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Abstract: A sensor model and methodology to estimate the forcing accelerations measured using a
novel optomechanical inertial sensor with the inclusion of stochastic bias and measurement noise
processes is presented. A Kalman filter for the estimation of instantaneous sensor bias is developed;
the outputs from this calibration step are then employed in two different approaches for the estimation
of external accelerations applied to the sensor. The performance of the system is demonstrated using
simulated measurements and representative values corresponding to a bench-tested 3.76 Hz oscillator.
It is shown that the developed methods produce accurate estimates of the bias over a short calibration
step. This information enables precise estimates of acceleration over an extended operation period.
These results establish the feasibility of reliably precise acceleration estimates using the presented
methods in conjunction with state of the art optomechanical sensing technology.

Keywords: optomechanical sensors; accelerometer; estimation; error analysis; sensor design

1. Introduction

Accelerometers are used in countless applications including: satellite, aircraft, robotic,
and automotive inertial navigation. Particularly, in the realm of satellite design these de-
vices are used both as navigation equipment [1–4] and as scientific instrumentation [5–11].
In both cases the accuracy of the estimated acceleration directly impacts the performance
of the system and its ability to meet critical mission requirements. There is presently a vast
array of commercially available inertial sensors, developed using a diverse set of physical
principles, providing a wide range of precision and sensitivity [12]. Notably, advances
in optomechanics have facilitated the development of ultra-sensitive acceleration sensors
with a comparatively small form factor [13]. The quality factor, a unitless parameter indi-
cating the sharpness of the resonance peak of the oscillator [14], is of particular interest in
quantifying the performance of these sensors. Previous studies indicate that such systems
are capable of attaining an exceptionally high quality factor over a range of high and low
frequencies, providing a broad dynamic range for acceleration sensing [15–17]. The use of
highly accurate 3D manufacturing solutions has resulted in sensors with precise operating
parameters that are uniquely suited to traditional estimation techniques without reliance
on complex error models.

Inertial sensors do not directly observe forcing accelerations or torques, but rather
the forces are estimated by assimilating the measurements of the dynamic response of a
mechanical system strapped down to the system whose accelerations are to be measured.
The fidelity of the sensor model directly impacts the quality of the estimate, and in turn
the performance of the navigation system [18–20]. Sensor models can never perfectly
characterize the behavior of the system and always possess some degree of uncertainty in
the established parameters; for this reason these models are intrinsically stochastic. Since
the mechanical system’s dynamical response to imposed forces is correlated with its own
dynamics, which can be non-linear, the observed imposed accelerations are colored by the
mechanical system dynamics. Stochastic processes used in the sensor modeling aim at
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decorrelating the sensor dynamics and associated modeling errors to estimate the imposed
acceleration. Characterization of the sensor model’s response to these stochastic terms
and their impact on performance is an essential component of practical sensor design.
This analysis is routinely conducted for angular rate sensors by incorporating external
measurements from attitude sensors into a Kalman filter to estimate the gyro biases and
their associated steady-state statistics [21–24]. This analysis has been demonstrated to
significantly improve performance in the area of spacecraft attitude determination. Similar
procedures are required for estimation of accelerometer biases; namely some source of
external information must be provided intermittently to conduct a calibration. This can
be done using absolute position estimates from sources, such as GPS [25–27], or attitude
estimates [28–30].

In this paper, a sensor model and estimators for use with state of the art optome-
chanical inertial sensors [16,17] are presented. Firstly, a method for sensor calibration
using a generalized input acceleration is presented using a discrete time Kalman filter to
estimate the instantaneous sensor bias. The information from this procedure is then fed
forward to the operational phase where estimates of external accelerations are obtained.
Two estimation approaches are presented for the task of estimating acceleration, each of
which is compatible with the information obtained in the calibration step. These two phases
constitute the operational flow of the sensor’s estimation program. Results are presented
for each of these filters using representative oscillator parameters and simulated measure-
ments in the presence of a sinusoidal external acceleration. It is shown that the calibration
filter is able to provide accurate estimates of the instantaneous bias in the presence of an
imperfect generalized force over a short window of time. Additionally, the operational
filter (for estimates of acceleration) provides precise estimates of external acceleration
whose errors follow the bias over extended periods of time. The bias contribution to the
acceleration estimate error is well expressed by the associated estimate error variances.

2. Mathematical Formulation and Estimation Methods
2.1. Sensor Model

The sensor is composed of two monolithic fused silica resonators, each of which are
made up of a dual-flexure supported proof mass. The dynamics governing the motion of
the proof mass undergoing small deflections can be modeled as a perturbed linear harmonic
oscillator. The effects of neglected vibrational modes, as well as thermomechanical and
optical noise sources are then captured by a Gaussian white noise process and a bias term.
The resultant equation of motion is given as:

ẍ + 2ωζ ẋ + ω2x = b(t) + nv(t) + g(t) (1)

where x is the proof mass’s displacement from the equilibrium position, g(t) is the forcing
acceleration, ω is the oscillators natural frequency, and ζ is the damping ratio, which is
inversely proportional to the quality factor (Q = 1/2ζ). The bias term b(t) is modeled as a
Wiener process:

ḃ(t) = nu(t) (2)

where {nv(t), nu(t)} are uncorrelated, zero-mean Gaussian random processes with auto-
correlation functions:

E[nv(ti)nv(tj)] = σ2
v δ(ti − tj)

E[nu(ti)nu(tj)] = σ2
uδ(ti − tj)

(3)

where δ(t) is the Dirac delta function. The contributing process noise sources, including:
thermomechanical losses and cavity drift have been investigated in references [16,17],
respectively. Highly precise manufacturing processes coupled with pressure and tem-
perature control allow for these noise sources to be modeled as Gaussian. The effect of
radiation pressure from the optical measurement device is also conservatively introduced
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to the system using the Wiener process model for the bias. It is worth noting that strictly
speaking the contribution of radiation pressure is not Gaussian, however it is commonly
linearized for reduced order modeling [31,32]. For this single degree of freedom model the
effect of off-axis accelerations are not considered, but could be augmented to a three-axis
accelerometer configuration using this model in a straightforward manner.

The equations of motion can be expressed in state-space representation as [33]:

Ẋ(t) =

 0 1 0
−ω2 −2ωζ 1

0 0 0

X(t) +

 0
g(t)

0

+

 0
nv(t)
nu(t)

. (4)

In this formulation the state is defined as: X(t) =
[
x(t) ẋ(t) b(t)

]T . The continuous
time dynamics for the linear time invariant system can be discretized in a straightforward
manner [33,34]:

Xk+1 = Φ(tk+1, tk)Xk + Γ(tk+1, tk)gk + wk (5)

Ψ(tk+1, tk) =
∫ tk+1

tk

Φ(tk+1, τ)dτ

Γ(tk+1, tk) =
[
Ψ12(tk+1, tk) Ψ22(tk+1, tk) 0

]T
(6)

where Xk = X(tk), and Φ(tk+1, tk) = eA(tk+1−tk) is the state transition matrix, which is
derived explicitly in Appendix A following the developments of Skelton [35]. It is assumed
that g(t) is constant over a sufficiently small interval (tk+1 − tk). The discrete random
process wk encompasses the effects of both nv(t) and nu(t), and is expressed as:

wk =
∫ tk+1

tk

Φ(tk+1, τ) f (τ)dτ

f (t) =
[
0 nv(t) nu(t)

]T .
(7)

The process noise can be sampled using the covariance (Q = E[wkwT
k ]) provided in

Appendix B. In conjunction with Equation (5), this allows for the state to be determined at
discrete time intervals.

Observations of the oscillator are obtained using a highly sensitive laser displace-
ment measuring interferometer which operates at a fixed sampling frequency. These
measurements are expressed as a linear function of the state:

ỹk = HXk + νk = xk + νk (8)

where H =
[
1 0 0

]
is the measurement mapping matrix. The measurement noise (νk)

made up of shot noise, electric readout noise, and optical frequency noise are taken to
be zero-mean Gaussian with variance σ2

m, and νk is Gaussian white noise with variance
σ2

m. It is important to note that g(t) is made up of all frequencies of interest, while the
observable frequencies of the sensor are limited by the oscillator frequency, the sampling
frequency, and the relevant model uncertainties. Therefore, only a component of the forcing
acceleration is sensed by the accelerometer.

2.2. Calibration Phase: Estimating the Sensor Bias

The accelerometer bias must be monitored to prevent the accumulated build-up of
errors in the estimate of acceleration. To do this a calibration step must be conducted on
a reasonable basis. One such method is to carefully apply an input to the sensor over
a specified time and observe the response of the system. Knowing that the acceleration
cannot be perfectly delivered, we define the provided input as:

g(t) = ḡ(t) + ng(t) (9)
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where ḡ(t) is the desired acceleration at time t, and ng(t) is a zero-mean Gaussian pro-
cess with variance σ2

g . The discrete sensor dynamics given in Equation (5) can now be
augmented with the imperfect input acceleration:

Xk+1 = Φ(tk+1, tk)Xk + Γ(tk+1, tk)ḡk + wk (10)

where wk is defined in the same way as Equation (7) with the addition of ng(t):

f (t) =
[
0 ng(t) + nv(t) nu(t)

]T . (11)

Because the input noise
(
ng(t)

)
and the process noise terms {nv(t), nu(t)} are inde-

pendent, the Q matrix derived in Appendix B would be of the same form, with the sum
of σ2

g and σ2
v taking the place of σ2

v . With the dynamics in this form, the discrete-time
Kalman filter can be used to sequentially estimate the state using displacement measure-
ments defined in Equation (8) [34,36,37]. The update step, which is conducted when a new
measurement is incorporated is given as:

X̂+
k = X̂−k + Kk

(
ỹk − H X̂−k

)
P+

k =
(

I − Kk H
)
P−k .

Kk = P−k HT[HP−k HT + R
]−1

(12)

where the caret corresponds to the estimate of the indicated quantity and P is the estimate
error covariance matrix. After a measurement is incorporated it is propagated over the
sampling interval (tk+1 − tk). The propagation equations are given as:

X̂−k+1 = Φ(tk+1, tk)X̂+
k + Γ(tk+1, tk)ḡk

P−k+1 = Φ(tk+1, tk)P
+
k ΦT(tk+1, tk) + Q.

(13)

Using this method, an estimate of the sensor bias and the variance of the bias estimate
error can be obtained sequentially in the calibration step. Provided a reasonably steady
input of an admissible magnitude is applied, the filter will converge to steady-state behavior
quite rapidly. With this in mind, the convergent value of P can be found by solving the
discrete Riccati equation [38–40]:

P = Φ(tk+1, tk)
[
I − KH

]
PΦT(tk+1, tk) + Q. (14)

In doing so, a closed-form solution for the expected filter performance can be ob-
tained based on oscillator parameters, sampling frequency, and process noise parameters.
This steady-state analysis is important for sensor design and component selection. Ac-
curacies of the displacement-sensing interferometers, process models of the mechanical
elements, and the signal processing specifications can be designed using the mathematics
and methods of the steady-state analysis.

2.3. Operation Phase: Estimating the Forcing Acceleration

The results obtained from the calibration step can now be incorporated to develop
procedure for the estimation of the forcing acceleration using a series of displacement
measurements defined in Equation (8). Upon completion of the calibration step, it is
assumed that the bias estimate (b̂) is itself unbiased. Under this assertion, the sensor bias is
given as:

b(t0) = b̂ + nb0

b(tk) = b(t0) +
∫ tk

t0

nu(τ)dτ
(15)
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where t0 is the time of calibration and nb0 is a zero-mean Gaussian random variable with
variance σ2

b0. Between calibrations the bias estimate is not updated, so b̂ does not change.
Because nb0 and nu(t) are both zero mean, the error in the bias estimate between calibrations
will remain zero mean; however the variance in the estimate will grow [41]. The statistical
quantities governing this growth are given by:

E[bk − b̂] = 0

E[(bk − b̂)(bk − b̂)T ] = σ2
b0 + (tk − t0)σ

2
u .

(16)

This growth in bias uncertainty between calibrations will be shown to degrade the
accuracy of the subsequent acceleration estimate as the time since calibration increases.
Using this instantaneous definition for the bias term, the discrete dynamics in Equation (5)
can be rewritten as:[

xk+1
ẋk+1

]
=

[
Φ11 Φ12
Φ21 Φ22

][
xk
ẋk

]
+

[
Ψ12
Ψ22

]
gk +

[
Φ13
Φ23

]
bk +

∫ tk+1

tk

[
nv(τ)Φ12(tk+1, τ)
nv(τ)Φ22(tk+1, τ)

]
dτ. (17)

Using this reduced form of the discrete dynamics, two estimators will now be presented.

2.3.1. Least Squares Formulation

The first estimator considered is a moving least squares method using a batch of N + 1
measurements obtained from the laser interferometer, which are defined in Equation (8).
A measurement obtained at n ∈ {0, 1, 2, . . . , N|N ≥ 2} steps ahead of tk is then expressed
as the following:

yk+n =
[
Φ(n)

11 Φ(n)
12 Ψ(n)

12

]xk
ẋk
gk

+ Φ(n)
13 b̂ + ν̃k+n

ν̃k+n = νk+n + Φ(n)
13 (bk − b̂) +

∫ tk+n

tk

Φ13(t(k+n), τ)nv(τ)dτ,

(18)

where Φ(n)
ij and Ψ(n)

ij are used as shorthand for Φij(t(k+n), tk) and Ψij(t(k+n), tk), respectively.
Using this, a set of measurements can then be expressed as a function of the instantaneous
oscillator state and forcing acceleration:

yk
yk+1

...
yk+N

 =


1 0 0

Φ(1)
11 Φ(1)

12 Ψ(1)
12

...
Φ(n)

11 Φ(n)
12 Ψ(n)

12


xk

ẋk
gk

+


0

Φ(1)
13
...

Φ(n)
13

b̂ +


ν̃k

ν̃k+1
...

ν̃k+N

. (19)

Now, the minimum variance estimate of
[
xk ẋk gk

]T can be determined from the
set of measurements: x̂k

ˆ̇xk
ĝk

 = [H̃T
k R−1H̃k]

−1H̃T
k R−1(ỹ− ηk b̂

)
P = [H̃T

k R−1H̃k]
−1

(20)

H̃k =


1 0 0

Φ(1)
11 Φ(1)

12 Ψ(1)
12

...
Φ(n)

11 Φ(n)
12 Ψ(n)

12

 ỹ =


yk

yk+1
...

yk+N

 ηk =


0

Φ(1)
13
...

Φ(n)
13

 (21)



Sensors 2021, 21, 6101 6 of 16

where the caret corresponds to the estimate of the indicated term and R is the measurement
noise covariance. The elements of R are given in indicial notation as:

Rij = σ2
mδij + Φ(i)

13 Φ(j)
13
(
σ2

b0 + σ2
u(tk − t0)

)
+ σ2

v

∫ tk+i

tk

Φ2
12(tk+i, τ)dτ (22)

where i ≤ j and δij is the Kronecker delta. A closed form solution for the integral in this
expression is derived in Appendix B. The measurement noise has an explicit dependence
on time, and as a result will increase with the time since last calibration. As a result
the certainty in the estimate of acceleration will intuitively degrade during operation,
necessitating periodic calibration. Provided the user has some operational requirements on
the acceleration estimates, the calibration cycle can be determined explicitly in this manner.

2.3.2. Kalman Filter Formulation

An estimator for the determination of the oscillator state and forcing acceleration can
also be developed using a Kalman filter approach. Returning to Equation (17), the dynamics
can be expressed as:[

xk+1
ẋk+1

]
=

[
Φ11 Φ12
Φ21 Φ22

][
xk
ẋk

]
+

[
Ψ12
Ψ22

]
(gk + b̂) + w̃k

w̃k =

[
Φ13
Φ23

]
(bk − b̂) +

∫ tk+1

tk

[
nv(τ)Φ12(tk+1, τ)
nv(τ)Φ22(tk+1, τ)

]
dτ.

(23)

The new process noise covariance Q̃, which has been augmented with the uncertainty
in the instantaneous value of the bias, is given by the following:

Q̃ =

[
Φ2

13 Φ13Φ23
Φ23Φ13 Φ2

23

](
σ2

b0 + σ2
u(tk − t0)

)
+ σ2

v

[ ∫ tk+1
tk

Φ2
12(tk+1, τ)dτ

∫ tk+1
tk

Φ12(tk+1, τ)Φ22(tk+1, τ)dτ∫ tk+1
tk

Φ12(tk+1, τ)Φ22(tk+1, τ)dτ
∫ tk+1

tk
Φ2

22(tk+1, τ)dτ

] (24)

where the integrals contained in the second matrix are derived in Appendix B. The discrete
dynamics can then be rearranged to include the instantaneous forcing acceleration as
an additional state. In the absence of a model for g(t), the estimate must be driven by
the incorporation of new measurements. This can be done by tuning the process noise
associated with the channel to an appropriately scaled value (α).xk+1

ẋk+1
gk+1

 =

Φ11 Φ12 Ψ12
Φ21 Φ22 Ψ22

0 0 1

xk
ẋk
gk

+

Ψ12
Ψ22

0

b̂ +
[

w̃k
0

]
(25)

Using these discrete dynamics, the Kalman filter can be run with slight modifications
to the update and propagation equations given in Equations (12) and (13), respectively.

X̂+
k = X̂−k + Kk

(
ỹk − H X̂−k

)
P+

k =
(

I − Kk H
)
P−k .

Kk = P−k HT[HP−k HT + R
]−1,

(26)

X̂−k+1 = Φ(tk+1, tk)X̂+
k + Γ(tk+1, tk)b̂

P−k+1 = Φ(tk+1, tk)P
+
k ΦT(tk+1, tk) +

[
Q̃ 0
0 α

]
,

(27)
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Note here that Φ(tk+1, tk) provided in Appendix A is identical to matrix in Equation (25),
which allows for its use in the propagation equations above. Like the calibration step,
the filter is run using displacement measurements of the proof mass given in Equation (8),
which each possess measurement noise covariance R = σ2

m. Figure 1 summarizes the
developments for the calibration and operation filter and provides the framework for
intended use.

Figure 1. Flowchart of the calibration and operation Kalman filters. As shown, the outputs of each
filter are provided as inputs to the other. Equation (20) can easily be substituted into the calibration
step to use the lerast squares solution in place of the Kalman filter.

3. Numerical Simulation Results

The combined calibration and acceleration estimation procedure is implemented and
tested using a simulated dataset generated using the sensor model developed in Section 2.1.
The oscillator parameters that define the sensor response are provided in Table 1. These
parameters correspond to experimental results obtained from benchtesting of a prototype
sensor [16,17]. The parameters that define the stochastic processes driving the system
{σv, σu} are provided in Table 2. Using this information a truth model has been generated,
from which the displacement time history has been extracted and corrupted by noise to
create a simulated measurement set. These noisy measurements are then provided to the
calibration and acceleration estimation programs.

Table 1. Oscillator parameters for optomechanical inertial sensor.

Term Value Units

ω 3.76 Hz
Q 1.14× 105

fs 30.5 Hz

Firstly, the calibration step was conducted over a span of 10 min using a constant
input acceleration of ḡ = 1× 10−6 m/s2. The input noise density corresponds to 10%
error in delivered acceleration, and is provided in Table 2. The initial estimate of the bias
is significantly offset from the true value (1 m/s2). The true and estimated bias during
the calibration are plotted with the bias estimate error and corresponding 3σ bounds in
Figure 2. The filter is able to converge in the span of a few seconds, producing an unbiased
estimate with root mean square error of 1.9816 ng. The converged variance of the bias
estimate error (provided in Table 2) is then fed forward to the acceleration estimation
procedure in the next step.
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Table 2. Random process parameters.

Term Value Units

σv 1× 10−9 m/s
√

Hz
σu 1× 10−8 m/s2

√
Hz

σm 1× 10−11 m
σg 1.8107× 10−8 m/s

√
Hz

σb0 1.3506× 10−8 m/s2

After the calibration phase is implemented, the acceleration estimation step is carried
out over an extended operation interval of 8 h. The initial true bias was set to zero, while b̂
was set as a random drawing from N (0, σ2

b0). The external acceleration was defined as a
sinusoid of amplitude 1× 10−5 m/s2 and frequency 1/100 Hz. The results for the error in
estimated acceleration and the 3σ bounds are provided in Figure 3 for the moving least
squares procedure and in Figure 4 for the Kalman filter. The estimate errors for both filters
start as zero mean; however, as time increases the influence of the bias on the estimate
error becomes apparent in both cases. This is expected, as the filter is initialized with a
constant b̂ for the initial time, and beyond that point the uncertainty in b(t) is reflected
by the growth in the covariance. In both cases the estimate error is contained within the
plotted 3σ bounds. The acceleration estimates can be deemed reliable until the 3σ bounds
become sufficiently large to necessitate calibration, at which point the new bias estimate
and σb0 can be fed forward to continue operation.

To quantify the filter performance in a manner that is independent of the specific real-
ization of the bias random process, the procedure has been conducted for both estimation
approaches in a series of 10,000, 1 h trials to generate statistical measures of performance.
The results from this Monte Carlo analysis are presented in Table 3.

Figure 2. Results for the bias estimate obtained from the simulated calibration phase. The top figure
shows the true and estimated bias over the calibration time interval of 10 min. On the bottom,
the error in the bias estimate is plotted in blue with the corresponding 3σ bounds in red.
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Figure 3. Results for the forcing acceleration estimate error from the moving least squares procedure.
Estimate error is plotted in blue with the associated 3σ bounds in red. This is accompanied by the
true bias time history in yellow.

Figure 4. Results for the forcing acceleration estimate error from the Kalman filter. Estimate error
is plotted in blue with the associated 3σ bounds in red. This is accompanied by the true bias time
history in cyan.

Table 3. Key performance statistics from 10,000 Monte Carlo trials of both acceleration
estimation procedures.

Term Value Units

Least Squares Error Mean 7.7990× 10−5 µg
Least Squares Error Std Dev 3.6446× 10−2 µg

Kalman Filter Error Mean 3.7493× 10−5 µg
Kalman Filter Error Std Dev 3.5476× 10−2 µg
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4. Discussion

The sensor model developed in Section 2 has been employed to simulate noisy sen-
sor dynamics and measurements. Using these measurements, both the calibration and
operation phase estimation procedures have been conducted in series. Figure 2 shows
the results obtained in the calibration phase. It is shown that the filter is able to converge
to steady-state operation in less than 5 s, in spite of poor a priori knowledge of the bias
state. It is shown that the estimate tracks the true value well over the extended 10 min
operating window.

Figure 3 shows the results from the operation stage using the moving least squares
formulation over a period of 8 h without calibration. During this time, the covariance grows
significantly as the certainty in the bias estimate provided by the calibration is diminished.
The resultant estimate error is shown to be dominated by the effect of the bias, which is
plotted in yellow. This same procedure was conducted over a 1 h window for 10,000 Monte
Carlo iterations, 100 of which are plotted with the 3σ bounds in Figure 5. The figure shows
that the covariance is consistent with the expected results in that the errors are bounded
by red curves. An important observation is that the user can determine the required
calibration cycle based on required level of accuracy of the acceleration estimates. Figure 4
shows the results from the operation stage using the Kalman filter formulation. The results
here mirror those of the least squares formulation. The estimate error is primarily driven
by the bias term over the 8 h period, and the estimate error is contained within the 3σ
bounds which are plotted in red. The main distinction between the two is the tuning of the
parameter α for the process noise covariance. Figure 6 shows the results from 100 Monte
Carlo iterations using the Kalman filter. As is shown, the covariance scaling is consistent
with the acceleration estimate error results obtained.

Figure 5. Results for the forcing acceleration estimate error from the moving least squares procedure
for 100 Monte Carlo iterations. Estimate error is plotted in blue with the associated 3σ bounds in red.
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Figure 6. Results for the forcing acceleration estimate error from the Kalman filter procedure for
100 Monte Carlo iterations. Estimate error is plotted in blue with the associated 3σ bounds in red.

5. Conclusions

Inertial navigation is a crucial component to the future of autonomy across several
disciplines. It is required that accurate and precise measurements of acceleration and
angular rates be acquired in spite of various sources of error to conduct this procedure
effectively. In this paper a stochastic model for novel optomechanical inertial sensors is
presented and utilized to derive procedures for the estimation of sensor bias during a
calibration step, and forcing accelerations during operation. These procedures are devel-
oped to be fully compatible, as outputs from the calibration filter are used directly in the
operation phase, thus constituting a full sequence for accurate acceleration measurement.
This procedure is demonstrated using representative sensor parameters and simulated
process and measurement noise. The simulation results verify that the Kalman filter used
for calibration is able to produce a highly accurate estimate of the instantaneous bias in the
presence of an imperfect input, and that both operational filters produce precise estimates
of acceleration. The acceleration estimation errors induced by the bias as it evolves over
the operational window are shown to be fully captured by the covariance; this result is
proposed as a quantitative method to determine the required calibration cycle to maintain
a desired degree of accuracy. In summary, this work addresses the critical concerns of:
how to estimate the forcing acceleration in the presence of a stochastic bias term, how to
estimate this bias term during a calibration phase, and how regularly must calibration
phases be conducted to retain the desired degree of precision.

Author Contributions: Conceptualization, P.K., M.M. and F.G.; methodology, P.K. and M.M.; soft-
ware, P.K.; validation, P.K.; formal analysis, P.K. and M.M.; investigation, P.K.; writing—original draft
preparation, P.K.; writing—review and editing, P.K., M.M. and F.G.; visualization, P.K.; supervision,
M.M.; funding acquisition, M.M. and F.G. All authors have read and agreed to the published version
of the manuscript.

Funding: Support from National Geospatial Intelligence Agency (NGA) through Grant No. HM0476-
19-1-2015 is gratefully acknowledged. Dr. Scott A. True is thanked for serving as a technical monitor
and research advocate for this work. Office of Naval Research Grant Number N00014-19-1-2435 is
acknowledged for their support. The authors are thankful to Dr. Brian Holm-Hansen and Dr. David
Gonzales for their encouragement and support. The Jet Propulsion Laboratory (JPL) subcontract
1659175 Texas Intelligent Space Systems (TISS) initiative and JPL’s Strategic University Research
Partnership (SURP) initiative are gratefully acknowledged.



Sensors 2021, 21, 6101 12 of 16

Acknowledgments: The authors would like to thank John L. Junkins for his support on the project
and Adam Hines for correspondence regarding his work on optomechanical inertial sensors. Ad-
ditional thanks to Anup B. Katake, Brian T. Young, Tim McElrath, Fred Y. Hadaegh and Sarah U.
Stevens of Jet Propulsion Laboratory for their technical inputs and kind help.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. State Transition Matrix

The state transition matrix
(
Φ(t, t0)

)
provides the fundamental solution to a homo-

geneous linear state-space system, mapping the state at some reference time (t0) into the
solution space at a future time (t). For a state-space defined as:

ẋ(t) = Ax(t) + Bu(t) (A1)

where {A, B} are constant matrices, the state transition matrix is determined by the ma-
trix exponential:

Φ(t, t0) = eA(t−t0). (A2)

The resultant solution flow of the non-homogeneous system given in Equation (A1) is
then determined with the STM:

x(t) = Φ(t, t0)x(t0) + B
∫ t

t0

Φ(t, τ)u(τ)dτ (A3)

as is seen in the formulation of Equation (5). For the continuous LTI system defined in
Equation (4) the matrix exponential provides the following analytic STM:

Φ =

Φ11 Φ12 Φ13
Φ21 Φ22 Φ23

0 0 1

 (A4)

p1 = ω
√

1− ζ2 p2 = ωζ (A5)

Φ11 =
1
p1

e−p2(t−t0)
[
p1 cos

(
p1(t− t0)

)
+ p2 sin

(
p1(t− t0)

)]
Φ12 =

1
p1

e−p2(t−t0) sin
(

p1(t− t0)
)

Φ13 =
1

ω2

[
1− 1

p1
e−p2(t−t0)

(
p1 cos

(
p1(t− t0)

)
+ p2 sin

(
p1(t− t0)

))]
(A6)

Φ21 = −ω2

p1
e−p2(t−t0) sin

(
p1(t− t0)

)
Φ22 =

1
p1

e−p2(t−t0)
[
p1 cos

(
p1(t− t0)

)
− p2 sin

(
p1(t− t0)

)]
Φ23 =

1
p1

e−p2(t−t0) sin
(

p1(t− t0)
)
.

(A7)

Additionally, to account for the effect of the forcing function, the integral of Φ(t, t0) is
required, particularly the elements that make up Γ(t, t0) which account for the effect of the
forcing acceleration and bias terms.

Ψ(t, t0) =
∫ t

t0

Φ(t, τ)dτ (A8)
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Ψ11 =
1

p1ω2

[
2p1 p2 + e−p2dt

(
(p2

1 − p2
2) sin

(
p1(t− t0)

)
− 2p1 p2 cos

(
p1(t− t0)

))]
Ψ12 =

1
ω2

[
1− 1

p1
e−p2(t−t0)

(
p1 cos

(
p1(t− t0)

)
+ p2 sin

(
p1(t− t0)

))]
Ψ13 =

1
ω2 −

1
p1ω4

[
2p1 p2 + e−p2dt

(
(p2

1 − p2
2) sin

(
p1(t− t0)

)
− 2p1 p2 cos

(
p1(t− t0)

))]
Ψ21 = −

[
1− 1

p1
e−p2(t−t0)

(
p1 cos

(
p1(t− t0)

)
+ p2 sin

(
p1(t− t0)

))]
Ψ22 =

1
p2

e−p2(t−t0) sin
(

p1(t− t0)
)

Ψ23 =
1

ω2

[
1− 1

p1
e−p2(t−t0)

(
p1 cos

(
p1(t− t0)

)
+ p2 sin

(
p1(t− t0)

))]
Ψ31 = 0

Ψ32 = 0

Ψ33 = (t− t0)

(A9)

Appendix B. Process Noise Covariance

The process noise vector wk defined in Equation (5) is composed of a Gaussian white
noise process, and a random walk. The instantaneous value of this term is given by:

wk =
∫ tk+1

tk

Φ11(tk+1, τ) Φ12(tk+1, τ) Φ13(tk+1, τ)
Φ21(tk+1, τ) Φ22(tk+1, τ) Φ23(tk+1, τ)
Φ31(tk+1, τ) Φ32(tk+1, τ) Φ33(tk+1, τ)

 0
nv(τ)
nu(τ)

dτ

=
∫ tk+1

tk

Φ12(tk+1, τ)nv(τ) + Φ13(tk+1, τ)nu(τ)
Φ22(tk+1, τ)nv(τ) + Φ23(tk+1, τ)nu(τ)

nu(τ)

dτ

(A10)

For any admissible value of k, wk is a zero-mean Gaussian random vector with
covariance Q = E[wkwT

k ]. As such, the elements of this covariance matrix are required to
define the multivariate distribution from which drawings of wk are taken. By applying the
definitions in Equation (3), the elements of Q are given as:

Q11 = σ2
v

∫ tk+1

tk

Φ2
12(tk+1, τ)dτ + σ2

u

∫ tk+1

tk

Φ2
13(tk+1, τ)dτ

Q12 = Q21 = σ2
v

∫ tk+1

tk

Φ12(tk+1, τ)Φ22(tk+1, τ)dτ + σ2
u

∫ tk+1

tk

Φ13(tk+1, τ)Φ23(tk+1, τ)dτ

Q13 = Q31 = σ2
u

∫ tk+1

tk

Φ13(tk+1, τ)dτ

Q22 = σ2
v

∫ tk+1

tk

Φ2
22(tk+1, τ)dτ + σ2

u

∫ tk+1

tk

Φ2
23(tk+1, τ)dτ

Q23 = Q32 = σ2
u

∫ tk+1

tk

Φ23(tk+1, τ)dτ

Q33 = σ2
u

∫ tk+1

tk

1dτ.

(A11)

Note that the units of {σv, σu} must agree with those provided in Table 2 to ensure
that these products are dimensionally consistent. Neglecting the contribution of these
integrals will result in misrepresentation of the random process parameters. To proceed,
the integrals in the above expressions must be evaluated. These have each been evaluated
analytically, giving the following:
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∫ tk+1

tk

Φ2
12(tk+1, τ)dτ =

1
4p2

1

[
1
p2

(
1− e−2p2dt

)
− 1

ω2

(
p2 − e−2p2dt

(
p2 cos(2p1dt)− p1 sin(2p1dt)

))]
∫ tk+1

tk

Φ2
13(tk+1, τ)dτ =

1
4p2 p2

1ω10

[
e−2p2dt

(
p2(p3

2 − 3p2
1 p2) cos

(
2p1dt

)
+ p2(p3

1 − 3p1 p2
2) sin

(
2p1dt

)
−ω4

)
+ e−p2dt

(
16p2

1 p2
2 cos

(
p1dt

)
+ 8p1 p2(p1 + p2)(p2 − p1) sin

(
p1dt

))
+ p2

1

(
p2

2
(
4p2dt− 11

)
+ p2

1
(
1 + 4p2dt

))]
(A12)

∫ tk+1

tk

Φ2
22(tk+1, τ)dτ =

1
4p2
− 1

4p2
1 p2

(
e−2p2dt[ω2 − p2

2 cos(2p1dt)− p1 p2 sin(2p1dt)
])

∫ tk+1

tk

Φ2
23(tk+1, τ)dτ =

1
4p2

1

[
1
p2

(
1− e−2p2dt

)
− 1

ω2

(
p2 − e−2p2dt

(
p2 cos(2p1dt)− p1 sin(2p1dt)

))] (A13)

∫ tk+1

tk

Φ12(tk+1, τ)Φ22(tk+1, τ)dτ =
1

4p2
1

e−2p2dt
[
1− cos(2p1dt)

]
∫ tk+1

tk

Φ13(tk+1, τ)Φ23(tk+1, τ)dτ =
e−2p2dt

2p2
1ω6

[
p1 cos

(
p1dt

)
+ p2 sin

(
p1dt

)
− p1ep2dt

]2 (A14)

∫ tk+1

tk

Φ13(tk+1, τ)dτ =
1

ω4

[
ω2dt− 2P2 + e−P2dt

(
2P2 cos(P1dt) +

(P2
2

P1
− P1

)
sin(P1dt)

)]
∫ tk+1

tk

Φ23(tk+1, τ)dτ =
1

P1ω2

[
P1 − e−P2dt

(
P2 sin(P1dt) + P1 cos(P1dt)

)] (A15)

where dt = tk+1 − tk. Alternatively, elegant solutions for the computation of integrals
involving the matrix exponential have been developed by Van Loan [42]. Using the system
matrix in Equation (4), the covariance can be computed simply as:

Q =
∫ dt

0
eAτQceATτdτ = FT

3 (dt)G2(dt) (A16)

Qc =

0 0 0
0 σ2

v 0
0 0 σ2

u

 (A17)

exp
([
−A Qc

0 AT

]
dt
)
=

[
F2(dt) G2(dt)

0 F3(dt)

]
(A18)

Using either of these closed form solutions for the covariance matrix of the oscillator
state and bias, the stochastic dynamics can be realized using drawings from a zero-mean
Gaussian random vector of unit variance:

Xk+1 = Φ(tk+1, tk)Xk + Γ(tk+1, tk)ḡk +
√

QN3×1(0|1) (A19)
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