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Abstract: Air pollution is a social problem, because the harmful suspended materials can cause diseases 
and deaths to humans. Specifically, particulate matters (PM), a form of air pollution, can contribute to 
cardiovascular morbidity and lung diseases. Nowadays, humans are exposed to PM pollution 
everywhere because it occurs in both indoor and outdoor environments. To purify or ventilate polluted 
air, one need to accurately monitor the ambient air quality. Therefore, this study proposed a practical 
particulate matter sensing and accurate calibration system using low-cost commercial sensors. The 
proposed system basically uses noisy and inaccurate PM sensors to measure the ambient air pollution. 
This paper mainly deals with three types of error caused in the light scattering method: short-term noise, 
part-to-part variation, and temperature and humidity interferences. We propose a simple short-term 
noise reduction method to correct measurement errors, an auto-fitting calibration for part-to-part 
repeatability to pinpoint the baseline of the signal that affects the performance of the system, and a 
temperature and humidity compensation method. This paper also contains the experiment setup and 
performance evaluation to prove the superiority of the proposed methods. Based on the evaluation of 
the performance of the proposed system, part-to-part repeatability was less than 2 μg/m3 and the 
standard deviation was approximately 1.1 μg/m3 in the air. When the proposed approaches are used for 
other optical sensors, it can result in better performance. 
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1. Introduction 
According to a 2014 report by the WHO, 4.3 and 3.7 million people lose their lives 

due to indoor and outdoor air quality pollution, respectively [1,2]. Specifically, particulate 
air pollution such as yellow dust and fine dust is getting serious every year in many 
countries across Asia, the Middle East, Africa, and Europe. Such particulate air pollution 
is caused by automobiles, thermal power plants, combustion of coal, sand of the desert, 
etc., and may also occur when food is grilled or fried indoors. Recently, as the quality of 
life has improved in many countries, interest and knowledge about particulate air 
pollution such as particulates is increasing, and cutting-edge technologies and products 
such as air purifiers and air quality monitoring systems are being launched in the market. 
However, since most air quality monitoring systems and air purifier systems use low-cost 
sensors, the accuracy and performance of the sensors are relatively low [3–7]. 

Various methods such as gravimetric method, beta-ray-based measurement method, 
resonance frequency measurement method, and light scattering method for measuring 
particulates have been proposed [8–15]. In the case of gravimetric method [16], it is used 
as a standard measurement method because it has the best measurement accuracy. 
However, since it is expensive and bulky, it is not suitable for use in IoT devices or home 
appliances. Beta-ray absorption method (BAM) [17] collects particulates on a filter paper 
for a certain period of time, transmits beta-rays, and measures the concentration by the 
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difference between the beta-rays absorbed and extinguished when the injected beta-ray 
passes through the particulates on the filter paper. This method has lower accuracy than 
the gravimetric method, but the price and size are relatively low. Tapered element 
oscillates microbalance (TEOM) [18] is a system that measures the amount of particulates 
in the air by detecting the change in resonance frequency according to the weight of the 
fine dust collected on the filter paper in the impactor. Lastly, the light scattering method 
irradiates a laser or IR LED, measures the intensity of light scattered by particulates, and 
converts it into the concentration of particulates. In systems such as IoT devices or air 
purifiers, low-cost light scattering methods are mainly used. However, the light scattering 
method is very vulnerable to external environments such as temperature, humidity, etc., 
and has accuracy and stability drawbacks, such as responding easily to the particle size 
and shape of particulates [19]. Some research to measure particulate matters in ambient 
environment have been performed [20–23]. We will discuss some of the studies that 
reported on the error factors and the calibration of the low-cost sensors in Section 2. 

The aim of this study was to develop an accurate particulate matter sensing system 
using commercial coarse sensors. Most commercial PM sensors are inaccurate because 
they are based on the optical scattering method and are vulnerable to ambient 
environment change. First, this paper analyzed error factors in using the commercial PM 
sensor and designed the system to measure the concentration of ambient PM. Then, we 
proposed a PM calibration method with reduced noise, easy part-to-part repeatability 
compensation, and temperature and humidity compensation to correct measurement 
errors. In particular, the proposed method has an auto-fitting calibration for part-to-part 
repeatability to pinpoint the baseline of the signal that affects the performance of the 
system. As a result of the evaluation of the performance of the proposed system, part-to-
part repeatability was less than 2 μg/m3 even though there is no special further calibration 
phase. This paper also conducted the evaluation for the power consumption of the system. 

This paper is organized as follows. First, we present related work in Section 2 and 
then discuss a particulate matter sensing system with networking for household 
environment in Section 3. Section 4 describes the PM calibration method for high accuracy. 
In Section 5, we evaluate the performance, consisting of part-to-part repeatability, 
accuracy, and power consumption. Finally, Section 6 concludes this paper and proposes 
future work. 

2. Related Work 
Various studies have investigated the use of calibrations for low-cost sensors. Zaidan 

et al. [23] proposed a virtual sensor system based on machine learning. The proposed 
method collects a huge amount of accurate air quality data (PM2.5, CO2, etc.) from a 
reference instrument and then uses artificial intelligence to predict air quality from low-
cost sensors in the real field. In their system, more accurate results can be obtained because 
machine learning is used to correct the difference between the reference instrument and 
low-cost sensors. However, for more accurate data, it is necessary to acquire a lot of data 
from the reference instrument and sensors, and since it is difficult to actually measure and 
learn it on-site, this is a drawback to their system. 

Alfano et al. [8] reported a study on fine dust measurement. The study focused on 
classification and measurement methods by size of dust particles. They described the 
operating principles of the gravimetric method, tapered element oscillating microbalance 
(TEOM), beta ray attenuation (BAM), optical particle counters (OPC), and light scattering 
(especially Mie theory) as the measurement methods for particulate matter. They also 
described various laboratory-level chamber setups that can accurately measure 
particulate matter, and the need to compensate for temperature and humidity in order to 
improve the accuracy of the optical sensor. Their study is a good reference point for us 
because it majors on the accuracy of various PM sensors in the market. 

Motlagh et al. [24] created a system that uses low-cost wearable sensors to obtain 
accurate information about public transport users being exposed to pollutants every day. In 



Sensors 2021, 21, 6162 3 of 23 
 

 

their study, the degree of exposure to pollutants was measured by measuring particulate 
matter. However, they only carried out experiments on the deviation between sensors using 
commercial sensors and reported nothing on sensor calibration and error factors. 

Gressent et al. [25] conducted a large-scale project to view the distribution of air 
pollution in the entire city. Since the reference station network was sparse and expensive, 
many sensors (fixed low-cost sensors) were mounted on buildings and others (mobile low-
cost sensor) mounted on moving vehicles to measure the concentration of particulate matter 
in the city center. They also used a large amount of observations provided by the sensors 
for urban-scale air quality mapping to show their potential added value with respect to the 
computation of dispersion models. Zaidan et al. [23] showed the accuracy of the low-cost 
sensor was improved while compensating for the difference with the reference instrument. 
Daily averages of estimated concentrations, reference observations, and hourly model 
outputs at each station were used to compare the performance of data fusion. 

Miskell et al. [26] proposed simple, remote, and continuous calibration techniques 
for hierarchical networks, where well-maintained, high-accuracy instruments (proxy) and 
many low-cost sensors are deployed. The mean and standard deviation of the sensor data 
are matched with values derived from a proxy over the same time period to derive an 
estimate of the driving slope and offset. 

Clements et al. [27] reported on a 2-day workshop where they discussed: (1) best 
practices for the deployment and calibration of low-cost sensor systems; (2) data 
standardization efforts and database design; (3) advancements in sensor calibration, data 
management, data analysis, and visualization; and (4) community panel (Lessons learned 
from research/community partnerships). The panel discussion summarized knowledge 
advances and project success, while highlighting the remaining questions, unresolved 
issues, and technical limitations in the realm of low-cost air quality sensors. 

3. Particulate Matter Sensing and Calibration System 
Figure 1 contains a block diagram and the appearance of the PM sensing system, 

Table 1 shows the part list used in the system. The system is managed by NXP MKL 17 
[28] (ARM Cortex-M0+) chip. This micro-controller unit (MCU) operates at 48 MHz clock 
and consumes 6.54 mA current at run mode and 3.31 uA at very-low-power stop mode. It 
also contains 256 KB flash and 32 KB SRAM memories. Moreover, it has 16-bits successive 
approximation (SAR) analog-to-digital converter (ADC) to provide high resolution in 
sensing PM. We employed Sharp GP2Y1010 PM sensor [29] for our low-cost commercial 
PM sensor to measure ambient particulate matters. GP2Y1010 operates at 5 V while other 
system components work at 3 V. Therefore, we used a step-up DC/DC converter to 
generate 5 V from the system operating voltage (3.0 V). The output of GP2Y1010 is inserted 
into the ADC channel of the MCU via operational amplifier (OP AMP). We also used a 
humidity and temperature sensor, Silicon labs SI7020 [30], to compensate for the error 
factors caused by humid and temperature. The sensed data is sent to remote smart devices 
via USB or Bluetooth low energy (BLE) [31]. Then, the remote smart device can get 
multiple data from multiple PM sensing systems. This function is one of the most 
important factors to measure air pollution i.e., houses with various rooms experience 
different environments, and therefore require multiple sensors for accurate sensing. 
Figure 1b shows the appearance of the PM sensing system we designed. It has a small 
form factor of 45 mm × 35 mm that is similar to the GP2Y1010 sensor. We designed the 
system for small form factor to use it in many applications. 
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Figure 1. PM sensing system: (a) block diagram and (b) appearance. 

Table 1. Part list used in the system. 

# Part Name Description 
1 MCU NXP MKL17Z256VMP4 (Cortex-M0+) 
2 PM sensor Sharp GP2Y1010 
3 Battery Gauge Maxim MAX17058 
4 Battery charger TI BQ24210 
5 RS-232 Silicon Labs CP 201x USB-to-RS232 bridge 
6 Step-up DC-DC converter Maxim MAX8815A 
7 Bluetooth LE Microchips RN4020 
8 OP AMP Analog Device ADA4505 
9 LDO STM STLQ015XG30R 
10 Humidity/Temperature Sensor Silicon Labs SI7020 
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4. Accurate Calibration Using Low-Cost Commercial Sensors 
4.1. Operation Principle of the PM Sensor 

In this system, we used Sharp GP2Y1010 (Japan) sensors for PM sensors to measure the 
concentration of particulate matters. Figure 2a illustrates the operation principle of the 
GP2Y1010. It employs light scattering as an operation principle: An infra-red (IR) light beam 
is emitted into a measurement chamber such that when dust is present, the light is refracted 
by particles and the amount of scattered light is detected by the internal photo diode. The 
GP2Y1010 uses pulse signals to emit IR light as shown in Figure 2b. The PM sensor basically 
requires consequent 100 Hz pulse signals to read output signals from the PM sensors. Each 
pulse signal has a pair of a high signal of 0.32 ms and a low signal of 9.68 ms. The PM sensor 
generates the highest output signals 0.28 ms after the start of the high signal, and then the 
output signal is converted into voltage and the concentration of particles through the ADC 
values. Figure 3 shows actual input pulse and output signals of the GP2Y1010 measured by 
an oscilloscope. The figure shows that it generates output signal after the forth input pulse 
from start. Therefore, the system discards the initial first three data. 

intake

Exhaust 

particle

Photodiode receptor

IR LED

scattering 

 
(a) 

10 ms

0.32 ms

0.28 ms

sampling

VLED

Output 
Signal

 
(b) 

Figure 2. Output signal of the PM sensor: (a) operation principle and (b) input/output signals. 
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(a) 

 
(b) 

Figure 3. Output signal of the PM sensor: (a) oscilloscope capture and (b) the measured output data by the MCU. 

We analyzed real output data of the GP2Y1010 sensor using seven sensors. The data 
were collected in clean air environment with no visible particles. In addition, we also 
blocked the air vent of the sensors as shown in Figure 4a. Figure 3b shows the raw output 
voltage signal of the PM sensor 1. The output signal has a lot of short-term noises with 
approximately 0.3 V variation. This short-term noise can result in reduced accuracy when 
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measuring the concentration of particulate matters. Therefore, a short-term noise 
reduction approach is necessary. Figure 4b,c shows the raw output signals of the other 
sensors, indicating that each sensor has a short-term noise and part-to-part variation at 
the same time. The Figure implies that each sensor has a different baseline that is used as 
the intercept in the regression model to convert output voltages into the concentration of 
particulate matters. PM sensor 5 has the lowest baseline while PM sensor 7 has the highest 
baseline in Figures 3b and 4b,c. The baseline difference among sensors should be 
eliminated to reduce part-to-part variation that decreases the measurement accuracy. 
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(c) 

Figure 4. Experiment and output signals: (a) experiment environment, and (b,c) raw voltage data 
measured by the MCU. 

To minimize the short-term noise and calibrate the baseline from part-to-part 
variation, we proposed a system that calculates the concentration of the PM every second. 
As shown in Figure 5, each sub frame has 100 sensing phases for 1 s and then the system 
calculates the median over the 100 samples. As the second phase is to further reduce the 
noise, we applied a weighted moving average filter with a window size of 30 s (i.e., 30 
data points) on the data. Current output voltage, 𝑥̄𝑥𝑖𝑖, is determined by Equation (1). This 
approach further reduces the noise of the data. 

𝑥̅𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖 × 𝛼𝛼) + �
1

𝑛𝑛 − 1
�𝑥𝑥𝑗𝑗

𝑖𝑖−1

𝑗𝑗=0

� × (1 − α)  (1) 

where, n is the number of the window, x is the system input in discrete time domain, n is 
the time in discrete time domain, and 𝛼𝛼 is the weight factor between the current measured 
value and other values in the moving window. 
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Figure 5. Sensing frame and sub frame. 
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Then, we can convert output voltage into the concentration of the dust by using a 
regression model. The data sheet of GP2Y1010 shows an exemplary relationship between 
the dust and the sensor’s output voltage. Although we reduced noises, the sensors 
represent the different baseline voltages caused by part-to-part variation, which means 
they can have different intercepts in the linear function, as shown in Figure 6. As earlier 
mentioned, this affects the accuracy of the system sensing the concentration of dust 
particles. For instance, if we make a regression model based on sensor 4 and apply it to 
sensor 2 in Figure 6a, it will be judged that in sensor 2 there is quite a bit of dust particles 
even though there is no dust. So, all PM sensors should be calibrated by different baseline 
voltages or different intercepts. 

 
(a) 

 
(b) 

Figure 6. Result of the noise reduction: (a) data collected from sensor 1 to 4 and (b) data collected 
from sensor 5 to 7. 
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This study proposed an autonomous baseline search procedure in the initial phase, 
as shown in Figure 7, to reduce calibration cost for mass production. After booing 
sequence, the system has an initial calibration phase where the system reads voltage 
values from the PM sensor and then compares the median value, Vcurrent, with a factory 
setting voltage value, Vbase, stored in non-volatile flash memory. If Vcurrent is smaller than 
Vbase or it is equal to ‘−1’, it updates Vbase into flash memory. ‘−1’ means that it has never 
been calibrated and updated before. Figure 7b shows an example of Vbase update. After 
finishing the initial calibration phase, it reads and calculates the concentration of particles 
using the information about baseline voltage. The converter between the voltages to the 
concentration reads the baseline (called the intercept) voltage from the internal flash 
memory that was updated during the initial calibration phases. 
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Figure 7. Baseline voltage calibration procedure: (a) procedure and (b) example. 

At this stage, one can calculate the concentration of particles and dusts using voltage 
values. The data sheet of GP2Y1010 shows an exemplary relationship between the dust 
density and the sensor’s output voltage in a simple linear function. We also got similar 
curves with the same gradient through experiments even though their baseline voltages 
were different, meaning that if we know the intercept, we can easily calculate the 
concentration of dust using the linear regression model. The concentration of dust is 
calculated by Equation (2) 

p(x) = 𝑎𝑎 ⋅ 𝑥𝑥 + 𝑏𝑏  (2) 
where, p(x) is dust density, a is the gradient, x is the output voltage, and b is the Y axis 
intercept. The gradient, a, is gotten as approximately 0.17 by data sheet and experiments. 

Matthias Budde et al. [32] introduced drift over time, and a separate calibration step 
for each sensor to determine its time-dependent drift factor k. Using this, they adjusted 
their calculation of a and b. Therefore, to verify them, we experimented and analyzed data 
for 24 h as shown in Figure 8. The graph seems to have drift for the initial 10 h. In the case 
of sensor 1, there is 11 milli-voltage difference (around 2 μg/m3). However, the sensors 
recovered after around 24 h. We found out that this drift is caused by temperature 
difference. 
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Min: 0.534 V

6 PM9 AM  
Figure 8. Drift experiment over time. 

To compensate for the temperature effect, we increased the ambient temperature to 
higher than 40 °C as shown Figure 9. The result shows that although there are no particles, 
the output voltage of the PM sensor increases up to 35 milli-voltage (6 μg/m3) density. To 
compensate for the temperature, we added offset by temperature as shown in Equation (3) 

where,  𝛼𝛼𝛼𝛼  is the difference between ambient temperature and the initially stored 
temperature in the flash memory, and Δ𝑇𝑇 is offset voltage, 3.1 milli voltage, derived 
empirically from Figure 10. In the Figure, the difference between 2 °C and 45 °C is 129 
milli voltage, which results in approximately 23 μg/m3. This difference should be 
compensated. For example, temperature difference between summer and winter seasons 
is more than 40 °C. In the worst case, assume that this sensor is used in a vehicle. The 
temperature inside the car increases up to more than 70 °C. Therefore, the temperature 
compensation is necessary for better accuracy. The voltage increment is caused by Dark 
current of the photodiode in the PM sensor [33,34]. This leakage doubles for each 8–10 °C 
temperature increase. 

p(x) =𝑎𝑎 ⋅ (𝑥𝑥 + 𝛼𝛼𝛼𝛼 ⋅ Δ𝑇𝑇) + 𝑏𝑏 (3) 
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Figure 9. Temperature affection. 
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Figure 10. Offset according to ambient temperature. 

The last uncertainty is humidity in the particle. Therefore, we determined a relation 
equation between humidity and voltage when there are no particles in the chamber. We 
changed relative humidity from 12% to 75% RH with a temperature of 27 °C. To measure 
humidity and temperature, we used Silicon labs SI7020 sensors. As shown in Figure 11, 
the curve of Sensor 2 shows that the difference between 12% and 75% is 38 milli-voltage 
(approximately 6.5 μg/m3) and gradient is approximately 0.0006. This difference is 
compensated by Equation (4). 
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p(x) = 𝑎𝑎 ⋅ (𝑥𝑥 + 𝛼𝛼𝛼𝛼 ⋅ Δ𝑇𝑇 + 𝛽𝛽𝛽𝛽 ⋅ Δ𝐻𝐻) + 𝑏𝑏 (4) 

where, 𝛽𝛽𝛽𝛽 is the difference between current relative humidity and the initially stored 
relative humidity in the flash memory, and Δ𝐻𝐻  is offset voltage, 0.64 milli voltage, 
derived by the average of sensors in Figure 11, which can result in an error of 
approximately 0.1 μg/m3 per 1%RH. 

0.596
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0.5575

0.655

0.673
0.6977

 
Figure 11. Offset according to humidity. 

To compensate for the errors by temperature and humidity, we added temperature 
and humidity information during the initial calibration phase as shown in Figure 7a. 

4.2. Smartphone Application 
The data corrected through the PM sensing system is transmitted to the smartphone 

through Bluetooth low energy. Figure 12 shows the operation process of the Android app 
for data collection. The smartphone app is designed to acquire data by communicating 
with seven PM sensing systems at the same time. First, when the Android app is started, 
it searches through the device names of the PM sensing systems that exist within the 
communication range, and displays the search results on the screen as a list. When the 
user selects PM sensing systems from which to collect data, the Android app stores the 
MAC addresses of the selected PM sensing systems in a queue and establishes a 
connection. 

After that, the application calls the BluetoothGattCallback class and goes through a 
series of connection, service discovery, and read/write/notification processes. A delay can 
occur because this series of processes must proceed through all the PM sensors. To 
minimize this delay, the Android app allows all PM sensors to operate independently 
through Thread. 
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Figure 12. Android architecture for the PM sensing system. 

After a successful service discovery, the application can now start reading, writing, 
and enabling notifications or indications, etc. To connect multiple devices, all devices 
report that their services have been discovered, then BluetoothGattCallback will have all 
incoming data from the connected PM sensing systems. The application transfers a 
broadcast with the received data to the internal parser. We implemented an embedded 
parser to handle the received data. The analyzed data is converted into a certain format 
and stored in the internal file system, and displayed on the GUI along with ID information 

5. Performance Evaluation 
Figure 13 shows an experimental environment that consists of reference instrument 

TSI AM510 [35], test chambers, and the proposed systems. The reference instrument, TSI 
AM510, is an aerosol monitor used for the reference instrument. The chamber system is 
separated into two: one is to make and aggregate particles, and the other is used to 
measure density of particles. The two chambers are connected by a tube used to blow air. 
We used candle and smoke particles for our evaluation. 
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Figure 13. Experimental environment. 

First, we evaluated the part-to-part repeatability of commercial PM sensors, making 
the system inaccurate, with respect to the different baseline voltage. Specifically, sensor 7 
has the highest baseline voltage and sensor 5 has the lowest baseline voltage, as shown in 
Figure 7, even though there are no particles in the chamber. When converting them into 
concentration, the two sensors had a 70 μg/m3 difference. After adopting the proposed 
baseline voltage calibration, the result shows just less than 2 μg/m3 as shown in Figure 14, 
Tables 2 and 3. 
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Figure 14. Performance evaluation: part-to-part repeatability: (a) data collected from sensor 1 to 4 
and (c) data collected from sensor 5 to 7. 

Table 2. Evaluation result of the low-cost sensor in the air. 

Original PM Sensor with No Calibration 
PM #1 #2 #3 #4 #5 #6 #7 

MIN 0 0.001 0.001 0.001 0.001 0.001 0.006 
MAX 101.022 77.553 72.281 45.750 64.628 29.253 57.830 
STD 12.913 13.838 11.170 5.213 10.088 3.875 7.355 
AVG 17.844 17.290 15.812 15.191 14.578 13.230 21.283 

Table 3. Evaluation result of the proposed system in the air. 

Our Method with Calibration 
PM #1 #2 #3 #4 #5 #6 #7 

MIN 0 0 0 0 0 0 0 
MAX 0.461 0.291 0.345 0.377 1.641 0.454 0.394 
STD 0.101 0.082 0.068 0.093 0.378 0.110 0.055 
AVG 0.093 0.046 0.032 0.045 0.309 0.136 0.021 

Then we conducted the performance evaluation of the two sensors (sensor 1 and 
sensor 2) including the proposed method with generated particles in the chambers. The 
evaluation was performed in room temperature (32 °C) with a relative humidity of 61%, 
and particle was produced by the candle as shown in Figure 13. It was too hard to generate 
the exact concentration of particles continuously and uniformly. Therefore, we just 
monitored the tendency of the two sensors as illustrated in Figure 15. Error between two 
sensors, as calculated by Equation (5), was approximately 10%. At the time of injecting 
dust particles, there was variation between the sensors because the dust was not evenly 
spread in the chamber. After particles were well distributed in the chamber, the error 
between the sensors decreased. 

error =
|𝐶𝐶𝑆𝑆1(𝑡𝑡) − 𝐶𝐶𝑆𝑆2(𝑡𝑡)|

𝐶𝐶𝑆𝑆1(𝑡𝑡)
× 100 (5) 
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Figure 15. Performance evaluation: part-to-part repeatability using actual particles. 

Then, we measured the power consumption of the system because it could be used 
for portable systems. Figure 16 shows the picture of the evaluation and Table 4 shows the 
power consumption of the system. 

  
(a) (b) 

Figure 16. Power consumption and GUI of the smartphone: (a) environment for power consumption measurement (b) 
Smartphone GUI. 
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The system consumes approximately 57 mAh at 3 V operating voltage, i.e., 171 mW. 
The PM sensor uses 33.3 mA and the Bluetooth module consumes 20.7 mA at 3 V 
operating voltage. Other components such as MCU, temperature/humidity sensor, battery 
gauge, etc., use 3 mA current. Assuming that the system contains 240 mAh battery and 
works continuously, it can run up to 4.2 h. As a result, the lifespan of the system depends 
on the capacity of the battery. 

Table 4. Power consumption of the system. 

 PM Sensor Bluetooth Others 
(MCU, H/T, Etc.) 

Total 

Consumed current (mA) 33.3 mA 
@3 V 

20.7 mA 
@3 V 

3 mA 
@3 V 

57 mA 

Finally, we applied the method proposed to a laser sensor to verify that the method 
works correctly even when applied to other commercial sensors. Figure 17a shows the 
sensor and measurement system additionally fabricated to acquire the data from the 
actual laser-scattering-based sensor. The same MCU, NXP MKL17Z256, was used to run 
the proposed method, and Plantower PMS A003 [36] was used to compare the 
performance with the reference instrument. It is necessary to evaluate the performance by 
comparing it with the ground-truth value, but it is difficult to get it because of many 
reasons such as convection, different sizes of particles, etc. What is used as a ground-truth 
value is a device based on the gravimetric method worth hundreds of millions of dollars, 
and it is currently used as a national measurement system and platform in many 
countries. Instead, the evaluation to prove the proposed method was conducted by 
comparing TSI’s aerosol monitor, TSI AM510, as a reference instrument. This TSI AM510 
device is shown to have an error within 10% of the gravimetric value in the data sheet. 
OLED display was additionally mounted on the board equipped with the laser PM sensor 
to show the measurement result, and the measured data was transmitted to the PC via 
USB interface. The PM sensor used in this system does not generate the analog data, but 
outputs the measured and corrected results as digital data in the concentrations of PM1.0, 
PM2.5, and PM10, respectively, through the lightweight processor inside the PM sensor. 
The result value is transmitted to the MCU through the UART interface, and the MCU 
does not need to convert the analog data to the concentration of particulates, and the 
measurement noise called as the short-term error is removed through the sensing frame 
in Figure 5. In addition, the part-to-part variation of the PMS A003 sensor based on the 
data sheet is an error of ±10% at a concentration of 100 to 500 μg/m3 and an error of ±10 
μg/m3 at a concentration below 100 μg/m3 [36]. That is, the deviation between the two 
sensors can occur up to 20 μg/m3 at 100 μg/m3 and up to 100 μg/m3 at 500 μg/m3. This may 
ultimately affect the variation between systems. We also used the same baseline fitting 
method shown in Figure 7 for the initial calibration process to remove the deviation 
between the PM sensors, but the concentration value of particulate matters was directly 
used as it is, not the voltage value. 

Another characteristic of the laser-based PM sensor is that it has no effect on 
temperature unlike the previously used low-cost sensor, which seems to have corrected 
the temperature deviation in the internal lightweight processor of the PM sensor. The 
reason is that a photodiode is also used in the laser PM sensor to receive the amount of 
light, and dark current caused by the difference of the temperature of the photodiode is 
unavoidable [33]. We also used the same temperature sensor, SI7020, for the temperature 
and humidity sensor. In the case of the experiment using this laser sensor, the effect on 
temperature was excluded and only correction for humidity was applied. For the 
experiment, AM510 equipment and two laser sensor-based measuring devices were put 
into the chamber to measure the concentration of particles, and the results measured over 
time were examined. The temperature was 29 degrees and the humidity was 55.8% RH. 
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Figure 17. Laser-scattering-based sensor system and evaluation: (a) prototypes and (b) evaluation result. 

Figure 17b shows a graph showing the measurement results of the reference 
instrument AM510 and two laser sensors. As a result of the experiment, the error between 
AM510 and sensor 1 was about 4.4%, the error between AM510 and sensor 2 was about 
6.1%, and the error between sensor 1 and sensor 2 was about 1.8%, indicating that 
variation between sensors was significantly reduced. Equation (5) was used to obtain the 
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error. It turned out that the measured error was significantly lower than 20% of first 
approval of the particulate matter certification standard. In addition, the difference 
between the reference instrument and the sensors was significantly decreased under the 
concentration of 300 μg/m3. Actually, this laser-scattering-based PM sensor manufacturer 
also recommends the practical measurement range as 0~500 μg/m3 even if it can measure 
over 500 μg/m3. In fact, WHO recommends refraining from going out when there is more 
than 50 μg/m3 of particulate matters in the air and it is hard to exceed 200 μg/m3 in many 
countries except some from Asia. In Figure 17b, it seems that the error of the reference 
instrument is higher than that of the sensors equipped with the proposed methods. In the 
case of the reference instrument, it uses only information sensed every second and does 
not adopt the time-weighting filter such as a low pass filter. As a result, its output signal 
fluctuates. Although the number of devices is small, it was confirmed that there was a 
variation of 2% or less, which is five times less than the 10% of the variation between the 
sensor described in the manufacturer datasheet. 

To prove the superiority of the proposed system, its performance should be 
compared to that of the existing system while varying dust concentration. However, we 
did not carry out the comparison because it is nearly impossible to fairly spread the exact 
concentration of the dust in the chamber. Spreading dusts through convection is difficult 
and the dust sinks over time. We will perform this evaluation with a specialized institute 
that has special instrument for evaluation in the near future. 

6. Conclusions 
These days, air pollution, which includes dangerous materials like nitrogen, carbon, 

particulates, toxic gas, etc., is a global problem. Specifically, particulate matters cause 
damage to lung tissue and cause lung diseases such as asthma, cancer, etc. 

Using the gravimetric method is an international standard, and there are several 
other measurement methods like beta ray, micro-balancing, and light scattering. It is 
common to use light scattering based on IR LED and Laser for IoT devices and electronic 
targets such as household air purifiers and handheld air quality monitoring systems. 
However, small particulate matters sensors based on light scattering are vulnerable to 
ambient environment. This paper described the error factors of low-cost PM sensors, i.e., 
short-term noise, part-to-part variation, and environmental noise, and how to correct 
them. The sensing frame and subframe were used to correct short-term noise, and baseline 
calibration was performed to correct part-to-part variation. To correct the effect by 
temperature and humidity that reduced the accuracy of the sensor, correction equation 
was added. Therefore, this study proposed correction methods for the error factors caused 
by the optical scattering method. We also designed and implemented the hardware and 
software to realize our approach. We expect the system and methods to be used as the 
basis for various IoT devices and air pollution measurement systems. However, since the 
sensor used in this study is based on IR LED, the intensity of light is weak. Compared to 
laser sensors with strong light intensity, the proposed system cannot classify the size of 
particles. However, if the calibration method proposed in this study is used for laser 
sensors, the performance improvement effect can be noticed in the laser-based PM sensor. 

The future work includes an evaluation using the real dusts in a special chamber to 
prove the superiority of the proposed system and methods. 
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