector machine (SVM) machine learning algorithm was employed
to assess how the identified autonomous features were able to assist in the detection, isolation, and
quantification of delamination in laminated composites. The results obtained using these autonomous
features were also compared with those obtained using handcrafted statistical features. The obtained
results are encouraging and provide a new direction that will allow us to progress in the autonomous
damage assessment of laminated composites despite being limited to using raw scarce structural
vibration data.

Keywords: laminated composites; structural vibration; synchroextracting transform; scarce data;
autonomous features

1. Introduction

The use of composite materials is growing continuously in a variety of industries
(e.g., aerospace, automotive, wind energy) and remains at the forefront of contemporary
research [1-5]. These materials have preferential properties of high specific stiffness, high
specific strength, high corrosion resistance, being lightweight, and offering design flexibility.
Despite their benefits, the orthotropic layered nature of laminated composites makes them
prone to complex failure modes (matrix cracks, fiber breakage, delamination, etc.) during
their manufacturing and in-service life [6]. Among the various defects, delamination is one
of the most commonly occurring failure mode in laminated composites. The presence and
propagation of delamination can result in up to a 60% loss in structural stiffness without
any visible change to the surface of the material [7,8]. Owing to these severe consequences,
developing a diagnostic strategy to continuously assess laminated composites for the
presence of delamination is imperative. Commonly employed non-destructive evaluation
methods (ultrasonic C-scan, shearography, computed tomography, etc., [9,10] are not
suitable for continuous real time in-service damage assessments.

In recent years, Al-based machine learning and deep learning techniques have emerged
as powerful tools that can be used for early damage detection in composite structures in
various applications such as helping airplanes avoid catastrophic failures. Ai et al. [11]
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adopted a model based on random forest and deep learning methods to perform impact
localization in aircraft composite structures using acoustic emission (AE) data. The analysis
of the results showed that the random forest and deep learning model achieved better
event localization performance than previous conventional artificial neural networks. Brien
et al. [12] and his team used acoustic emission signals generated from healthy and faulty
composite beams to test their proposed pattern recognition system that employs an artificial
neural network classifier to detect and classify damage in composite beams. The proposed
methodology was proven to be able to effectively classify damage into one of four different
levels with 97% accuracy. Khan et al. [13] proposed a Convolutional Neural Network
(CNN) approach to analyse the low-frequency structural vibration outputs generated by
composite laminates that came from either healthy cases or from 12 delaminated cases. The
output results showed the proposed model could classify cases as healthy or delaminated
with 90.1% accuracy. Loutas et al. [14] developed an intelligent structural health monitoring
system for composite structures used in aerospace applications that used multi-sensor data
fusion in a feature level approach to classify thirteen different damage states. The results
indicated that using SVM with a nonlinear kernel could detect faults with up to 99.3%
accuracy. Further, various authors have applied machine and deep learning models in
these references [15-18] for damage detection and classification of composite structures.
Although deep learning models with several hidden layers are able to autonomously dis-
cover discriminative features from target images, a substantial amount of annotated data is
required to optimize the network parameters in these systems. In engineering applications,
acquiring sufficient data with faulty states is difficult due to the severe consequences of
operating a system in the presence of any kind of fault.

From the literature survey above, it is clear Al-based models are able to detect and
classify faults in composite structures with a high level of accuracy. In cases with small
training datasets, the trained model will have poor generalization. The small scale of
the data in these situations cannot represent the distribution to which they belong, and
the training and testing datasets must have the same distribution. On the other hand,
large-scale training data is expensive and challenging to collect in certain scenarios such
as aerospace applications. To overcome this issue, transfer learning-based models have
been introduced recently for intelligent fault detection. Gong et al. [19] proposed a novel
deep transfer learning model for aeronautics composite materials (ACM) that combined
deep learning with a sliding window approach. The proposed model used X-ray images of
ACM but these samples were scarce. Experimental results showed that the proposed model
could classify faults up to 96% classification accuracy. Outside of fault detection systems,
Milad et al. [20] used a transfer learning approach with smart manufacturing processes of
composite materials. The historical data generated from their autoclave curing process was
successfully used to learn new cycle settings with limited data. Yang et al. [21] proposed
a feature-based transfer neural network for bearing fault detection that used transferred
diagnosis knowledge from laboratory bearings to detect faults in locomotive bearings.
The results showed that the proposed model could successfully identify transferable
features from the laboratory scale bearings to detect faults in locomotive bearings. Other
literature on applying transfer learning to intelligent fault diagnosis can be found in the
references [22-25].

The current work proposes aiding autonomous feature extraction from limited data
using off-the-shelf pretrained deep learning models for the assessment of delamination
in laminated composites. An electromechanically coupled finite element model was em-
ployed to study the effect of different sized delaminations based on a numerical framework.
For experimental verification of the proposed approach, laminated composite samples were
manufactured using a hot press machine and water cutting jet. Low-frequency structural
vibration responses were obtained from simulations and from the experimental samples.
The time series data was transformed into time-frequency images using the Synchroex-
tracting Transform (SET) technique [26,27]. Pretrained deep learning models based on
AlexNet [28], GoogleNet [29], SqueezeNet [30], ResNet-18 [31], and VGG-16 [32] were
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employed to extract low- and high-level features from the images based on the limited
simulated and experimental data. A conventional machine learning algorithm, support
vector machines (SVM), was used to assess the extracted autonomous features for their
usefulness in the detection, isolation, and quantification of delamination in laminated com-
posites. The classification performance using the autonomous features was also compared
with the results from using handcrafted statistical features.

2. Proposed Methodology

This section describes the proposed methodology. The general workflow of the current
work is shown in Figure 1.
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Figure 1. The general workflow of the proposed methodology.

First, structural vibration responses were obtained from the laminated composite
plates in both pristine and delaminated states. The raw vibration signals were processed
via the Synchroextracting Transform (SET) technique to produce high resolution time-
frequency “images” that represent the signals in such a way that they can be used as
inputs to deep learning-based diagnostic systems. High-level deep learning models were
employed to autonomously extract discriminative feature from the limited data encoded
in the time-frequency images. These autonomous features were processed using different
machine learning models and the performance of each was evaluated in terms of training,
validation, testing, and confusion matrices. To show the effectiveness of the proposed
approach to diagnose laminated composites, handcrafted statistical features from the time
and frequency domains were extracted from the raw vibration signals and processed with
machine learning models. The results achieved using the handcrafted statistical features
were also evaluated in terms of training, validation, testing, and confusion matrices so
they could be compared to those achieved based on autonomous feature extraction. Each
approach was evaluated based on input data from numerical simulations as well as real-
world experiments on laminated composites with delaminations of various sizes. In general,
high frequencies excitation and response signals (such as guided waves) are more suitable
for detecting and isolating small size delamination defects. However, the delamination
detection methods based on high frequencies guided waves suffer from the limitations of

a. The methods are active and require a voltage supply, signal amplifier, function
generator, etc., to produce excitation signals within a specific high-frequency range
(usually 50-300 kHz).

b.  The response to high-frequency excitation should be acquired and stored at a high
sampling rate to preserve useful information and keep the required resolution of the
signal.

c. For most high-frequency methods, the delamination should be in the path between

the excitation source (actuator) and the location for measurement (sensor).

The first requirement demands for more hardware in the damage assessment technol-
ogy. The second condition requires a large amount of memory and a high-performance
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data acquisition system. The third condition demands more sensors and subsequent data
acquisition and storage systems to cover all the possible paths between the actuator and
sensor for damage-prone areas.

Contrary to high-frequency methods, the proposed method employs structural vibra-
tion (0-1000 Hz) obtained through smart elements. The structural vibration is more readily
available during the service condition of the structure without the need for any specific
range of excitation. Though the attributes of structural vibration (natural frequency, modal
damping, FRF, etc.) are global and cannot be employed for the localization of delamination,
the proposed approach attempts to extract global and local information through deep
learning models. The following sections show details of the general workflow used.

2.1. Mathematical Model and Simulated Data

The proposed approach outlined in Figure 1 was carried out using both simulated and
experimental data. Improved layerwise theory was employed to simulate delamination
in smart composite laminates. A laminated composite plate with 16 plies stacked in a
cross-ply symmetric configuration [0/90]4s was modeled in the numerical simulation. A
piezoelectric actuator and sensor were modeled on the surface of the laminated plate as
shown in Figure 2.
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Figure 2. Geometric configuration of laminated composite plate in numerical simulations.

Here, the piezoelectric actuator is attached near the fixed end to excite the plate
with low-frequency structural vibrations and the corresponding response is obtained
through the piezoelectric sensor. Size of the piezoelectric actuator was 3 x 3 cm? and the
dimensions of the piezoelectric sensor were 1 x 1 cm?. Four delaminations of different
sizes (3 cm—9 cm) were simulated to study the effect the size of the delamination has on the
proposed approach. The health states of the composites were denoted by H (for healthy),
L1 (for 3 cm delamination), L2 (for 5 cm delamination), L3 (for 7 cm delamination), and L4
(for 9 cm delamination). An electromechanically coupled finite element model (shown by
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Equation (1)) of the smart plate was developed using improved layerwise theory [33,34]
and high-order electric potential field [35].

My, 0 du Cuy O du Ky Ky du _ F,

[ 0 OH 0 }+[ 0 0]{ 0 }+{K¢u K¢z]{d¢ }_{F¢} @
where d,, and dy denote the displacement and electrical variables at nodal positions, respec-
tively. My, is the mass matrix, C,,, is the damping matrix, and K, is the stiffness matrix
of the system. The electromechanical coupling of the mechanical and electrical field are
denoted by Ky and Ky, respectively, while Ky is the dielectric stiffness matrix. The terms
F, and Fy denote the respective mechanical force and electric field vectors. A detailed
derivation of the finite element model in Equation (1) can be found in references [34,36].

In Equation (1), the electrical excitation, and the corresponding response of the plates
in Figure 2 are obtained through the piezoelectric actuator and piezoelectric sensor using
the electromechanical coupling matrices, Ky and Ky;,. These coupling matrices account
for the converse and direct piezoelectric effects, where the piezoelectric actuator produces
mechanical actuation when a voltage is applied, while the piezoelectric sensor generates a
voltage signal when it is mechanically deformed. The matrix form of Equation (1) can be
modified through matrix condensation to obtain the governing equation in the following
form. ) .

Muudu + Cuudu + Kdu =F (2)

where the modified stiffness matrix K and force vector F are expressed as follows

K = Kuu — KupKpy Kpu, F = Fu — KupKyy Fy 3)

The thickness of the laminated plate was 0.2 cm and all the delaminations were

considered to have occurred in the mid-plane of the laminated composite plate. The

material properties of a lamina in the host laminated composite and of the piezoelectric
elements used in the numerical simulations are shown in Tables 1 and 2, respectively.

Table 1. Material properties of a lamina in the host laminate.

E; Ey, E3 G12, G13 Ga3 p V12, V13 V23
372 GPa 4.12 GPa 3.99 GPa 3.6 GPa 1788.5 kg/l’n3 0.275 0.42

Table 2. Material properties of the piezoelectric elements.

E v P dz1, ds2 dg, d1s b1y
62GPa 030 7500kg/m® 274 x 1072 m/V ~741 x 1072 m/V 14.41 nf/m

The numerical model in Equation (2) was implemented using MATLAB by discretiz-
ing the piezobonded laminated plate into 60 x 30 elements along the length and width,
respectively. Time domain response was obtained from healthy and delaminated smart
plates while solving the electromechanically coupled model via Newmark’s time integra-
tion algorithm [37]. The plates in each of the five health states (H, L1, L2, L3, L4) were
excited using 10 statistically independent random excitations through the piezoelectric
actuator over a period of 2 s, the corresponding responses were obtained through the
piezoelectric sensor. The time step chosen for Newmark’s time integration was 0.0001 s
in order to maintain numerical accuracy. The data from the simulation was comprised of
50 time series signals, 10 for each of the five health states (10 random excitations x 5 health
states x 1 sensor for each health state). The essence of the simulated data is that it contains
response from the plates with delaminations of different lengths (from 3 cm to 9 cm).
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2.2. Experimental Setup and Data

To validate the results of the proposed approach experimentally, healthy and delami-
nated composite samples were manufactured in a hot press machine. Samples with three
different states were produced for the experiments: healthy H, delamination D1, and de-
lamination D2. The healthy sample had all of its plies perfectly bonded. The delaminated
D1 and D2 samples were seeded in their mid-plane with Teflon film (PTFE film (Model
KSC-V1000), thickness: 0.03 mm, heat resistance: up to 280 °C) near the free and fixed end
of the cantilever beams. The sizes of both delaminations were chosen to be 10 cm in length
and 5 cm in width. T700SC-12k-60E carbon fiber prepreg was cut into 35 cm x 30 cm
plies and stacked in a symmetric cross-ply configuration of [0/90/0/90]s with a total of
8 plies used in each sample. The properties provided by the manufacturer for the fiber are
density 1.8 g/cm3, tensile strength 4900 MPa, Tensile Modulus 230 GPa, elongation 2.1 %,
thermal conductivity 9.4 W/m K, filament diameter 7 um, and epoxy resin. The healthy
and delaminated laminated composite plate samples were cured in the hot press machine
for 155 min using the curing cycle suggested by the manufacturer. The cured laminated
composite plates were cut to a size of 30 cm x 5 cm with a water jet cutting machine to
obtain 5 samples for each health state, as shown in Figure 3.

Fixed end Delamination D1 Delamination D2

Figure 3. Healthy and delaminated samples representing three health states manufactured using a
hot press machine.

Here, the letter H is used to denote a healthy sample while the preceding numbers
from 1-5 are used to identify the individual samples. The first digit after the D for the
delamination samples D1 and D2 refers to the health state while the second digit identifies
the individual samples. Five samples from each health state were used to account for
manufacturing and measurement uncertainties. Vibration tests were conducted on the
manufactured samples. Figures 4 and 5 show the experimental setup and experimental
workflow, respectively, for the random vibration testing.

Figure 4. Various apparatus used in the experimental vibration testing; (1) shaker; (2) amplifier for
the shaker; (3) amplifier for accelerometer; (4) DAQI; (5) DAQ2; (6) Lab-view PC.
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Figure 5. Experimental workflow for vibration testing of composite samples.

The experimental setup consisted of three basic systems: excitation, vibration, and
response data acquisition systems. The excitation apparatus consisted of a Lab-view
PC that generates random signals using MATLAB Simulink. For the excitation of the
laminated composite samples, an acquisition system (DAQ 1 (ASPACE/CLP1104)), a signal
amplifier (Labworks/PA-151, Labworks Inc., Costa Mesa, CA, USA) for the shaker, and a
shaker (Labworks/ET-126-4, Labworks Inc., Costa Mesa, CA, USA) were used to excite the
composite beams with the generated random signals.

The laminated composite beams (H, D1, and D2) were clamped using a 3D printed
jig to apply cantilevered boundary conditions to the vibrating system. The response
acquisition system was used to acquire data from the vibrating coupon. This consisted
of various devices; an accelerometer (Bruel & Kjaer/Type 4517-C, Briiel & Kjeer, Neerum,
Denmark) that was installed on the vibrating composite beams, an amplifier (Bruel &
Kjaer/Type 2692-0S2, Briiel & Kjeer, Neerum, Denmark), and a data acquisition system
(DAQ 2 (NI/USB-6341)). The responses to the random excitations was measured near
the clamped end of the healthy and delaminated samples over 15 s. The experimental
data reflects the responses caused by delaminations of the same size but in different
locations which could be useful evaluating the possibility of determining the location of
the delamination through this kind of data.

3. Results and Discussion

This section discusses the classification results into different health states for the lami-
nated composite samples in the simulations and experiments based on both handcrafted
statistical features and autonomously extracted features.

3.1. Classification Results on Handcrafted Statistical Features

Time and frequency domain statistical features of the signals have been used to discrim-
inate between different health states of bearings, gearboxes, and rotating machines [38—41].
However, statistical features may not allow us to discriminate between the health states of
laminated composites where the dynamic response is dominated by the excitation forces
and the response signal may not reveal sufficient information to diagnose the characteristics
of the fault present when analyzed in a conventional manner. To show the feasibility of
using handcrafted statistical features to discriminate between different health states in the
simulated data, time and frequency domain features were extracted from the time series
data and analyzed through various machine learning algorithms. A window function
of 0.2’ s was employed to divide the random response signals over the 2 s period into
10 chunks. The purpose of this division is to look for discriminative features in a smaller
portion of the signals instead of looking at the entire signal. The handcrafted time domain
features used were the mean, standard deviation, skewness, kurtosis, peak to peak values,
root mean squared values, crest factor, shape factor, impulse factor, margin factor, and
energy of the signal. The extracted frequency domain features were the spectral kurtosis,
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spectral mean, spectral standard deviation, spectral skewness, and spectral kurtosis. The
fifteen features were extracted from numerical data on the composite laminate samples in
all five health states. The data from all samples in the various health states amounted to
1000 instances with 15 features for each instance. The values for the hand-crafted features
in each instance was processed with different machine learning algorithms, Table 3 depicts
the performance of the different classifiers used to process those values in terms of train-
ing/validation accuracy and area under the receiver operating characteristics curve (ROC
area).

Table 3. Classification performance of different algorithms on data from simulation using handcrafted
statistical features.

Classifier Training/Validation Accuracy % ROC Area
Fine Tree 36.1 0.58
Linear Discriminant 21.7 0.50
Kernel Naive Bayes 26.4 0.53
Cubic SVM 36.2 0.51
Fine KNN 43.8 0.47

All the classifiers were trained using a 10-fold cross-validation strategy. The results
in Table 3 show that the maximum classification accuracy using these statistical features
was 43.8% achieved by Fine KNN. However, the ROC area, which reflects the tradeoff
between the true positive and false positive rates of the classifiers, indicates that Fine KNN
is susceptible to overfitting and will not generalize well to new, unseen data.

Although the classification accuracy is not high enough for practical applications, the
training/validation confusion matrix may provide additional insights into the classification
performance achieved. Figure 6 shows the training/validation confusion matrix of Cubic
SVM.

H 45 30 16 27 22.5%
L1 9 45 28 15 20 22.5%
19
(0]
©
g L2 31 30 8 24 28 43.5% | 56.5%
3
=
L3 24 24 20 98 34 49.0% | 51.0%
L4 28 29 29 27 8 43.5% | 56.5%
H L L2 L3 L4

Predicted Class

Figure 6. Training/validation confusion matrix of cubic SVM using handcrafted statistical features
from simulated data.

In the confusion matrices, the values on the main diagonal denote correctly classified
instances and the off-diagonal cells contain the misclassified instances. The blue and red
columns on the right side show the recall (true-positive rate) and false-negative rate respec-
tively, for each of the health states. Quantitatively, the recall gives the successful detection
and isolation of a given health state while the false negative gives the susceptibility of a
model to confusing other health states with the actual health state. From Figure 6, it can be
observed that though the classification accuracy is not very high, the classification results
are consistent with the physics of the problem. For instance, the classifier can distinguish
more severe cases of delamination (L2, L3, L4) with relatively higher classification accuracy
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and the major loss of accuracy comes from confusion between healthy and less severe cases
of delamination i.e., confusion between H and L1.

Experimental data was collected over a period of 15 s, the signal for each sample in
each health state was split into 20 chunks using a window of 1875 data points. This created
100 instances for the five samples in each health state, resulting in a total of 300 instances
for the three health states. The same statistical features used with the simulated data were
extracted from the experimental data and were again processed using various machine
learning algorithms. Table 4 shows the performance results for each of the classifiers in
terms of training/validation accuracy and area under the receiver operating characteristics
curve (ROC area). All classifiers were trained using a 10-fold cross-validation strategy.

Table 4. Classification performance of the various algorithms using handcrafted statistical features

from experimental data.

Classifier Training/Validation Accuracy % ROC Area
Fine Tree 69.3 0.78
Linear Discriminant 63.0 0.65
Kernel Naive Bayes 66.7 0.70
Cubic SVM 61.7 0.72
Fine KNN 57.0 0.60

The result in the table shows that delaminations of the same size but at different
locations can be correctly classified with a maximum classification accuracy of around 70 %.
However, a classifier trained with this accuracy may be susceptible to high misclassification
rates when deployed for making predictions on new data.

To give an idea of the per-class misclassification results, Figure 7 depicts the train-
ing/validation confusion matrix for the Fine Tree classifier.

36.0%

34.0%

True Class
=4

D2 78.0% [WrAR

H D1 D2
Predicted Class

Figure 7. Training/validation confusion matrix for the Fine Tree classifier using handcrafted statistical

features from experimental data.

It can be observed that the classifier can distinguish the three health states with 64%,
66%, and 78% classification accuracy. Furthermore, the susceptibility to misclassification
was 36%, 34%, and 22% for the three health states.

Although the statistical features provide physically consistent results, the low clas-
sification accuracy when using these features hinders their practical application for the
detection and isolation of delamination from low-frequency structural vibration in lami-
nated composites. The next section shows the results of using discriminative features that
were extracted autonomously via pretrained deep learning models.
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3.2. Results from Using Features Extracted Autonomously Using Pretrained Deep
Learning Models

In the deep learning framework, pretrained models can be employed for three pur-
poses: to make predictions on new unseen data that is similar to previous data, for feature
extraction using the activations of deep layers as features, and for transfer learning based
on fine tuning a network that was pretrained on data from a different but related task to
work with limited new data [42,43]. In this work, pretrained deep learning models based on
AlexNet, GoogleNet, SqueezeNet, ResNet-18, and VGG-16 were employed for autonomous
feature extraction from the limited data gathered by simulations and experiments. The
reason for choosing different pretrained models for the current problem was to show
the effect of the architecture, depth, and the number of pretrained deep learning model
parameters for the fault diagnosis in a transfer learning framework. The characteristics
features of the adopted pretrained models are shown in Table 5.

Table 5. Comparison of pretrained deep learning models.

Number Parameters Memory . a1 qs .
Network of Layers (Millions) Size (MB) Architectural Building Blocks of Hidden Layers
AlexNet 5 61.0 297 Convolut%on, ReLU, Pooling, Cross Channel Norma.hzahon, G%‘ouped
Convolution, Dropout, Fully Connected Layers, series connections
Convolution, ReLU, Pooling, Cross Channel Normalization, Inception
GoogleNet 144 7.0 27 modules, multi-scale convolutional transformations, convolution layers
replaced with small blocks
SqueezeNet 68 104 52 Convolution, ReLU, Pooling, Depth Concatenation (with squeeze and
expand layers), Simple and Complex Bypass
ResNet-18 71 17 m Convolutions, Batch Nprmallzatlon, ReLU, Pooling, Addition, Residual
blocks as structural unit
VGG-16 4 138 515 Convolution, ReLU, Pooling, Drop out, fully connected layers, smaller

filters, and series connections

Herein, it is observed that each network has different architectural characteristics,
and one can choose a pretrained model based on the initial assessment of the results
from different models, depth of the models, memory size, predictive performance, and
prediction speed. A detailed description of the architecture of different pretrained deep
learning models can be found in the references [44—46].

The mathematical details of autonomous feature extraction via pretrained deep learn-
ing models are not discussed here for the sake of brevity but can be found in refer-
ences [47-49]. The autonomous features were processed via a quadratic support vector
machine using 10-fold cross validation and a one-vs-all training strategy for the detection,
quantification, and localization of delamination in laminated composites. The mathemati-
cal details of SVM for the assessment of discriminative features and classification results
can be found in the references [50-52].

Since the existing deep learning models were pretrained on image data, the time
domain signals were transformed into time-frequency images using the Synchroextracting
Transform (SET) technique introduced by Yu et al. [26]. The reason for choosing SET instead
of short-time Fast Fourier Transforms (STFT) or wavelet scalograms was that SET provided
better time-frequency resolution. The mathematical details of encoding time series data
into an image with SET can be found in references [26,27]. The SET window length is
the parameter that affects the time-frequency resolution. In the current work, after trying
various lengths of SET windows, a window length equal to the length of the signal was
found to provide the best time-frequency resolution for laminated composites. The time
series data, windowed into smaller chunks in the same way as for the statistical features,
was processed with SET to obtain time-frequency images representing the simulated and
experimental data. Some representative time-frequency images of the simulated data
obtain through SET are shown in Figure 8.
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Figure 8. Some representative time-frequency images of the simulated data obtained via the SET
technique: (a) H; (b) L1; (c) L2; (d) L3; (e) L4.

The time-frequency images show different characteristic spectrums for each of the
five health states. However, due to the random nature of the response signals, it is difficult
to differentiate the health states from their time-frequency images using the naked eye.
Moreover, the images in Figure 8§ are some representative examples from the 100 images for
each health state and only correspond to a single random response signal. The difficulty
level is further increased as the number of random excitations and their corresponding
responses increase. Owing to their inherent architecture, deep learning models can look for
minute differences between images allowing them to differentiate similar looking images
autonomously with high accuracy. In the current work, the total number of images is only
500 (100 images for each health state), which is not sufficient to optimize the parameters
of a deep learning model which is being developed and trained from scratch. Hence, in
this work, off-the-shelf pretrained deep learning models were employed for autonomous
feature extraction.

The autonomous features extracted at different layers of the pretrained models have
different dimensions and discriminative capabilities. In the current work, features from
different layers of the pretrained models are leveraged to discriminate between different
health states of the laminated composites based on the simulated and experimental data.
To ensure a consistent parametric study, the autonomous features were processed with
quadratic SVM, Tables 6—10 show its performance based on the autonomous features
extracted from the simulated data in terms of training/validation accuracy, test accuracy,
and the number of autonomous features.

Table 6. Classification performance of SVM using the autonomous features from AlexNet.

AlexNet

Name of Feature Training/Validation Test
Layer Number Extraction Layer Accuracy % Accuracy % Number of Features
23 “fc8 77.25 75.0 1000
19 “fc6’ 82.75 81.0 4096
9 ‘pool2’ 72.25 77.0 43,364
5 “pooll’ 70.0 73.0 69,984
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Table 7. Classification performance of SVM using the autonomous features from GoogleNet.

Name of Feature Training/Validation Test
Layer Number Extraction Layer Accuracy % Accuracy % Number of Features
GoogleNet 142 “loss3-classifier’ 72.25 75.0 1000
136 ‘inception_5b-pool’ 64.75 69.0 40,768
122 ‘inception_5a-pool’ 66.50 77.0 40,768
93 ‘inception_4d-pool’ 67.25 66.0 100,352
Table 8. Classification performance of SVM using the autonomous features from SqueezeNet.
Name of Feature Training/Validation Test
Layer Number Extraction Layer Accuracy % Accuracy % Number of Features
SqueezeNet 66 “pool10’ 74.75 74.0 1000
53 ‘fire8-expand3x3’ 70.25 74.0 50,176
34 ‘pool5’ 70.75 77.0 50,176
19 ‘pool3’ 71.25 72.0 100,352
Table 9. Classification performance of SVM using the autonomous features from ResNet-18.
Name of Feature Training/Validation Test
Layer Number Extraction Layer Accuracy % Accuracy % Number of Features
ResNet-18 68 ‘pool5’ 75.75 75.0 512
59 ‘res5a_branchl’ 72.25 73.0 25088
45 ‘resdb_branch2a’ 71.75 71.0 50176
13 ‘res2b_branch2a’ 75.0 79.0 200704
Table 10. Classification performance of SVM using the autonomous features from VGG-16.
Name of Feature Training/Validation Test
Layer Number Extraction Layer Accuracy % Accuracy % Number of Features
VGG-16 39 "fc8’ 77.25 78.0 1000
33 "fc6’ 79.0 76.0 4096
25 ‘poold’ 70.25 77.0 100,352
11 ‘pool2’ 76.50 76.0 401,408

It can be observed that the dimensions of the discriminative features are increasing as
the feature extraction layer is moved from the final layers to the inner layers towards the
initial layers of the pretrained models. In this problem, the accuracy is not affected much
by whether high-level features (i.e., features from the last layers) or low-level features
(i.e., features from the inner and initial layers) are used. However, the dimensions and
consequently the computational cost of using the low-level features are higher than for
using the high-level features. When compared with the classification performance using the
hand-crafted statistical features shown in Table 3, the performance using the autonomous
features has substantially increased for all the pretrained models. To get further insights
into the classification performance, Figures 9-13 depict the confusion matrices for the SVMs
with the highest accuracy seen in Tables 610 coming from using the autonomous features
of the pretrained models.



Sensors 2021, 21, 6239

13 of 19

True Class

AlexNet in terms of its confusion matrices: (a) training; (b) test.

L1

L2

True Class

L3

L4

L1

L2

L3 L4
Predicted Class

@)

Figure 9. Classification performance of SVM using the autonomous features from the 23rd layer of

31 2
2

7 6 2 3

1 1 2

5 7 66

L1 L2 L3 L4

Predicted Class

(a)

30.0% H 9
L1
[9]
[2]
8
25% | O L2 2 8
[
>
£
3.7% L3
25% L4

True Class

L1

L2

L3

L4

Predicted Class

(b)

L1

L2

L3

L4
Predicted Class

(b)

40.0%

10.0%

Figure 10. Classification performance of SVM using the autonomous features from the 142nd layer
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Figure 12. Classification performance of SVM using the autonomous features form the 68th layer of
ResNet-18 in terms its confusion matrices: (a) training; (b) test.
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Figure 13. Classification performance of SVM using the autonomous features from the 39th layer of
VGG-16 in terms of its confusion matrices: (a) training; (b) test.

The dataset from the simulation was split into 80% training data and 20% test data.
In the confusion matrices, the values on the main diagonals denote correctly classified in-
stances and the off-diagonal cells contain misclassified instances. The blue and red columns
on the right depict the recall (true-positive rate) and false-negative rate, respectively, of the
actual classes. Quantitatively, the recall gives the successful detection and isolation of a
given health state while the false negative gives the susceptibility of a model to confusing
other health states with the actual health state. Specifically, from Figure 9, the autonomous
features extracted by Alexnet can distinguish healthy cases H from all other health states
with 70% accuracy, but it is susceptible to incorrectly classifying other health states as H at
a rate of 30%. The values on the main diagonal and in the off-diagonal cells show that the
model is susceptible to the incorrect classification of L1 as H.

From all the confusion matrices, it can be observed that the per-class training per-
formance has substantially increased when using the autonomously extracted features
from each of the pretrained models when compared with the training performance using
the handcrafted statistical features, as shown in Figure 6. Moreover, for all the pretrained
models, the major losses of accuracy are associated with confusion between the healthy
case H and the least severe case of delamination L1. The physical reason for the confusion
of H with L1 is that the 3 cm delamination is only causing a very subtle change in the
structural stiffness and consequently in the structural dynamic response when compared
with the healthy case. The close resemblance in the characteristic dynamic responses of
L1 and H causes the classifier to confuse the two cases. Moreover, from the test confusion
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matrices, it can be observed that the correct prediction rate from using the pretrained model
to autonomously extract features, regardless of the model used, is reasonably high and
show similar behavior to that shown by the training confusion matrices. The results for
the increasing size of delamination and the ease in its detectability in the current work are
supported by the research finding of the articles in the references [50,53].

For the experimental data, the structural vibration data windowed into the same
smaller chunks used to extract the statistical features from was encoded to time-frequency
images using SET. The image data based on the experimental results was processed using
pretrained deep learning models to autonomously extract features. The features were
extracted through the last layers of the models and were processed with quadratic SVM
using 10-fold cross-validation and a one-vs-all training strategy. The experimental data
was randomly split into 80% training and 20% test data. The classification results from the
SVM using autonomous features are shown in Table 11.

Table 11. Classification performance of SVM using the autonomous features from various pretrained models.

Pretrained Model Featur; Extraction Training/Validation Accuracy % Test Accuracy % Number of
ayer Features
AlexNet “fc8’ 97.92 100 1000
GoogleNet “loss3-classifier’ 93.75 91.67 1000
SqueezeNet ‘pool10’ 96.25 98.33 1000
ResNet-18 ‘pool5’ 95.83 98.33 512
VGG-16 “fc8’ 97.08 98.33 1000

Comparing Table 11 with Table 4 shows that the overall training accuracy has sub-
stantially increased when using the autonomous features from all the pretrained models.
Among the autonomous features extracted by the various pretrained models, the features
extracted by AlexNet achieve the best classification performance, while the worst clas-
sification performance was observed when using the features from GoogleNet. For a
detailed look at the classification performance using features from AlexNet and GoogleNet,
Figures 14 and 15 show the training and test confusion matrices for the SVM trained on
the features extracted by AlexNet and GoogleNet, respectively.

98.8% QWAL H

5.0% D1

True Class
True Class

D2

H D1 D2 H D1 D2
Predicted Class Predicted Class

(@) (b)

Figure 14. Classification performance of SVM using the autonomous features form the 23rd layer of
AlexNet in terms of its confusion matrices: (a) training; (b) test.
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Figure 15. Classification performance of SVM using the autonomous features from the 142nd layer
of GoogleNet in terms of its confusion matrices: (a) training; (b) test.

It can be observed that the SVM can distinguish healthy cases from delaminated cases
with 98.8% accuracy while it is only susceptible to incorrectly classify other health states
as healthy at a rate of 1.2%. The minimum per-class classification accuracy was 95.0% for
D1 delamination samples using the features from AlexNet while the maximum per-class
classification accuracy was 100% for D2 delamination samples. For the pretrained model
with the worst overall classification performance (GoogleNet), the minimum per-class
accuracy was 91.2% for D1 delamination samples and the maximum per-class accuracy
was 96.2% for the healthy H samples. In general, the autonomous features from all the
pretrained models can be used to distinguish between delaminations of the same size
occurring at different locations while they can also be used to distinguish healthy cases
H from delaminated cases D1 and D2 with higher accuracy. The experimental data has
accounted for the uncertainty in the manufacturing of coupons and measurement error
by considering five samples of each health state. The existing literature mostly focuses on
modal parameters (natural frequencies, modes shapes, mode shape curvature) of structural
vibration to assess delamination [54]. However, modal parameters are global, and the
experimental measurement of mode shapes is a difficult task.

The current work showed the feasibility of limited structural vibration data for the
detection, localization, and quantification of delamination through classification in a super-
vised learning framework. The proposed approach could be employed to assess the size
and location of delamination by predicting a label for a given health state which can be
interpreted for the size and location of a new delamination. For instance, the label for a
delamination of size 6 cm would be either L2 (delamination of 5 cm) or L3 (delamination of
7 cm) due to their similar response characteristics. In general, the delamination of different
sizes near the free and clamped ends may have the same dynamics response characteristics,
and the new delamination may be entirely different from the one considered in the pre-
trained model. Moreover, the labels for the prospective delamination may not be known.
The future extension of the current work will adopt a more generic approach by using
more than one sensor along the length of the specimen and an unsupervised framework
for the detection, localization, and quantification of delamination. These results show
our approach could be beneficial for delamination localization based on low-frequency
structural vibration data.

4. Conclusions

This study investigated the effectiveness of autonomous discriminative features via
pretrained deep learning models for assessing delamination in laminated composites. The
simulations and experiments were carried out to obtain low-frequency random structural
vibration data from the sample in either healthy or delaminated states. The vibration
data was encoded into high-resolution time-frequency images using the Synchroextracting
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Transform (SET) technique. This image data was then processed with various pretrained
deep learning models (AlexNet, GoogleNet, SqueezeNet, ResNet-18, 491 VGG-16) for
autonomous discriminative features, and a support vector machine (SVM) was employed
to assess the health state based on those features. The autonomous features were found to
outperform the handcrafted statistical features for diagnosing delamination in laminated
composites. The work also compared the feasibility of low- and high-level features of
pretrained models for delamination assessment. The high-level features were found to
perform relatively better than the low-level features. The proposed approach eliminates the
requirement of extensive training data and labor-intensive process of human-engineered
statistical features. The method has the potential for the autonomous diagnosis and
prognosis of defects in modern composite structures.
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