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Abstract: In this paper, we studied the basic characteristics of tilted fiber Bragg gratings (TFBGs),
inscribed line-by-line. Experimental results showed that if the TFBGs were located within different
planes parallel to the fiber axis, the spectra performed differently. For 2◦TFBG, if it was located
near the central plane, the Bragg resonance was stronger than ghost mode resonance, and the order
reversed if it was located near the boundary between core and cladding. As the tilted angle increased,
the range of cladding mode resonance increased. When the tilted angle was larger than 12◦, the
birefringence effect was observed. Based on the birefringence phenomenon, torsion characteristics
were experimentally studied; the sensitivity was about 0.025 dB/degree in the linear variation range.
The harmonic order of TFBGs also affected the transmission spectrum. Leaky mode resonance was
observed in the 8th order TFBG, and torsion (or polarization) influenced the spectrum of the 8th
order TFBG. Our research represented the theory of line-by-line inscribed TFBGs and provided an
inscription guidance for TFBGs.

Keywords: femtosecond laser; direct writing; tilted fiber Bragg gratings

1. Introduction

TFBGs can realize the coupling between core mode and cladding modes [1,2]. Owing
to the characteristics of cladding mode, TFBGs play an important role in fiber sensing. For
example, small angle (<23◦) TFBGs, which couple the forward-propagating core mode to
backward-propagating cladding modes [1], are largely used in temperature sensing [3] and
refractive index sensing [4]. If coated with metal, TFBG-assisted surface plasmon resonance
can be excited, with which high sensitivity sensing can be carried out, such as gas/acoustic
sensing [5], biological sensing [6], electrochemical activity in supercapacitors [7], and
anemometers [8]. In excessively tilted fiber grating (Ex-TFG) (tilted angle > ~70◦), the
coupling occurs between core mode and cladding modes transmitted in the same direction,
which behaves like long period fiber grating. Birefringence characteristics also presents in
Ex-TFG. Thus, Ex-TFG is a good candidate for polarization-dependent sensing [9,10]. 45◦

TFBGs experience high polarization-dependent loss, which provides a method to realize
an all-fiber polarizer [11]. In addition to their application in fiber sensing, TFBGs have
been applied in fiber lasers. Small angle TFBGs were utilized to suppress the stimulated
Brillouin scattering effect in high power fiber lasers [12]. 45◦ TFBG could play the role of
saturable absorber in mode-locked fiber lasers [13,14].

Different methods have been reported to inscribe TFBGs. Ultraviolet exposure is the
most common method used [15]. This method can inscribe TFBGs with low insertion loss
and high stability. However, the inscription process is complex. Hydrogen loading and
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annealing are unavoidable during inscription. In the present study, the inscription of Ex-
TFG was achieved by adjusting the optical system. Additionally, the resonant wavelength
was limited by phase mask (PM). TFBGs could also be made by PM and femtosecond laser
radiation [3,16]. Benefits from the femtosecond laser, hydrogen loading, and annealing
were avoided, but limitations in the scale and depth of the femtosecond laser focus created
difficulties in fiber alignment. To expand the area of refractive index modulation (RIM)
and stretch the length of the grating, a complex electrical translation stage was necessary.
The resonant wavelength was also limited by PM in this condition. Femtosecond laser
plane-by-plane direct writing was an effective method to inscribe TFBG. The tilted angle
was controlled by electrical translation stage [17] or the rotating angle of a cylindrical
lens in the optical system [18]. The resonance could occur at any wavelength, triggered
by adjusting the period of gratings. The birefringence decreased because the RIM was
more uniform than TFBGs inscribed with PM [17], but insertion loss increased in the
direct writing process. These methods could only fabricate non-localized TFBGs, in which
the transmission spectrum was only influenced by the tilted angle. The RIM in the non-
localized condition covered the whole core region and the coupling process was relatively
stationary [19,20].

Another femtosecond laser direct writing method—namely, line-by-line inscription [21,22]—was
also a potential method of fabricating TFBGs. In the year of this study’s writing, Liu et al.
proposed TFBGs inscribed line-by-line using femtosecond lasers [23]. Comparing their
method with the aforementioned three methods, the TFBGs inscribed line-by-line were
highly localized. A benefit of line-by-line inscription was that the insertion loss of TFBGs
was low. Additionally, the range of cladding mode resonance was wider than TFBGs
inscribed with other methods. Ref. [23] provided preliminary guidance for line-by-line
inscription of TFBGs. Further investigation should be carried out to improve this method
and the relevant theory of TFBGs.

In this paper, we investigated the fundamental characteristics of TFBGs inscribed
line-by-line. The influence of the tilted angle, the line position, and the harmonic order
of grating on the transmission spectrum of TFBG were experimentally studied. Some
torsional experiments were also carried out to investigate the polarization-dependent effect
of TFBGs inscribed line-by-line. Our research works improved the theory of line-by-line
inscribed TFBGs and presented guidance for a femtosecond laser direct writing technique.

2. Inscription Method

Figure 1 shows the schematic of line-by-line inscription of TFBGs. In our experiment,
an oil-immersion lens with a magnification of 100×was used to focus the femtosecond laser.
The wavelength of the femtosecond laser was 515 nm, the repetition rate was 1 kHz, and
the pulse energy after oil-immersion lens was about 36 nJ. The period of grating (Λ) and the
tilted angle (θ) were controlled by an electrical 3D translation stage. During inscription, the
focus of the femtosecond laser translated from point A to point B. Then, the femtosecond
laser was shut off, and the focus of the femtosecond laser moved to the beginning of the
next line (point C in Figure 1). After the focus reached point C, the femtosecond laser
switched on and began to generate the next line.
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Figure 1. Phase matching condition of the first order harmonic resonance.

The relationship between these three points (A(x1, y1), B(x2, y2) and C(x3, y3)) is
as follows: 

y1 = −y2 = y3
x2 = 2|y1| tan θ + x1

x3 = x1 + Λ
. (1)

In order to cover the core diameter, the value of |y1| is 16 µm. By varying the period
of grating (Λ), the resonant wavelength could be tuned. Cladding mode coupling was
affected by tilted angle (θ). In our experiment, TFBGs were inscribed on single mode
fibers (Corning, SMF28). The number of the period was 3000. A sweeping wavelength
laser (resolution: 6 pm, and wavelength range: 1503.4–1620nm) was used to record the
transmission spectra.

3. Effect of TFBG Plane Position on Transmission Spectrum

Figure 2 demonstrates the spectra and microscopies of two 2◦TFBGs inscribed on two
different planes parallel to the fiber axis. The period of grating was 1.11 µm. Comparing
with Figure 2d,f, 2◦TFBG-1 was located on a plane near the boundary between core and
cladding (off-center inscription in z-direction), and 2◦TFBG-2 was located at the central
part of the core. That is to say, the overlap between core (or fundamental mode) and
RIM of 2◦TFBG-2 was stronger than that of 2◦TFBG-1. As shown in Figure 2a,b, both the
Bragg resonance and the cladding mode resonance of 2◦TFBG-1 were weaker than that of
2◦TFBG-2 as a result of lower overlap between fundamental mode and RIM. Additionally,
the ghost mode resonance of 2◦TFBG-1 was stronger than the Bragg resonance; however, the
relationship between these two resonances was reversed in 2◦TFBG-2. For non-localized
inscriptions like the ultraviolet exposure method, the relationship between the Bragg
resonance and the ghost mode resonance in TFBG is mainly influenced by tilted angle.
As for highly localized inscriptions like femtosecond laser line-by-line inscription, the
relationship is also affected by the grating position, and the overall resonant intensity will
decrease if the off-center inscription is carried out—which is different from what occurs in
non-localized conditions [19,20].

Figure 3 reveals the calculated results of the overlap integrals under different grating
planes. As shown in Figure 3a, the offset distance between the fiber axis and the grating
plane is defined as d. The overlap integral is read as

A =

+∞∫
−∞

dx(
x

S

∆ñ ·
→
E01 ·

→
E
∗
coupled · circ(r ≤ rcore)drdϕ) · ei· 4π

Λ ·x (2)

∆ñ = ∆n · δ(z− d) · δ(y− cot θ(x + m ·Λ)) (3)

Here, E01 is the normalized electric field of fundamental mode, Ecoupled is the nor-
malized electric field of the mode that fundamental mode couples to, and ∆n is the RIM.
Additionally, rcore is the radius of the core (in our simulation, this value was 4 µm). The
value of θ was 2◦. The integral along x axis was used to extract the Fourier-expansion
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coefficient of the second order grating. Additionally, n (an integer) represents different
lines causing effects on one specific cross section of the fiber core. Although the form of
the function of RIM distribution is expressed as impulse function (δ) along the z axis, we
set the modulation region to have a 0.6 µm length along the z axis in simulation. This was
done in order to press close to the real inscription in line-by-line condition.
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(f) side view.
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Here, E01 is the normalized electric field of fundamental mode, Ecoupled is the nor-
malized electric field of the mode that fundamental mode couples to, and ∆n is the RIM.
Additionally, rcore is the radius of the core (in our simulation, this value was 4 µm). The
value of θ was 2◦. The integral along x axis was used to extract the Fourier-expansion
coefficient of the second order grating. Additionally, n (an integer) represents different
lines causing effects on one specific cross section of the fiber core. Although the form of
the function of RIM distribution is expressed as impulse function (δ) along the z axis, we
set the modulation region to have a 0.6 µm length along the z axis in simulation. This was
done in order to press close to the real inscription in line-by-line condition.

Figure 3b demonstrates the overlap integral of fundamental mode, which decreased
with increases in d. Figure 3c shows the overlap between fundamental mode and the first
50 cladding modes under different offset distances (d). These overlap integrals showed
decreasing trends when d increased, especially for lower order cladding modes. These
phenomena agreed well with what we observed in our experiment.

4. Effect of Tilted Angle on Transmission Spectrum

Figure 4 illustrates the transmission spectra and the microscopy images of TFBG with
different tilted angles (2◦, 4◦ and 6◦). The period of grating was 1.11 µm, which guaranteed
the 2nd order resonance at C + L band and the Bragg resonance near 1605nm. Moreover,
these three TFBGs were located near the center of the core to avoid weak coupling. As the
tilted angle increased, both the Bragg resonance and the ghost mode resonance showed a
weakening tendency. Additionally, the envelope of the cladding mode coupling showed an
expanding trend and shifted to a shorter wavelength. In other words, a larger tilted angle
excited a number of higher order cladding modes and suppressed the coupling of lower
order cladding modes.
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Figure 5 performs the transmission spectrum and microscopy image of 12◦TFBG,
15◦TFBG and 18◦TFBG. Considering the limited wavelength range of sweeping wavelength
laser, the period of grating is set as 1.13 µm. Except the similar phenomena observed in
Figure 3, birefringence is clearly seen on the spectra. Dual dips phenomenon occurs within
several resonance wavelengths. Comparing with Figure 4a–c, the envelop of cladding
mode coupling becomes blurred. These phenomena are polarization-dependent.
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To test the polarization-dependent characteristics, the spectra of 18◦TFBG (under
different polarization states) were measured. The schematic of spectrum measurement
system is illustrated in Figure 6a. After passing through a polarizer, light output from C +
L ASE source became linearly polarized. Then, a polarization controller was utilized to
adjust the polarization state. Finally, light with different polarization states passed through
the TFBG and arrived at an optical spectrum analyzer (OSA). Figure 6b shows the spectra
of 18◦TFBG under different polarization states. It was obvious that the polarization state
had a large impact on the transmission spectrum. Either of the resonant dips could be
totally suppressed by tuning the polarization state of the input light.

We also investigated the torsional effects of 18◦TFBG. The torsional detection setup
is illustrated in Figure 7. The polarized laser output from a sweeping wavelength laser
system, and then passed through a TFBG. After that, a power meter (integrated in the
sweeping wavelength laser system) was used to record the spectra of TFBG. The TFBG was
fixed between a fiber holder and a fiber rotator. By adjusting the rotating angle of the fiber
rotator, different torsional stresses were exerted on the TFBG.

Figure 8 shows the spectra of 18◦TFBG under different twist angles. For the purposes
of our investigation, we only presented the spectra from 1508 nm to 1516 nm. Obviously,
twist angles influence the spectrum of 18◦TFBG. To quantify our study, we chose two dips
(dip A and dip B in Figure 8) near 1510 nm to characterize torsional effects. The resonant
wavelengths varied with the twist angle, which could have been induced by stress along
the fiber axis in the process of twisting. However, the wavelength shift was extremely small
and presented no regular change. The twist-related depth variations of dip A and dip B
were much more obvious when compared to wavelength shifts. If one of them deepened,
another would weaken.
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Figure 9 shows the depth variation of dip A and dip B as the twist angle increased with
steps of 30 nm. The difference between dip A and dip B was also performed to magnify
the twist-related variation. As shown in Figure 9, all the curves took on sine-like shapes.
During twist angle increases, the polarization state of input light also rotated; thus, the
variation of dip A and dip B also presented a periodical shape. As the blue line shows,
the slope (sensitivity) between 120◦ and 270◦ was about 0.025 dB/degree. TFBGs with a
tilted angle greater than 12◦ inscribed line-by-line are good candidates in torsional sensing
applications. Compared with other kind of torsion sensors, the proposed torsion sensor in
our manuscript was highly localized. This provided for the possibility of further integration
and would be suitable for narrow area torsion sensing. Moreover, among the benefits of
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femtosecond laser direct writing, the cladding layer of our sensing head remained intact, a
feature which could extend the service life of torsion sensors.
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5. Effect of Harmonic Order on Transmission Spectrum

In addition to the tilted angle, the harmonic order was another factor that influenced
the shape of TFBGs. Figure 10 demonstrates the spectra and microscopy images of 6◦TFBGs
with different harmonic orders. Figure 10a shows the spectrum of the 4th harmonic order
6◦TFBG (Λ = 2.22 µm). The characteristics of the 4th harmonic order 6◦TFBG were similar
to that of the 2nd order (see Figure 4c). However, when the harmonic order increased, the
spectrum deteriorated. Figure 10b demonstrates the spectrum of the 6th order 6◦TFBG.
We observed some tiny fluctuations occurring on the spectrum, which were not present
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in the 2nd or 4th order 6◦TFBG. The spectrum of 8th order 6◦TFBG (Figure 10d) was
chaotic. Except for the coupling between forward-propagating fundamental modes and
backward-propagating cladding modes (the basic characteristics of TFBG), the coupling
between the fundamental mode and higher order cladding mode transmitted in the same
direction, occurred in the spectrum (the characteristics of LPFGs). Similar phenomena were
reported in TFBGs inscribed plane-by-plane, and the authors described this phenomenon
as leaky mode resonance (LMR) [24,25]. Additionally, the Bragg resonance and ghost mode
resonance disappeared, as shown in Figure 10d. To confirm the existence of the Bragg
resonance and ghost mode resonance, we measured the spectrum of 6◦TFBG immersed
in refractive index matching oil (Figure 10c). Cladding modes were stripped out of the
cladding layer, and the Bragg resonance and ghost mode resonance existed in the 8th order
6◦TFBG.
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(d) Λ = 4.44 µm (in air). Microscopy image (100×): (e) Λ = 2.22 µm, (f) Λ = 3.33 µm, and (g) Λ = 4.44 µm.

The torsional effect of the 8th order 6◦TFBG was also investigated. The experimental
setup was the same as that depicted in Figure 7. Figure 11 perform the spectra under
different twist angle. Obviously, the intensity of LMR varied with twist angle, and the
resonant wavelength also shifted. To exemplify that, the LMR was relatively weaker
when the twist angle was 0◦ or 360◦, the dips reached their deepest points when the
twist angle was 180◦, and the resonant wavelengths also shifted to longer wavelengths.
However, with the impact of the coupling between forward-propagating fundamental
mode and backward-propagating cladding modes, we could not simply describe this
process by tracking the variation of the resonant wavelengths or the depth of LMR. A more
appropriate methodology should be used to study this process.
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Here, Sα[i] represents the ith point on the spectrum of the 8th order 6◦TFBG when the
twist angle is α. The total number of points on the spectrum was defined as n. Figure 12
illustrates the correlation function verses the twist angle. The whole curve took on a sinu-
soidal tendency, which indicates that the 8th order 6◦TFBG was a polarization-dependent
device. The slope (sensitivity) between 30◦ and 150◦ was −0.001/degree, and the slope
(sensitivity) between 240◦ and 330◦ was 0.001/degree. These two ranges were deemed
suitable for twist sensing.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 15 
 

 

Here, Sα[i] represents the ith point on the spectrum of the 8th order 6°TFBG when 

the twist angle is α. The total number of points on the spectrum was defined as n. Figure 

12 illustrates the correlation function verses the twist angle. The whole curve took on a 

sinusoidal tendency, which indicates that the 8th order 6°TFBG was a polarization-de-

pendent device. The slope (sensitivity) between 30° and 150° was −0.001/degree, and the 

slope (sensitivity) between 240° and 330° was 0.001/degree. These two ranges were 

deemed suitable for twist sensing. 

 

 

Figure 12. Correlation of spectra under different twist angles. 

6. Conclusions 

In conclusion, we experimentally studied the characteristics of line-by-line inscribed 

TFBGs. Studies show that, if the TFBG is located at a different plane parallel to the fiber 

axis, the transmission spectrum will show large differences. By increasing the tilted angle, 

the range of cladding mode resonance increased and the minimum value of cladding 

mode resonance shifted to a shorter wavelength. When the tilted angle was larger than 

12°, birefringence effects became obvious. The dual resonant dips of 18°TFBG varied pe-

riodically with twist angle and the slope (sensitivity) of the linear variation range was 

about 0.025 dB/degree, which made these kinds of TFBG a good candidate for twist sens-

ing. Clearly, LMR was observed in the 8th order TFBG, and twist (or polarization state) 

impacted the spectrum of the 8th order TFBG. By calculating the correlation function of 

the transmission spectra of the 8th order TFBG under different twist angles, we were able 

to demodulate the variation tendency, such that we realized twist sensing. TFBG is also a 

good candidate for refractive index sensing, e.g., biological sensing and chemistry sens-

ing. Outside of their applications in sensing and communication, FBGs with relatively 

small angles can be applied in stimulated Brillouin scattering suppression in high power 

fiber lasers. Our research results provide guidance for highly-localized TFBG inscription, 

which could be meaningful in integrated device fabrication, multichannel sensing, and 

control of polarization states. 

Figure 12. Correlation of spectra under different twist angles.

6. Conclusions

In conclusion, we experimentally studied the characteristics of line-by-line inscribed
TFBGs. Studies show that, if the TFBG is located at a different plane parallel to the fiber
axis, the transmission spectrum will show large differences. By increasing the tilted angle,
the range of cladding mode resonance increased and the minimum value of cladding
mode resonance shifted to a shorter wavelength. When the tilted angle was larger than
12◦, birefringence effects became obvious. The dual resonant dips of 18◦TFBG varied
periodically with twist angle and the slope (sensitivity) of the linear variation range was
about 0.025 dB/degree, which made these kinds of TFBG a good candidate for twist
sensing. Clearly, LMR was observed in the 8th order TFBG, and twist (or polarization state)
impacted the spectrum of the 8th order TFBG. By calculating the correlation function of
the transmission spectra of the 8th order TFBG under different twist angles, we were able
to demodulate the variation tendency, such that we realized twist sensing. TFBG is also a
good candidate for refractive index sensing, e.g., biological sensing and chemistry sensing.
Outside of their applications in sensing and communication, FBGs with relatively small
angles can be applied in stimulated Brillouin scattering suppression in high power fiber
lasers. Our research results provide guidance for highly-localized TFBG inscription, which
could be meaningful in integrated device fabrication, multichannel sensing, and control of
polarization states.
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