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Abstract: An application based on a microservice architecture with a set of independent, fine-
grained modular services is desirable, due to its low management cost, simple deployment, and
high portability. This type of container technology has been widely used in cloud computing.
Several methods have been applied to container-based microservice scheduling, but they come with
significant disadvantages, such as high network transmission overhead, ineffective load balancing,
and low service reliability. In order to overcome these disadvantages, in this study, we present a
multi-objective optimization problem for container-based microservice scheduling. Our approach
is based on the particle swarm optimization algorithm, combined parallel computing, and Pareto-
optimal theory. The particle swarm optimization algorithm has fast convergence speed, fewer
parameters, and many other advantages. First, we detail the various resources of the physical nodes,
cluster, local load balancing, failure rate, and other aspects. Then, we discuss our improvement
with respect to the relevant parameters. Second, we create a multi-objective optimization model
and use a multi-objective optimization parallel particle swarm optimization algorithm for container-
based microservice scheduling (MOPPSO-CMS). This algorithm is based on user needs and can
effectively balance the performance of the cluster. After comparative experiments, we found that the
algorithm can achieve good results, in terms of load balancing, network transmission overhead, and
optimization speed.

Keywords: multi-objective optimization; container-based microservice scheduling; particle swarm
optimization algorithm; cloud computing

1. Introduction

In recent years, microservices have become increasingly popular as a new application
development model and have been widely used in cloud computing. An application
based on the microservice architecture is designed as a set of independent, fine-grained
modular services. Each service separately performs various tasks and uses a lightweight
communication mechanism to transfer information between different microservices. Each
user’s needs can be addressed through a group of collaborative microservices. Due to the
advantages of using containers in cloud architecture, such as limited management costs,
easier and faster deployment, and higher portability, the use of containers within cloud
architectures has become widespread, as is the case for Netflix [1], Amazon [2], IBM [3],
Uber [4], and Alibaba [5].

Application containerization is one of many technologies that helps to create microser-
vice architectures [6]. Containerization is a method used to realize the virtualization of
an operating system. Container, as a lightweight virtualization technology based on the
operating system layer, provides a separate execution environment and file system to
run applications. Containers use a sandbox mechanism and, as a result, there will be no
interfaces between containers, almost no overhead, and they can easily be run in a data
center. The most important advantage is that it does not depend on any language, frame-
work, or system; therefore, the Docker Container instance can greatly reduce the cost of
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virtualization. Compared with a virtual machine, Docker Container has less consumption,
is simpler, and can be deployed faster. Current mainstream container management tools
include Docker Swarm [7], Apache Mesos [8], and Google Kubernetes [9]. Despite the
rapid development of these technologies and a certain number of practical container-based
microservice scheduling solutions, there are still some important issues that need to be
resolved in container-based microservice scheduling.

Three scheduling strategies are commonly used in the currently popular container
cluster management tool Docker Swarm [10]: Spread, Binpack, and Random. In the
Kubernetes scheduler, there are two: the predicate phase and the priority phase. These
two management tools only focus on the use of physical resources, ignoring other aspects
such as network overhead and cluster load balancing. An effective scheduling scheme
should be more comprehensive, such that the allocation of computing resources and storage
resources of physical nodes is more effective. While realizing cluster load balancing, local
load balancing should also be realized. To achieve this, comprehensive consideration of
service reliability and network transmission overhead is required. Further research is
needed to create such a scheduling method.

The container-based microservice scheduling problem is a typical NP-hard problem.
At present, many researchers use many methods to solve the virtual machine schedul-
ing problem in cloud computing. Daniel Guimaraes Lago et al. [11] have proposed a
container-based microservice scheduling algorithm based on resource type awareness. This
algorithm includes two parts: The first finds the optimal deployment of physical machines
for the container, and the other reduces the network transmission power consumption.
Mosong Zhou et al. [12] have inferred task resource requirements based on similar task
runtime information and proposed a fine-grained resource scheduling method. Carlos
Guerrero et al. [13] have proposed a genetic algorithm approach with the aim of finding
a suitable solution to address the problem of container allocation and elasticity using the
NSGA-II. Lin Miao et al. [14] have proposed a multi-objective optimization model for
container-based microservice scheduling with the aim of solving the scheduling problem
using an ant colony algorithm. Nguyen Dinh Nguyen et al. [15] aimed to overcome the
bottleneck problem through use of a leader election algorithm, which functions by evenly
distributing the leaders throughout the nodes in a cluster. Salman Taherizadeh et al. [16]
considered the specific quality of service (QoS) trade-offs and proposed an innovative
capillary computing architecture.

These methods can solve the container-based microservice scheduling problem, to
some extent; however, most of them can only achieve cluster load balancing, and cannot
achieve local load balancing. These methods are prone to uneven use of resources within
the node, resulting in unreasonable container allocation, which leads to increased trans-
mission overhead and reduced reliability. At the same time, these methods suffer from
slow optimization speeds and can easily fall into local optima. In order to solve these
problems, we first re-design the representation of the scheduling scheme. Then, in order
to reduce transmission overhead, improve cluster reliability, and load balancing, three
target models are proposed. Finally, a parallel particle swarm optimization algorithm [17]
is used, in order to solve the multi-objective optimization problem of container-based
microservice scheduling.

The main contributions of this paper are as follows.

• First, we establish three new optimization target models for the container-based
microservice scheduling problem: the network transmission cost model between
microservices, the global and local load balancing model, and the service reliability
model. The optimization target model proposed in this paper can solve the above-
mentioned problems that exist in current methods, at least to a certain extent.

• Second, a new representation of the scheduling scheme and particle is proposed to
increase the searching speed. Based on this representation, a new particle swarm
updating method is proposed, which preserves the diversity of particles while also
approaching the optimal solution during the optimization process.
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• Finally, a parallel particle swarm optimization algorithm is used to solve the multi-
objective optimization problem of container-based microservice scheduling. The algo-
rithm utilizes Pareto-optimal theory to select the individual extremum and the global
extremum of the particle swarm to improve the optimization efficiency of the algo-
rithm. At the same time, parallel computing is used to improve the solution speed of
the algorithm. Through inter-process communication, particle swarms can exchange
optimal solutions with each other, thus improving the efficiency of the global search
and allowing the particle swarms to avoid falling into local optima.

The rest of this paper is structured as follows. Section 2 briefly introduces related
technologies. Section 3 proposes the three optimization objective models. Section 4 intro-
duces the multi-objective optimization parallel particle swarm optimization algorithm for
container-based microservice scheduling (MOPPSO-CMS) in detail. Section 5 provides the
experimental comparison and analysis, and concludes the paper.

2. Related Technologies

This section introduces the techniques and theories used in this paper.

2.1. Particle Swarm Optimization

Particle swarm optimization (PSO) was first proposed by Eberhart and Kennedy in
1995 [18]. Its basic concept was derived from study of the foraging behavior of birds.
The PSO algorithm was inspired by the behavioral characteristics of biological populations
and can be used to solve optimization problems. The standard PSO algorithm is detailed
in the following equations:

Vi(k + 1) = ω×Vi(k) + c1 × rand()× (pbesti − Xi) + c2 × rand()× (gbest− Xi), (1)

Xi(k + 1) = Xi(k) + Vi(k + 1), (2)

where ω is the inertia factor, and c1 and c2 are learning factors, representing their own
inertia and the influence of individual extrema and the global extremum on particles,
respectively. The vector Xi = {xi1, xi2, · · · , xiN} represents the position of particle i in the
N-dimensional search space. Vi = {vi1, vi2, · · · , viN} represents the velocity of particle i.
Each particle can be regarded as a search unit in the N-dimensional search space. Particles
update themselves through two extreme values: The first is their personal best position
(shown as pbesti), while the other is the best position found by the whole population
(shown as gbest). The particles will always update their positions according to these two
extreme values, until the optimal solution is found.

The particle swarm optimization algorithm has been widely used in various fields
and has many efficient variations. Jun Sun et al. [19] proposed the quantum particle swarm
optimization algorithm, which combines the PSO algorithm with quantum behavior to
solve the traditional problems of the PSO algorithm. Lifeng Xu et al. [20] proposed a hybrid
particle swarm optimization algorithm with multi-level disturbance to prevent the PSO
algorithm from falling into local optima. Liu K. et al. [21] proposed a Bayesian network
structure optimization method based on local information, by adding the PSO algorithm.
Lingxia Liao et al. [22] aimed to solve a generic controller placement problem (GCP) by
planning the placement of controllers over SDN systems; to achieve this, they proposed a
novel multi-objective genetic algorithm (MOGA) with a mutation based on a variant of
the PSO algorithm. Muhammad Salman Qamar et al. [23] aimed to settle the traveling
salesman problem (TSP) by proposing a novel best–worst ant system (BWAS) based on
the PSO algorithm. Xianjia Wang et al. [24] investigated the role of the particle swarm
optimization (PSO) strategy update rules in the evolution of cooperation in the prisoner’s
dilemma (PD) on scale-free networks. The flow chart of the particle swarm optimization
algorithm is shown in Figure 1.
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Figure 1. Flow chart of the particle swarm optimization algorithm.

The pseudocode of the particle swarm optimization algorithm is shown in Algorithm 1.

Algorithm 1: Particle swarm optimization algorithm

while maximum iterations or minimum error criteria is not attained do
for each particle do

Calculate fitness value
if fitness value is better than the best fitness value (pbest) in history then

set current value as the new pbest
end

end
Choose the particle with the best fitness value of all the particles as the gbest
for each particle do

Calculate particle velocity according Equation (1)
Update particle position according Equation (2)

end
end

2.2. Pareto Optimality Theory

Pareto optimality is an ideal state of resource allocation, assuming that an inherent
group of people and allocated resources change from one allocated state to another, making
at least one person better without making anyone worse; this is referred to as Pareto
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improvement or Pareto optimization. The following section introduces some important
concepts behind Pareto optimality.

1. Pareto Dominance
For the objective function f (x) = [ f1(x), · · · , fn(x)], if solution−→x = (x1, · · · , xm) can
Pareto-dominate solution−→v = (v1, · · · , vm), it must satisfy ∀ fi(x) 6 fi(v)∧∃ f j(x) <
f j(v), i, j ∈ (1, · · · , n). If and only if the objective function value of any solution −→x is
not greater than that of solution −→v , and there exists at least one objective function
value less than that of value −→v , we say that solution −→x Pareto-dominates solution −→v .

2. Pareto Non-inferior Solutions
For the objective function f (x) = [ f1(x), · · · , fn(x)], if solution −→x = (x1, · · · , xm) is
Pareto non-inferior to solution −→v = (v1, · · · , vm), it must satisfy ∃ fi(x) < fi(v) ∧
∃ f j(x) > f j(v), i, j ∈ (1, · · · , n). If and only if solution −→x is better than solution −→v on
some objective functions, and solution −→x is worse than solution −→v on some objective
functions, then solution −→x is not inferior to solution −→v .

3. Pareto Optimal Solution
For the objective function f (x) = [ f1(x), · · · , fn(x)], if there is no solution in the
solution set X = [−→x 1, · · · ,−→x k] that can Pareto-dominate solution −→x p, p ∈ (1, · · · , k),
then the solution −→x p is the Pareto-optimal solution. Multi-objective optimization
problems usually have many Pareto-optimal solutions, and the solution set of Pareto-
optimal solutions is called the Pareto-optimal front.

Pareto-optimal theory has been used to solve multi-objective optimization problems
in different fields. Divya Chhibber et al. [25] aimed to obtain the Pareto-optimal solution of
a multi-objective fixed-charge solid transportation problem, by using the unique approach
of intuitionistic fuzzy programming with linear, hyperbolic, and exponential member-
ship, as well as non-membership functions. Srinivas Nagaballi et al. [26] utilized a game
theory-based (minimax) algorithm to take the best decision from a set of non-dominated
solutions obtained by Pareto optimality criteria. Marcin Czajkowski et al. [27] discussed a
multi-objective evolutionary approach to the induction of model trees, in order to demon-
strate how a set of non-dominated model trees can be obtained using a global model tree
(GMT) system.

Many researchers have combined particle swarm optimization with Pareto optimiza-
tion to solve multi-objective optimization problems. Hu Wang et al. [28] optimized the
Pareto entropy through use of the target space transformation method, and introduced
the concepts of lattice dominance and lattice distance density, in order to evaluate the
fitness of the Pareto-optimal solution. On this basis, a multi-objective particle swarm
optimization algorithm based on Pareto entropy was formed. Yuliang Shi [29] proposed a
service pricing model based on Pareto-optimality and used the particle swarm optimization
algorithm to find the optimal service pricing and resource allocation strategy. Chang’an
Shi et al. [30] proposed a shared aperture dynamic allocation method based on environmen-
tal information for a radar-communication-integrated radio frequency system, combining
Pareto-optimal theory and an improved particle swarm optimization algorithm based on
integer coding.

3. Multi-Objective Optimization Model

This section first introduces the system model and then puts forward three new
optimization target models and a new multi-objective optimization model. The names and
descriptions of relevant parameters are summarized in Table 1.
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Table 1. Parameters relevant to the models discussed in this paper.

Element Parameter Description

Application MS_SET Microservice set of an application
|MS_SET| = m Total number of microservices

MS_RELATION Consumption relationship between
microservices

Microservice msi ∈ MS_SET Microservice i
Calc_Reqi Computing resources required by a

container of microservice i
Str_Reqi Storage resources required for a

container of microservice i
Mem_Reqi Memory resources required for a

container of microservice i
Faili Failure rate of container

CONS_SETi Microservice set consumed by
microservice i

Link_Thri The request threshold that can be processed by a
container of microservice i

Linki Total requests received for
microservice i

Scalei The number of containers of
microservice i in the cluster

(msi, msl) ∈ Consumption relationship between
MS_RELATION microservice i and microservice l

Link(msi, msl) Total requests from microservice i
to microservice l

Trans(msi, msl) Data transmission from microservice i
to microservice l

Physical Node pmj ∈ CLUSTER Physical node j
|CLUSTER| = n Total number of physical nodes

Calc_Resj Computing resources of physical nodes
Str_Resj Storage resources of physical nodes

Mem_Resj Memory resources of physical nodes
Failj Failure rate of physical nodes

Network Dist(pmj, pmj′ ) Network distance between physical nodes
PassTime(pmj, pmj′ ) Time required to transfer data between

physical nodes

3.1. System Model

An application based on a container-based microservice architecture can be repre-
sented as a tuple < MS_SET, MS_RELATION > [13], where MS_SET is the set of mi-
croservices of the application and MS_RELATION is the set of consumption relationships
between the microservices of the application. If a microservice completes a task and needs
to use the result of other microservices, there is a consumption relationship between the
two microservices. This relationship can be defined as (mscons, msprov) ∈ MS_RELATION,
where mscons represents the consumer and msprov represents the provider.

A microservice msi can be represented as a tuple < Calc_Reqi, Str_Reqi, Mem_Reqi, Faili,
CONS_SETi, Link_Thri, Scalei > [13], where Calc_Reqi is the computing resources required
by a container of the microservice msi, Str_Reqi is the storage resource required by a
container of the microservice msi, and Mem_Reqi is the memory resource required by a
container of the microservice msi. Faili is the failure rate of microservice msi. CONS_SETi
is a set of microservices that is consumed by microservice msi; that is, if (msi, msl) ∈
MS_RELATION, then msl ∈ CONS_SETi. Link_Thri is the upper limit of the request that
can be processed by a single container instance of microservice msi. Scalei is the number
of containers for microservice msi, each container corresponding to a microservice, and a
microservice can have multiple container instances.
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As mentioned above, there is a consumption relationship between microservices and
microservices, and containers and containers. They transfer requests, where the number of
requests from microservice msi to microservice msl can be represented as Link(msi, msl).
The amount of data required for a request between microservice msi and microservice msl
is expressed as Trans(msi, msl). When the sender is a user or a client, the amount of data
transmitted is not considered; we only consider the number of requests in this paper.

A physical node, pmj, can be represented as a tuple < Calc_Resj, Str_Resj, Mem_Resj,
Failj >. Each microservice can deploy one or more containers on any physical node,
where Calc_Resj is the calculating resource that physical node pmj can provide, Str_Resj
is the storage resource that physical node pmj can provide, and Mem_Resj is the memory
resource that physical node pmj can provide. The total consumption of containers on a
single physical node cannot exceed that provided by the physical node. Physical nodes
may cause downtime, denial of service, or computational exceptions due to software or
hardware problems; as such, Failj represents the physical node failure rate [31]. Physical
nodes are connected through the network, and the network distance between each physical
node is expressed as Dist(pmj, pmj′). PassTime(conti, contk) represents the time required
for data transmission between two containers, and the closer the containers are, the shorter
Dist(pmj, pmj′) and PassTime(conti, contk) are.

A simple application is shown in Figure 2. This graph shows a directed acyclic graph
(DAG) of Job-A. There are five different microservices, corresponding to the five different
microservices in the graph. In the execution process, microservice1, microservice2, mi-
croservice3, microservice4, and microservice5 have 2, 3, 3, 1, and 2 instances, respectively.
The execution of microservice2 and microservice3 depends on the completion of microser-
vice1, while the execution of microservice5 depends on the completion of microservice4
and microservice3 [32].

ms1

ms5

ms4

ms3ms2

3 Instances 3 Instances

2 Instances

1 Instances

2 Instances

Figure 2. A simple application example.

3.2. Multi-Objective Optimization Model

In this section, we introduce the problems present in the models in [13,14], then pro-
pose three new target models. The authors of [14] proposed a container-based microservice
scheduling ant colony multi-objective optimization algorithm (ACO-MCMS); while the
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authors of [13] proposed a container-based microservice scheduling genetic multi-objective
optimization algorithm (GA-MOCA). These algorithms have large network transmission
costs, unbalanced clusters and individual loads, and long optimization times.

In order to reduce the transmission overhead, provide load balancing, and improve
service reliability and algorithm operation efficiency between microservices, we designed
three new target models, completely redesigning the representation of the scheduling
scheme, as detailed in the following sections. For a detailed explanation of the equation,
please refer to the works in [13,14].

3.2.1. Network Transmission

The model of network transmission overhead in ACO-CMS [14] is defined as follows:

COMM(x) =
n

∑
j=1

m

∑
i=1

xi,j

Scalei

n

∑
l=1∧l 6=j

∑
msk∈CONS_SETi

xk,l

Scalek
×

Link(msi, msk)Trans(msi, msk)Dist(pmj, pml),

(3)

where xi,j represents whether the container of microservice i is allocated to physical node j.
If the container of microservice i is allocated to physical node j, then xi,j = 1; otherwise,
xi,j = 0. In any physical node, there can be at most one container instance from the same
microservice [14]. This model uses the average network distance of all the container pairs
between consumer and provider microservices to calculate the data transmission overhead
between two microservice containers.

The model of network transmission overhead in GA-MOCA [13] is defined as follows:

TotalNetworkDistance = ∑
∀msi

ServiceMeanDistance(msi), (4)

ServiceMeanDistance(msi) =

∑∀contk |contk≡msi
(∑∀contk′≡msi′ |(msi′ ,msi)prov/cons

distalloc(contk),alloc(contk′ )
)

|contk| × |contk′ |
,

(5)

where cont′k ≡ msi means that container contk encapsulates/executes microservice msi,
alloc(contk/msi) = pmj means that the physical machine pmj allocates service msi/container
contk, and |contk| is the total number of containers. This model approximates the network
overhead between the microservices of an application using the average network distance
between all the pairs of consumer and provider containers.

In the GA-MOCA algorithm model, only the network distance between physical
nodes is considered, while the request and transmission amounts are ignored. In the
ACO-CMS algorithm model, although considering the request quantity and transmission
quantity on the basis of GA-MOCA, there are still shortcomings. In the process of network
transmission, there are obvious differences in transmission speed, distance, and other
factors between containers allocated in the same physical node and containers allocated in
different physical nodes. This problem is not adequately solved in the models of the above
two papers; therefore, we propose a new network transmission overhead model definition:

Trans_Consume(type) = Link(conti, conttype
k )Trans(conti, conttype

k )

Dist(conti, conttype
k )PassTime(conti, conttype

k ),
(6)

Inner_Consume =
∑n

i=1 ∑k∈CONS_SET Trans_Consume(in)
Scalei

, (7)

Outer_Consume =
∑n

i=1 ∑k∈CONS_SET Trans_Consume(out)
Scalei

, (8)

Total_Consume = Inner_Consume + Outer_Consume. (9)
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The total network transmission overhead, Total_Consume, consists of the network trans-
mission overhead between containers assigned to the same physical node Inner_Consume
and the network transmission overhead between containers assigned to different physical
nodes Outer_Consume. Trans_Consume(type) indicates the calculation method of network
transmission consumption under different types. According to type, the conttype

k is divided
into contin

k and contout
k . conti represents the container instance of microservice msi. Con-

tainer instances of microservices that have consumer relationships with microservice msi
and are assigned to different physical nodes, represented as contout

k . Containers of microser-
vices that have consumer relationships with microservice msi and are assigned to same
physical nodes are represented as contin

k . Based on the GA-MOCA algorithm and ACO-
CMS algorithm models, this model focuses on the difference between the network overhead
transmitted between the containers of the same physical node and the network overhead
allocated between the containers of different physical nodes. Considering the transmission
time issues, the optimization of the transmission overhead is more comprehensive.

3.2.2. Load Balancing

The model of load balancing in ACO-CMS [14] is defined as

RESRC_CONS(X) =
1

σ1 + σ2
max

1≤j≤n
max

(
m

∑
i=1

xi,j
Linki × Cal_Reqsti
Scalei × Cal_Resrci

σ1,
m

∑
i=1

xi,j
Linki × Str_Reqsti
Scalei × Str_Resrci

σ2),
(10)

where Cal_Reqsti, Cal_Resrci, Str_Reqsti, and Str_Resrci have the same meaning as Cal_Reqi,
Cal_Resi, Str_Reqi, and Str_Resi in this paper, respectively. σ1 and σ2 are the standard de-
viation values of the utilization rate of computing resources and storage resources of the
physical nodes in the cluster, respectively. This model operates on the assumption that
the worst load of the cluster is not necessarily the maximum resource utilization rate with
a relatively balanced resource load, but a high resource utilization rate with a relatively
unbalanced resource load.

The model of load balancing in GA-MOCA is defined as

BalanceClusterUse = σ(PMpml
usage), i f ∃msi|alloc(msi) = pml , (11)

PMpml
usage =

∑msi
ureqi×msreqi×resi

scalei

capl
, ∀msi|alloc(msi) = pml , (12)

ThresholdDistance = ∑
∀msi

|ureqi ×msreqi × resi
scalei

− thri|, (13)

where ureqi denotes the number of user requests for application i, msreqi denotes the
number of microservice requests msi needed for each ureqj request from application j,
and resi denotes the computational resources required for a microservice request. In this
mode, we define a metric called the threshold distance, which is the difference between
the resource consumption of a container and the threshold value of a microservice. This
is formalized in Equation (13), which uses the standard deviation of the percentage of
resource usages of the physical nodes, in order to evaluate the balance of the cluster.

It is obvious that GA-MOCA ignores other factors relevant to load balancing. On the
basis of GA-MOCA, the influence of storage on load balancing is added to the ACO-CMS
model. Using the maximum value of the resource utilization rate with the coefficient
among the physical nodes reflects the worst-case load for the load balancing of the cluster.
Although the use of a maximum value is more comprehensive, it ignores the combined
effects of other factors on load balancing. This will lead to inefficiency in storage and
computational resources.
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The models of these two papers cannot adequately address these problems. In order to
address these problems, we propose a global load balancing approach in this paper. Global
load balancing consists of cluster load balancing, which is the load balancing of the whole
physical node cluster, and local load balancing, which means the resources are balanced
within one physical node. Global load balancing aims to achieve the load balancing of the
entire physical node cluster and the rational use of the entire cluster resources at the same
time. The objective model of load balancing is designed as follows:

CalcStrDi f j = |
Calc_Reqj

Calc_Resj
−

Str_Reqj

Str_Resj
|, (14)

StrMemDi f j = |
Str_Reqj

Str_Resj
−

Mem_Reqj

Mem_Resj
|, (15)

MemCalcDi f j = |
Mem_Reqj

Mem_Resj
−

Calc_Reqj

Calc_Resj
|, (16)

LocalLoadBalancing =
∑n

j=1(CalcStrDi f j + StrMemDi f j + MemCalcDi f j)

3n
, (17)

ClusterLoadBalancing =
σclac + σstr + σmem

3
, (18)

GlobalLoadBalancing =
ClusterLoadBalancing + LocalLoadBalancing

2
, (19)

where LocalLoadBalancing is the sum of the differences of the ratio between the three re-
sources of the physical node. The differences are represented as CalcStrDi f , StrMemDi f ,
and MemCalcDi f . The larger the value is, the more unbalanced it is. σcalc, σstr , and σmem
represent the standard deviation of computing resources, storage resources, and memory
resources used throughout the physical node cluster, respectively. ClusterLoadBalancing
is calculated using three standard deviations. The greater the standard deviation, the
more discrete and the more unbalanced the use. GlobalLoadBalancing is the mean of
ClusterLoadBalancing and LocalLoadBalancing. We intend to achieve cluster load balanc-
ing for each resource, making each resource use more reasonable. In this paper, the physical
node storage, memory, and computing resources are calculated, combining the local load
balancing with cluster load balancing.

3.2.3. Service Reliability

The reliability model in ACO-CMS [13] is defined as follows:

Link_Fail(x) =
n

∑
j=1

m

∑
i=1

Failj × xi,j
Linki
Scalei

. (20)

This model uses the average number of request failures as an indicator to measure
the reliability of cluster services, which is mainly related to the number of microservice
requests and the failure rate of the nodes.

The reliability model in GA-MOCA is defined as

ServiceFailure(msi) = ∏
∀pml |allocation(msi)=pml

( f aill + ∏
∀msi |allocation(msi)=pml

f aili). (21)

This model measures the reliability of the system through the failure rate of the
applications. An application fails when any of its microservices fail, and a microservice
fails when all of the container replicas fail. A container fail is generated by a fail in the
container, f aili, or by a fail in the physical machine that allocates the container, f aill .

As both physical nodes and containers may have unpredictable errors due to various
problems, the number of requests failed is an important indicator to measure the reliability
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of a service. The definition of the model in GA-MOCA is multiplicative. When the number
of microservices and physical nodes is large, the result is too small, which is not conducive
to calculation by the computer and the comparison between the results. Compared with
GA-MOCA, the failure rate of physical nodes is only considered in the ACO-CMS model,
while the failure rate of containers is ignored. In addition, the container instance of the
same microservice in each node in the ACO-CMS model is unique. This constraint means
that the ACO-CMS model is unable to find an effective allocation scheme in the case of
more container instances and less physical nodes. To solve the above problems, the model
proposed in this paper is as follows:

InnerFail =
Link(conti, contin

k )

Scalek
( f aili + f ailk), (22)

OuterFail =
Link(conti, contout

k )

Scalek
[ f ailj + (1− f ailj)( f aili + f ailk)], (23)

SystemFail = InnerFail + OuterFail, (24)

where InnerFail refers to the number of requests that may fail when transmitting between
containers in the same physical node, and OuterFail refers to the number of requests that
may fail when transmitting between containers in different physical nodes. Requests sent
between containers within the same physical node are only affected by container failure
rates; however, sending requests between containers of different physical nodes is affected
not only by the failure rate of the container itself, as represented by f aili and f ailk, but also
by the failure rate of the physical node, f ailj. As shown in Figure 3, cont1 and cont2 are
assigned to same physical node, such that the fail rate only depends on the containers;
however, cont3 and cont4 need to transfer data from physical node to physical node, so the
fail rate not only depends on the containers, but also on the physical nodes. The model
in this paper calculates the number of failure requests that may occur in the container
transmission within the same node and between different nodes to solve this problem—the
model can even reasonably calculate and compare when there are multiple containers and
multiple physical nodes.

cont1

cont2

cont3 cont4

Figure 3. A simple container transfer example.
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3.3. Multi-Objective Optimization Model

Under physical node resource constraints, a multi-objective optimization model based
on the above three models is established for the container-based microservice schedul-
ing problem.

minimize Total_Consume(x) (25)

minimize LoadBalancing(x) (26)

minimize SystemFail(x) (27)

s.t. Calc_Reqj ≤ Calc_Resj (28)

s.t. Str_Reqj ≤ Str_Resj (29)

s.t. Mem_Reqj ≤ Mem_Resj (30)

Functions (25)–(27), respectively, represent the three optimization objectives: min-
imizing network transmission overhead, rationalizing load balancing, and minimizing
the number of requests failed. Functions (28)–(30) represent the computing resource con-
straints, storage resource constraints, and memory resource constraints of the physical node,
respectively. The resources used by the container on the physical node cannot outnumber
the resources available to the physical node.

It is difficult to solve multi-objective optimization problems directly, especially to find
the optimal solution. Particle swarm optimization algorithms have been widely used in
various problems and have achieved respectable results. Pareto theory is a decent frame-
work that can be used to deal with multi-objective optimization problems; therefore, we
use an algorithm that combines the particle swarm optimization algorithm and the Pareto
frontier, using Pareto theory to evaluate the quality of the function solution. Through the
global extremum, individual extremum, self-inertia, and the interaction between multiple
particle swarm groups, our algorithm can avoid falling into local optima and, thus, ensure
the quality of the solution.

4. Parallel Particle Swarm Optimization Algorithm

Traditional particle swarm optimization easily converges to local optima during the
optimization process [33]. We use a parallel particle swarm optimization algorithm, in order
to address this problem. Based on the traditional PSO algorithm, MOPPSO-CMS increases
the number of simultaneous iterative particle swarms and allows the particle swarms
to communicate with each other through inter-process communication, exchanging the
optimal solution to avoid falling into local optima.

4.1. Representation of Particles and Scheduling Scheme

In the study of GA-MOCA and ACO-CMS, solutions for this problem are usually
based on a string-based notation. For example, GA-MOCA defined a string-based notation
to represent the number of containers for each microservice, as well as the allocation of
these containers to the physical machines, as shown in Figure 4.

After investigating this method, we found that it has several problems: First, according
to the characteristics of the ACO-CMS algorithm, when it tries to find a suitable schedule
scheme, it has to traverse each container, microservice, and physical node separately, which
results in significant search times. If there are x containers, y microservices, and z physical
nodes, and the ACO-CMS algorithm has a population of m particles and n iterations,
the time complexity of the ACO-CMS algorithm is O(x× y× z×m× n).

Second, in the GA-MOCA algorithm, when the crossover and mutation operations
occur, unreasonable solutions are always generated (i.e., growth mutation, swap mutation,
and shrink mutation). Growth mutation adds a physical node to a microservice randomly,
for example, if ms6 = {3, 1}, then perhaps ms6 = {3, 1, 1} after mutation. Swap mutation
exchanges the allocation of microservices, for example, if ms6 = {3, 1} and ms2 = {3},
then ms2 = {3, 1} and ms6 = {3} after mutation. Shrink mutation reduces the physical
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node that the microservice has been allocated, for example, if ms6 = {3, 1}, then perhaps
ms6 = {3} after mutation. Therefore, if ms6 only has two container instances when the
operations occur, ms6 may not fill the quantity limit or exceed the resources that the physical
nodes can provide. This can generate an invalid schedule scheme. This is the case for all of
the other operations, as well.

Physical machine pm1

cont1
ms4

cont2
ms1

cont3
ms5

cont4
ms4

cont5
ms6

cont6
ms4

Physical machine pm2

cont7
ms3

cont8
ms4

cont9
ms5

Physical machine pm3

cont10
ms1

cont11
ms2

cont12
ms6

cont13
ms3

chromosome
ms1 {3,1}
ms2 {3}
ms3 {2,3}
ms4 {1,2,1,1}
ms5 {1,2}
ms6 {3,1}

Figure 4. Representation of chromosome and scheduling scheme in GA-MOCA.

Third, when there are large amounts of containers and microservices, the representa-
tion method uses significant amounts of memory to record the allocation order of containers
when the algorithm is running, and the allocation order of containers has no direct impact
on the optimization of the scheduling plan; however, this is suitable for the operation of
their algorithm, specifically.

Considering the above problems, we define a new scheduling scheme expression,
based on the number of containers. Each scheduling scheme is represented by a two-
dimensional array, each row representing a microservice msi, and each column represents
a physical node pmj. The element (msi, pmj) represents the number of containers of
microservice msi allocated to physical node pmj. Consider the simple application we
mentioned above (shown in Figure 2) as an example; one of its schedule schemes (or
particles) is shown in Figure 5. Figure 5 shows the original state of the particle, which is
randomly initialized by the MOPPSO-CMS algorithm. As microservice1 has two container
instances, the total number of rows in ms1 is two. The allocations (ms1, pm1) = 1 and
(ms1, pm3) = 1 are randomly initialized, where one of the ms1 containers is assigned to
pm1 and the other is assigned to pm3. Compared to the previous representation method,
this method has several advantages:

First, the new representation method and the characteristics of MOPPSO-CMS al-
gorithm have reduced time complexity. When the MOPPSO-CMS algorithm begins, it
first initializes the particles (shown in Figure 5), then finds the suitable schedule scheme
by changing the number of containers in the physical node, instead of traversing each
container and physical node. Thus, if there are x containers, y microservices, and z physical
nodes, and the MOPPSO-CMS algorithm has a population of m particles and n iterations,
the time complexity of the MOPPSO-CMS algorithm is O(y×m× n).
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pm1 pm2 pm3

ms1 1 0 1

ms2 1 2 0

ms3 1 1 1

ms4 0 0 1

ms5 0 2 0

Physical Node pm1

cont1 ms1 cont1 ms2 cont1  ms3

Physical Node pm2

cont2 ms2 cont3 ms2 cont2  ms3 cont1 ms5 cont2 ms5

Physical Node pm3

cont2 ms1 cont3 ms3 cont1  ms4

Figure 5. The new scheduling scheme and particle representation.

Second, the transfer and copy operations, which are discussed later, can avoid gener-
ating an invalid schedule scheme while looking for a suitable schedule scheme, as they do
not change the total number of containers.

Third, the memory resource of the new representation method only depends on
the number of microservices and the physical nodes. The amount of containers will not
significantly affect the new representation method.

In conclusion, the new representation method combines the advantages and over-
comes the shortcomings of both ACO-CMS and GA-MOCA. ACO-CMS will not generate
an invalid schedule scheme, as it picks the containers in order to find suitable physical
nodes; however, this may result in increased time complexity. The GA-MOCA may have
less time complexity, but can generate many invalid schedule schemes. The new represen-
tation will reduce the time complexity and avoid generating invalid schedule schemes at
the same time, thus combining the advantages of both methods.

4.2. Transfer and Copy Operations

The original update method of the PSO [18] is shown in Equations (1) and (2). Obvi-
ously, the original update method of the particle swarm does not apply to the algorithm in
this paper. To solve this problem, we improve the update method based on the original.
The first is the transfer operation. In order to ensure the optimization ability of the particle
itself, each particle is transferred according to a probability; namely, the inertia factor ω.
The transfer operation of particles is illustrated in Figure 6.

pm1 pm2 pm3

ms1 1 0 1

ms2 1 2 0

ms3 1 1 1

ms4 0 0 1

ms5 0 2 0

pm1 pm2 pm3

ms1 0 1 1

ms2 1 1 1

ms3 0 2 1

ms4 0 0 1

ms5 1 0 1

rand()=0.5

transfer

Figure 6. Transfer operation of particles.

In the figure, there is a 0.5 probability for the transfer operation to occur in each
position of the particle. If the transfer occurs, the microservice would randomly transfer
its containers to other physical nodes. For example, if a transfer occurs at (ms1, pm1),
the containers in the physical node pm1 are randomly transferred to pm2. Similarly, if a
transfer occurs at (ms5, pm2), the containers in the physical node pm2 are randomly trans-
ferred to pm1 and pm3. The number of the transfer containers are random, for example,
for (ms2, pm2), it could transfer one or two to pm3. If the number of containers in the
position is 0, no transfer occurs.
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Further, in order to increase the global optimization ability and optimization efficiency,
the copy operation is integrated into the process of particle swarm optimization. Each row
in the particle will copy the individual extremum pbest and the global extremum gbest
according to a specified probability (i.e., the learning factors c1 and c2), taking the particle
itself and the individual extremum pbest as an example. The copy operation of the particle
is illustrated in Figure 7.

pm1 pm2 pm3

ms1 0 1 1

ms2 1 1 1

ms3 0 2 1

ms4 0 0 1

ms5 1 1 0

pm1 pm2 pm3

ms1 0 0 2

ms2 1 1 1

ms3 0 1 2

ms4 1 0 0

ms5 1 1 0

rand()=0.5

copy

Figure 7. Copy operation of particles.

In the figure, the left side is the particle, and the right side is the individual extremum
pbest of the particle. According to the learning factor, the probability of a copy operation
occurring is 0.5. The copy operation occurs at ms2, and the particle copies the elements
of the same row in pbest, covering their own elements to achieve the purpose of learning
from the individual extremum.

4.3. Parallel Particle Swarm Optimization Algorithm

The traditional PSO algorithm only uses one swarm when running; in contrast,
the parallel particle swarm optimization algorithm in this paper uses multiple swarms
operating at the same time. First, the MOPPSO-CMS algorithm is used to initialize
the particles, as shown in Figure 5. Then, the algorithm calculates gbest and pbest, ac-
cording to the fitness function. The fitnesses of the particles are defined as an array
(Total_Consume, GlobalLoadBalancing, SystemFail); the quality of the particles is assessed
by means of an objective function of optimization problems [34]; and each element of the
array is calculated using Equations (9), (19) and (24), respectively. These three equations
represent the fitness function used in our method. The smaller the fitness, the better
the particle.

In the MOPPSO-CMS algorithm, each swarm has their own gbest, pbest, and Pareto-
optimal front. Within the swarm, after initializing, the particle is updated through the
transfer and copy operations mentioned above. First, according to ω, it executes the
transfer operation; the containers allocated are transferred to other physical nodes. Second,
the particle copies the rows from pbest, according to c1, to execute the copy operation. Third,
the particle copies the rows from gbest, according to c2, to execute the copy operation.

When the particle is initialized or changed, its fitness is calculated. According to
Pareto optimality theory, if the new fitness (which, in our approach, is named pbest′)
Pareto-dominates pbest, then pbest is replaced by pbest′, and the schedule scheme of pbest
is also replaced by the schedule scheme of pbest′. Otherwise, we keep pbest and the
associated schedule scheme. Then, the gbest or Pareto-optimal front is updated to the
same operation.

When the iteration is finished, the fitness of each particle is compared to that of the
others. One with fitness that is Pareto-dominated by another particle will be dropped.
The rest is the gbest, and forms the Pareto-optimal front. It is difficult to find the best
solution in a multi-objective optimization problem. Therefore, the gbest is not unique
in this algorithm. According to the Pareto optimality theory mentioned above, each
Pareto-optimal solution is a gbest, and the set of gbest (or Pareto-optimal solutions) is a
Pareto-optimal front.
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Each iteration generates a new set of gbest, with the gbest in the new set denoted by
gbest′. The gbest′ are compared with gbest in the Pareto-optimal front. All gbest that are
Pareto-dominated by the gbest′ are dropped, and the gbest′ are added to the Pareto-optimal
front. If any gbest′ is Pareto-dominated by any one of the gbest, then it is dropped. If gbest′

does not Pareto-dominate any gbest, and all gbest do not Pareto-dominate gbest′, then
gbest′ is added to the Pareto-optimal front.

When the Pareto-optimal front of the swarm is updated, inter-process communication
is carried out. The swarm uploads the gbest′ that was added most recently to the Pareto-
optimal front and the shared memory. The other swarm downloads the gbest′ from the
shared memory, all the local gbest Pareto-dominated by the gbest′ are dropped, and the
gbest′ are added to the Pareto-optimal front. The gbest′ are uploaded to the shared memory
again, for the rest of the swarm to download. If the gbest′ is Pareto-dominated by any one
of the local gbest, then the gbest′ is dropped. If gbest′ does not Pareto-dominate any gbest,
and all gbest do not Pareto-dominate gbest′, then the gbest′ is added to Pareto-optimal
front, and the gbest′ is uploaded again. The operation of inter-process communication is
shown in Figure 8.

The particle or schedule scheme is output, which has the minimum value of a sum of
fitness in the Pareto-optimal front. The algorithm pseudo-code is shown in Algorithm 2.
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(b) Particle swarm 1 puts its
own gbest1 in shared mem-
ory.
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(e) Particle swarm 3 obtains
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If gbest3 is not dominated,
discard gbest1.

Figure 8. Flow of the inter-process communication.
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Algorithm 2: Parallel particle swarm optimization algorithm
Input: MS_SET, CLUSTER, pnum(the number of particles for each swarm),

iter_num, Dist(pmj, pmj′), PassTime(pmj, pmj′), MS_RELATION
Output: Schedule scheme
Initialize the particle swarms
Calculate the fitness of particles
According to Pareto-optimal theory, initialize pbest and Pareto-optimal front
Initialize the shared memory
while maximum iterations or minimum error criteria is not attained do

for each particle do
// Update particle position
// Transfer operation
for each element in particle do

if random() < ω then
Transfer operation

end
end
// Copy operation
for each row in particle do

if random() < c1 then
Copy operation for pbest

end
end
for each row in particle do

if random() < c2 then
Chose one in the Pareto-optimal front as the gbest
Copy operation for gbest

end
end
Calculate the fitness and record the pbest

end
// Update the Pareto-optimal front
Get gbest′ form shared memory
if gbest′ Pareto-dominates any elements in the Pareto-optimal front
or no elements in Pareto-optimal front can Pareto-dominate gbest′ then

Delete the dominated element
Add gbest′ to the Pareto-optimal front
Return the gbest′ to shared memory

end
else

Delete the gbest′

end
if pbest Pareto-dominates any elements in Pareto-optimal front
or no elements in Pareto-optimal front can Pareto-dominate pbest then

Delete the dominated element Add pbest to the Pareto-optimal front
Upload the pbest to shared memory

end
end

5. Experiment and Analysis
5.1. Experimental Data

We conducted experiments based on the Alibaba Cluster Trace V2018 cluster [30]
data set. Cluster-trace-v2018 released a new version of cluster tracking in 2018 as part of
the Alibaba Open Cluster Tracking Program. The data set contains approximately 4000
computers containing eight days of information, composed of the following six tables:

1. machine_meta.csv: Machine metadata and event information.
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2. machine_usage.csv: Resource usage of each machine.
3. container_ eta.csv: Meta-information and event information of containers.
4. container_usage.csv: Resource usage for each container.
5. batch_instance.csv: Information about instances in batch workload.
6. batch_ task.csv: Information about instances in batch workload.

The experimental test data set is shown in Tables 2 [13] and 3. Table 2 shows the
consumption relationship (msi, msl), the amount of data transmission Transi,j, and the
number of connections Linki,j between microservices when the application receives a user
request. If the microservice is an entry microservice, for the first started microservice in
the application, the consumption relationship is (0, msi). Table 3 shows the relevant values
of the microservices to complete a user request, where CONS_SET, Cal_Reqi, Str_Reqi,
and Mem_Reqi are abbreviated as CONS, Cali, Stri, and Memi, respectively. The explana-
tion of each parameter is referenced in Table 1.

Table 2. MS_RELATION × 1.0 times of UserRequest.

(msi, msl) Linki,j Transi,j (msi, msj) Linki,j Transi,j

(0, ms1) 50 0 (ms7, ms14) 10 4.1
(0, ms3) 70 0 (ms8, ms14) 15 4.2
(0, ms6) 8 0 (ms9, ms5) 20 3.6
(0, ms7) 30 0 (ms9, ms11) 20 4.7
(0, ms10) 100 0 (ms10, ms5) 20 3.4
(0, ms13) 30 0 (ms10, ms9) 25 4.4

(ms1, ms2) 20 4.6 (ms10, ms11) 20 4.9
(ms1, ms4) 10 3.1 (ms11, ms2) 20 3.2
(ms1, ms9) 20 4.0 (ms12, ms8) 45 6.4
(ms2, ms4) 10 3.5 (ms13, ms2) 20 4.5
(ms2, ms12) 15 5.9 (ms13, ms8) 45 6.1
(ms3, ms13) 60 1.8 (ms13, ms16) 8 5.5
(ms4, ms15) 30 5.6 (ms13, ms17) 30 2.4
(ms4, ms16) 8 5.7 (ms15, ms16) 8 5.2
(ms5, ms15) 30 5.3 (ms16, ms14) 15 4.3
(ms7, ms2) 20 4.8 (ms17, ms12) 15 6.2

Table 3. Microservices in application × 1.0 times of UserRequest.

msi CONS Cali Stri Memi Scalei Linki Link_Thri Faili

1 2, 4, 9 2.1 1.4 2 5 10 50 0.04
2 4, 12 0.5 3.2 4 10 8 80 0.02
3 13 3.1 1.6 2 9 8 70 0.02
4 15, 16 4.7 0.2 2 4 5 20 0.02
5 15 1.8 3.1 2 10 8 40 0.002
6 2.5 5.1 2 2 4 8 0.02
7 2, 14 6.2 0.6 2 8 4 30 0.001
8 14 0.8 6.2 2 23 4 90 0.003
9 5, 11 3.9 2.3 2 9 5 45 0.001
10 5, 9, 11 0.2 4.8 4 25 4 100 0.006
11 2 2.8 2.6 2 5 8 40 0.02
12 8 5.3 0.9 2 8 4 30 0.003
13 2, 8, 16, 17 0.6 4.8 4 18 5 90 0.04
14 6.1 2.5 2 10 4 40 0.006
15 16 1.2 4.2 4 12 5 60 0.003
16 14 5.4 1.6 2 6 4 24 0.02
17 12 3.7 2.2 4 5 6 30 0.004



Sensors 2021, 21, 6212 19 of 28

5.2. Algorithm Parameters Settings

The algorithm parameters are designed as follows:

(1) Number of physical nodes: |CLUSTER| = 100.
(2) Physical nodes have three different computing capabilities: Calc_Resj = [100, 200, 400].
(3) Physical nodes have three different storage capabilities: Str_Resj = [100, 200, 400].
(4) Physical nodes have three different memory capabilities: Mem_Resj = [60, 120, 180].
(5) The failure rate of physical nodes is a random number from 0.01 to 0.03.
(6) The network distance between container transmissions Dist(pmj, pmj′), the same

physical node is 1, and there are four different physical nodes.
(7) When the time required to transfer data between containers is the same as the physical

node PassTime = 1; when the node is different PassTime = 4.

Table 4 shows the minimum of the sum of fitness for the MOPPSO-CMS algorithm
under different parameters. The best results of the experiment have been shown in bold.
From Table 4, we can see that the growth of iter_num, c2, and ω improved the algorithm.
Most fitness values have been reduced, and c2 has a significant impact on the algorithm.
Further, we noticed that when c1 grows, it negatively impacts the performance of the
algorithm. c1 indicates the possibility of the particle to copy rows from pbest, the growth
of c1 may cause the algorithm to fall into local optima. ω indicates the possibility of a
particle to perform a transfer operation, where the growth of ω may improve the global-
optimization ability of the algorithm. c2 indicates the probability of a particle to copy rows
from gbest, where properly increasing the value can improve the optimization ability of
the algorithm; however, if the value is too high, it will lead to the algorithm falling into
local optima. When considering the effects of every parameter, we increased the value of
c2, ω, pnum, and iter_num and reduced the value of c1. We can see that, when parameters
were pnum = 300, iter_num = 300, c1 = 0.1, c2 = 0.45, ω = 0.45, the algorithm obtained
the best performance; therefore, we chose these as the parameters of the algorithm. The
parameters of our algorithm are shown in Table 5.

Table 4. Performance comparison of the algorithms with different parameters.

Userrequest 1 1.5 2 2.5 3 3.5 4 4.5 5

pnum = 100, iter_num = 100, c1 = 0.2, c2 = 0.2, ω = 0.2

f itness 29,749 67,121 107,454 173,738 222,159 286,247 353,762 403,526 493,399

pnum = 100, iter_num = 200, c1 = 0.2, c2 = 0.2, ω = 0.2

f itness 29,085 64,198 111,659 160,516 233,996 285,488 348,387 441,235 507,528

pnum = 100, iter_num = 300, c1 = 0.2, c2 = 0.2, ω = 0.2

f itness 29,885 62,481 107,957 155,796 217,289 278,558 352,253 412,551 496,465

pnum = 100, iter_num = 400, c1 = 0.2, c2 = 0.2, ω = 0.2

f itness 29,071 61,045 106,934 153,975 211,867 286,196 345,237 405,551 495,709

pnum = 200, iter_num = 100, c1 = 0.2, c2 = 0.2, ω = 0.2

f itness 29,633 63,695 106,443 159,145 224,563 276,847 351,607 418,323 508,780

pnum = 300, iter_num = 100, c1 = 0.2, c2 = 0.2, ω = 0.2

f itness 29,149 60,696 107,810 156,193 227,535 282,344 337,411 422,690 504,144

pnum = 400, iter_num = 100, c1 = 0.2, c2 = 0.2, ω = 0.2

f itness 29,541 63,340 107,729 156,117 215,572 270,340 334,728 426,384 473,625

pnum = 100, iter_num = 100, c1 = 0.33, c2 = 0.33, ω = 0.33

f itness 28,212 63,837 107,703 160,831 215,973 284,671 343,207 426,018 490,629
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Table 4. Cont.

Userrequest 1 1.5 2 2.5 3 3.5 4 4.5 5

pnum = 100, iter_num = 100, c1 = 0.2, c2 = 0.2, ω = 0.6

f itness 29,306 63,346 110,912 160,118 210,481 282,464 366,727 415,715 511,287

pnum = 100, iter_num = 100, c1 = 0.2, c2 = 0.2, ω = 0.8

f itness 29,250 64,786 110,820 164,612 226,917 297,486 357,868 433,706 516,956

pnum = 100, iter_num = 100, c1 = 0.2, c2 = 0.6, ω = 0.2

f itness 26,232 58,685 97,800 145,278 202,630 267,078 344,999 405,686 463,625

pnum = 100, iter_num = 100, c1 = 0.2, c2 = 0.8, ω = 0.2

f itness 27,363 57,953 100,421 150,958 209,213 265,678 319,939 394,723 467,584

pnum = 100, iter_num = 100, c1 = 0.6, c2 = 0.2, ω = 0.2

f itness 31,289 70,993 118,831 171,354 231,513 289,272 366,174 463,794 522,502

pnum = 300, iter_num = 300, c1 = 0.1, c2 = 0.45, ω = 0.45

f itness 25,742 58,791 97,910 139,280 192,893 250,241 304,531 366,548 438,265

pnum = 300, iter_num = 300, c1 = 0.1, c2 = 0.6, ω = 0.3

f itness 26,768 55,467 96,711 143,826 200,094 251,660 309,181 365,054 454,318

Table 5. Relevant parameters of the MOPPSO-CMS algorithm.

pnum iter_num ω c1 c2

300 300 0.45 0.1 0.45

5.3. Related Algorithms for Comparison

In this paper, we conducted our experiment on a Windows 10 system. The processor
was an Intel Core i7-8750H, the memory was 16 GB, the display card was an NVIDIA
RTX 2070, and the language used was Python. In order to verify the effectiveness of
the MOPPSO-CMS algorithm, we compared it with the ACO-CMS [14], GA-MOCA [13],
and Spread [16] algorithms.

The ACO-CMS algorithm is a container-based multi-objective optimization algorithm
used for microservice scheduling. This algorithm considers the utilization of computing
resources and storage resources of physical nodes, the number of requests, the failure
rate of physical nodes, and combines multi-objective heuristic information to improve the
efficiency of optimal path selection.

The GA-MOCA algorithm is a multi-objective optimization algorithm used for con-
tainer microservice scheduling, based on NSGA-II. This algorithm considers the threshold
distance of the container, load balancing of the physical node computing resources, and the
reliability of the service and communication overhead between related microservices.

Spread is a scheduling strategy owned by Docker Swarm, which selects the physical
nodes with the least container instances for deployment.

5.4. Experimental Results and Analysis

We compared the performance of the four algorithms considering six different as-
pects: network transmission overhead, local load balancing, standard deviation of cluster
resources, global load balancing, service reliability, and algorithm running speed.

5.4.1. Network Transmission Overhead

Network transmission takes into account the number of requests, transmission data
size, transmission distance, transmission time, and other factors in the process of network
transmission, and so network transmission overhead is one of the indicators we used to
measure the performance of the algorithm. The smaller its value, the less overhead the
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network transmission requires. Figure 9 shows the performance differences in network
transmission overhead among the four algorithms.
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Figure 9. Performance differences in network transmission overhead among the four
considered algorithms.

The Spread algorithm selects a physical node with the least container instances for
deployment each time. The algorithm distributes the microservice containers as evenly
as possible to each physical node, leading to nodes with consumption relations that are
easily assigned to different physical nodes. Thus, the transmission overhead between
microservices is greatly increased.

GA-MOCA considers the influence of the distance between physical nodes in finding
solutions, so its effect is slightly better than Spread.

ACO-CMS optimizes factors such as physical node distance and transmission data size,
but ignores the possible impact of transmission time. Moreover, due to the characteristics
of the ACO-CMS algorithm, the container instance of the microservice on a physical node is
unique, so it is impossible to deploy multiple consumption-related microservice containers
to the same physical node.

Given the significant difference in the number of two microservice containers, the re-
sult was an increase in network transmission overhead. Figure 9 shows that the Spread
algorithm performed the worst, and it always had the highest network transmission
overhead, with the ACO-CMS and GA-MOCA algorithms performing better; however,
the MOPPSO-CMS algorithm achieved the best performance, as it considers the influ-
ence of the data transmission amount and network distance on the network transmission
overhead, as well as the influence of time required for data transmission on the network
transmission overhead.

5.4.2. Local Load Balancing

Local load balancing is an important indicator to measure the performance of the
algorithm, which is also used in the scoring algorithm of the Kubernetes container schedul-
ing system. In order to achieve balanced use of computing resources, storage resources,
and memory resources, we considered local load balancing as an indicator. When a node
focuses on a certain resource, a local load imbalance can occur. The smaller the value of this
indicators, the better the local load balancing; while the larger the value is, the worse the
local load balancing. Figure 10 shows the performance differences of the four algorithms,
in terms of local load balancing.



Sensors 2021, 21, 6212 22 of 28

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

Lo
ca

lL
oa

dB
al

an
ce

UserRequest

MOPPSO-CMS
NSGA-II

ACO-CMS
Spread

Figure 10. Performance differences of the four algorithms on local load balancing.

Figure 10 shows that the Spread algorithm achieved reasonable performance under
low user requests; however, when the amount of user requests increased, the performance
worsened. This is because the algorithm tried to divide each container to each physical
node and, when there are few user requests, each physical node is allocated less containers,
which does not result in reduced performance, as the resources are not overwhelmed. Both
the ACO-CMS algorithm and the GA-MOCA algorithm fluctuated, and their performance
was not stable. This may be because both algorithms optimize the load balancing of the
cluster, but ignore local load balancing. The MOPPSO-CMS algorithm had the best effect,
as it was specially designed to optimize the local load balancing, such that the resources on
the physical nodes can be balanced and reasonably used in the calculation process.

5.4.3. Standard Deviation of Cluster Resources

Standard deviation is the most commonly used measure of statistical dispersion in
probability statistics. It reflects the discrete degree between individuals within the group.
According to this feature, we used the standard deviation to measure the discrete degree
of node resource use in the cluster: the greater the value, the more discrete the value,
while the smaller the value, the stabler it is. Figure 11 shows the standard deviation of the
use of cluster computing resources, Figure 12 shows the standard deviation of the use of
cluster memory resources, and Figure 13 shows the standard deviation of the use of cluster
storage resources.

These figures indicate that the Spread algorithm maintained acceptable performance in
the use of computing resources, storage resources, and memory resources in the experiment.
This performance stems from the characteristics of the algorithm itself, which distributes
all containers to each physical node as evenly as possible and achieves good results even
without special optimization of the use of resources. The ACO-CMS algorithm also had
good performance, as the container instance of the same microservice on a physical node is
unique and the container allocation is relatively average, slightly better than the MOPPSO-
CMS algorithm in this paper. The MOPPSO-CMS and NSGA-II algorithms in this paper do
not have the same constraints as the ACO-CMS and Spread algorithms, such that multiple
related containers can be allocated together to reduce the transmission overhead in the
optimization; however, the load balancing is sacrificed. As we placed emphasis on local
load balancing, the MOPPSO-CMS algorithm in this paper was superior to the NSGA-II
algorithm, in most cases.
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Figure 11. Standard deviation of the use of cluster computing resources.
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Figure 12. Standard deviation of the use of cluster memory resources.
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Figure 13. Standard deviation of the use of cluster storage resources.
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5.4.4. Global Load Balancing

Global load balancing is an important index for measuring the resource usage of
a cluster, which comprehensively considers the usage of cluster computing resources,
storage resources, and memory resources. Based on traditional cluster load balancing, we
combined local load balancing to achieve a more reasonable allocation of containers on
physical nodes. The higher the value of this indicator, the heavier the cluster load, while the
lower the value, the lighter the cluster load. Figure 14 shows the performance differences
of the four algorithms in global load balancing.

Figure 14 shows that the Spread algorithm achieved good performance results when
the number of requests was low, but the performance worsened when there was an increase
in the number of requests, which also why this algorithm achieved good performance
in local load balancing. The algorithm tries to distribute the containers to each physical
node, and so it had a positive effect on the load balance when the number of requests was
low. Both GA-MOCA and ACO-CMS optimize the load balancing of clusters, such that
the performance of these two algorithms was better than that of the Spread algorithm;
however, the ACO-CMS algorithm increased the optimization of storage usage on the basis
of the GA-MOCA algorithm, so the performance of this algorithm was better than that
of GA-MOCA. The above three algorithms ignored the optimization of memory usage
and local load balancing in the cluster, factors which are within the optimization range of
the MOPPSO-CMS algorithm, so the MOPPSO-CMS algorithm had better performance in
cluster load balancing, compared to all other algorithms tested.
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Figure 14. Performance differences of the four algorithms in global load balancing.

5.4.5. Service Reliability

Service reliability means the ability or possibility of a service to perform specified
functions without fault within a certain time and under certain conditions. In order to be
able to reasonably allocate containers, we use the number of requests that may fail as an
indicator of service reliability. The lower the value, the more reliable the service, while
the higher the value, the more unreliable the service. Figure 15 shows the performance
comparison results of the three algorithms in service reliability.
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Figure 15. Performance comparison results of the three algorithms in service reliability.

Figure 15 shows that the Spread algorithm was the worst, as it divides the containers as
evenly as possible between each physical node, which means that the number of requests
that may fail during transmission between containers on different physical nodes can
increase significantly. Although the ACO-CMS and GA-MOCA algorithms optimize
service reliability, they still have shortcomings. The MOPPSO-CMS algorithm in this paper
performed best, as it optimizes the requests between different physical nodes and between
the same physical nodes, while the three other algorithms do not.

5.4.6. Running Time

Time complexity is an important indicator to measure the performance of an algorithm.
The most intuitive manifestation is the time required for the algorithm to run the same
data in the same environment; therefore, we took the running time of the algorithm in
the experimental process as an indicator for time complexity. In this paper, the lower the
running time of the algorithm, the better the performance of the algorithm. Table 6 and
Figure 16 show the performance comparison of the four algorithms, in terms of running
time. The running time was obtained using the time function in Python.
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Figure 16. Performance comparison results of the four algorithms, in terms of running time.
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Table 6. Performance comparison of the four algorithms, in terms of running time(second).

UserRequest MOPPSO-CMS GA-MOCA ACO-CMS Spread

1 3.90 519.58 549.34 1.72
1.5 4.34 556.22 580.15 2.52
2 4.16 589.94 617.91 3.33

2.5 4.26 611.03 636.04 4.20
3 5.71 626.36 683.64 4.88

3.5 8.86 663.00 724.85 5.93
4 7.90 681.74 759.16 6.56

4.5 5.70 779.46 813.50 7.24
5 6.06 1017.02 870.25 8.13

Table 6 shows that the running times of the MOPPSO-CMS and Spread algorithms
were significantly lower than that of the GA-MOCA and ACO-CMS algorithms, which are
shown in bold. The first reason is that the convergence rates of the NSGA and ACO algo-
rithms are slow. The second reason is that the design of each ant and genome significantly
increases the calculation time of the algorithm, when there are multiple containers present.
The MOPPSO-CMS algorithm in this paper optimizes the shortcomings of the above two
algorithms and uses the particle swarm optimization algorithm with faster convergence in
parallel, which resulted in a quicker running time. The Spread algorithm achieves good
performance in running speed, due to the algorithm’s simplicity.

6. Conclusions

In this paper, according to the characteristics of container microservice scheduling,
three optimization objectives were proposed to reduce network transmission overhead,
stabilize load balancing, and increase service reliability. A multi-objective optimization
model was established, and a multi-objective optimization algorithm, based on the particle
swarm optimization algorithm, was proposed to solve the microservice container schedul-
ing problem. In this paper, parallel computing was used to ensure that different particle
swarms share the optimal solution through inter-process interaction, which effectively
avoids the particle swarm optimization algorithm falling into local optima. Further, we
optimized the representation of particles, and successfully reduced the calculation time of
the algorithm when multiple containers are present, addressing a critical disadvantage of
the previously discussed methods. Compared to other algorithms, although our algorithm
was slightly worse in partial load balancing than other algorithms, it had obvious advan-
tages in reducing network transmission overhead, balancing cluster, node load balancing,
improving service reliability, and reducing operation time. In future research, we plan
to study the results of the proposed optimization algorithm in an actual physical cluster.
On the basis of the three optimization objectives proposed in this paper, we will consider
other optimization objectives, and try to combine other optimization algorithms with
microservice container scheduling. Finally, future research will also include multi-objective
optimization algorithm performance improvement methods.
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