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Abstract: The sample size is a crucial concern in scientific research and even more in behavioural
neurosciences, where besides the best practice it is not always possible to reach large experimental
samples. In this study we investigated how the outcomes of research change in response to sample
size reduction. Three indices computed during a task involving the observations of four videos were
considered in the analysis, two related to the brain electroencephalographic (EEG) activity and one
to autonomic physiological measures, i.e., heart rate and skin conductance. The modifications of
these indices were investigated considering five subgroups of sample size (32, 28, 24, 20, 16), each
subgroup consisting of 630 different combinations made by bootstrapping n (n = sample size) out
of 36 subjects, with respect to the total population (i.e., 36 subjects). The correlation analysis, the
mean squared error (MSE), and the standard deviation (STD) of the indexes were studied at the
participant reduction and three factors of influence were considered in the analysis: the type of index,
the task, and its duration (time length). The findings showed a significant decrease of the correlation
associated to the participant reduction as well as a significant increase of MSE and STD (p < 0.05). A
threshold of subjects for which the outcomes remained significant and comparable was pointed out.
The effects were to some extents sensitive to all the investigated variables, but the main effect was
due to the task length. Therefore, the minimum threshold of subjects for which the outcomes were
comparable increased at the reduction of the spot duration.

Keywords: applied neurosciences; EEG; HR; GSR; sample size; signal processing

1. Introduction

In the field of behavioural neurosciences, as well as in every scientific discipline,
sample size definition is a crucial factor for ensuring the reliability and accuracy of the
results obtained in a study, as well as the replicability of the study itself [1]. In fact, the
statistical power and the reproducibility of a study are strictly related to the number of
participants included in the analysis [2]. In order to prevent and mitigate consequences of
a poor statistical power, it is generally recommended to estimate the proper sample size. To
this end, different studies recently tried to propose methods to easily calculate the required
sample size while designing the experimental protocol [3–8]. Additionally, sometimes
it is not only strictly a problem of sample size, intended as the number of participants,
but also the concerns of trial numbers, i.e., the number of tasks and repetitions should be
carefully considered [9]. Backe and colleagues pointed out the relation between the number
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of trials necessary to perform studies involving human participants and the sample size.
They proposed a tool based on power contours for calculating the optimal combination
of trials and number of participants [10]. Additionally, Guttmann-Flury [11] pointed out
a method for a priori sample size determination based on Montecarlo simulations on
Electroencephalographic (EEG) data. Therefore, the inclusion of an adequate number of
participants in neuroscientific studies is an important issue, and some authors reported
alarming data about the potential risks of employing a small sample size [1]. This is
the case of Button and colleagues [2], who claimed that many of the works published in
neuroscientific domain are not reproducible due to their small sample size and the low
statistical power associated with false-positive effects counted in the results. The reduction
of the sample size is denounced as a deliberate action, driven by the aim of researcher
or organisations which want to increase the prestige associated with the publishing of
their works at any cost [12]. A smaller sample size, in these cases, is chosen to undermine
the statistical power of the study, enhancing the presence of false-positive effects which
endorse the desired results.

Though this behaviour must be countered, there are cases in which the reduction of
the sample size is necessary for organisational and logistic needs. In fact, thanks to the
increasing shared knowledge and recent scientific evidence produced by the neuroscientific
community, behavioural neuroscience is experiencing an exponential growth in terms of
applied research [13–15]. Recently, new terms have been coined, such as Neuroergonomics,
Neuromarketing, Neuroaesthetics, and others, to include the new neuroscientific disci-
plines that aim at investigating neurophysiological correlates of humans’ behaviour at
work [16–18], including driving a car [19–24], watching television [25–27], having a sen-
sorial experience [28–30], and in any other activity of daily life. In the context of applied
neurosciences, when physiological signals are acquired in real environments, several fac-
tors work against the ease of participant recruitment. The whole experimental session of
each subject requires time, and the operators have to welcome the participant, explain
the protocol, ask for informed consent, place the devices in the correct way, ensure the
quality of the signals, and finally start the experimental tasks during which biosignals are
recorded. Therefore, participants should account for taking one or two hours off from
their working day for taking part in the experiment. At the same time, expert operators
should be available to spend several days to perform the experiment, usually outside
their working place (i.e., outside the laboratories). Furthermore, if the study is conducted
in real environments, out from the labs, it is necessary to concentrate all the recordings
in few days because generally the facilities that host the experiments are not available
for long. Therefore, the number of slots at disposal to screen each participant is not so
high. In the last period, moreover, the on-going Coronavirus Disease 2019 (COVID-19)
pandemic [31] made participant recruitment even more difficult. During the study, both
participants and operators take the risk of reaching the place in which the experiments
are performed, they must carefully observe all the sanitising practices, avoid contacts,
and maintain social distancing. The time spent on respecting these procedures renders
the duration of the protocol even longer than usual. The reduction of the sample size, in
these cases, would allow for the performing of experiments without compromising the
experimental protocols and ensuring at the same time the good sanitizing practices and
any other health preventive measure.

In this context, premising that the best practise is to include an optimal sample size,
it is interesting to explore what error affects the outcomes of a study when researchers
rely on a lower number of subjects. In other words, in those cases when for different
reasons it is not possible to enlarge the sample size anymore, the researchers should
be at least aware of the potential error affecting the results in order to interpret them
properly. With this aim, the present study took into consideration a case study coming
from the neuromarketing domain. It was analysed through an existing dataset of thirty-six
participants while performing a neuromarketing experimental protocol in order to explore
the modification of three neurophysiological indexes, frequently employed in applied



Sensors 2021, 21, 6088 3 of 18

neurosciences, when the participants decrease, pointing out the conditions for which the
indices remain comparable, and quantifying the tendency of measurements variability and
related error depending on the sample size. Five subgroups of subjects’ numerousness (i.e.,
sample size) from the total sample of participants (36, hereafter ‘Reference population’)
were considered: 32, 28, 24, 20, and 16 subjects respectively (sub-groups). In particular, each
subgroup consisted of 630 different combinations (since 630 is the maximum number of
different combinations of 32 elements from a set of 36) of the whole ‘Reference population’.
The outcomes associated with the entire population were considered as reference since
36 is within the range of sample sizes generally involved in this kind of study. This
number was deemed appropriate to assume the results were reliable, i.e., representative of
the theorical population, in line with the scientific literature [32]. These subgroups were
chosen since: (i) in the literature there is a large consensus considering [16–32] the optimal
range of participants in neuroimaging studies [33]; (ii) in order to perform Analysis of
Variance, the number of cases (i.e., 630) has to be much higher than the number of groups
(i.e., five). The experimental task consisted of watching four TV spots with different lengths
(30, 30, 20, and 15 s) during which electroencephalographic (EEG) signal and autonomic
measures, i.e., heart rate (HR) and galvanic skin response (GSR), were acquired. The data
analysis explored the correlation and the error between the outcomes for the total sample
size and the considered subgroups of subjects. Furthermore, the data distribution over the
experimental sample was explored in terms of standard deviation of the indexes, for each
second, at the participants’ reduction. The hypothesis at the base of this study was to find
a decrease of correlation as well as an increase of error and data dispersion moving from
32 to 16 subjects with respect to the total sample size (36 subjects). In addition, the data
analysis was conducted considering three influencing factors: the kind of index, the task,
and the time (i.e., task length), assuming that they could affect the outcoming modifications
at the sample size reduction.

In conclusion, all the possible sub-sample sizes from 34 up to 10 were considered in
order to model the decreasing curve of sample size-correlation relationship.

Before going ahead with the methods, it is important to clarify that the analysis was
focused on investigating the alterations induced by sample size reduction on neurophysio-
logical indicators averaged on the whole available sample (group analysis), without taking
into consideration the sensitivity of the resulting indicators (i.e., the indicators computed
on smaller samples) with respect to the phenomenon itself (i.e., if the sample size was
reduced the probability of wrongly rejecting the null hypothesis—type I error—or wrongly
accepting the null hypothesis—type II error—would increase or decrease). This concern is
addressed in Section 4.

2. Materials and Methods
2.1. Experimental Sample and Design

The dataset analysed in this study included EEG, GSR, and PPG (photopletismo-
graphic) signals acquired from 36 subjects (37.39 ± 10.67 years old), gender balanced,
recruited on a voluntary basis. These subjects signed the informed consent and the related
information sheet, in which the study was explained, before participating in the experiment.
The experiment was conducted following the principles outlined in the Declaration of
Helsinki of 1975, as revised in 2000, and it received the approval of Sapienza University of
Rome ethical committee (nr. 2507/2020).

The task consisted of watching a TV video, almost 12 min in length, based on a
documentary and with two commercial breaks in the middle. Such breaks consisted of
twelve different TV commercials selected as experimental stimuli, six per break, presented
in a randomised order. This means that the same spot was seen by the participants in
different moments of the experience in order to avoid any habituation effect. Subjects were
comfortably seated in front of the screen during the entire protocol. The documentary was
chosen to be relaxing and emotionally neutral [34], in contrast with the high emotional
and engaging contents of TV advertising, and it was used as individual baseline. The
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task was designed for neuromarketing research, and thus one of the new branches of
applied neuroscience [26,35] as depicted in the introduction, with the aim of evaluating the
response to some target advertising. However, for the purpose of the present study, only
four commercials over twelve were considered in the analysis. Assuming that larger spot
lengths would favour correlation analysis, we took the longer (t = 30 s) spots. Actually,
30 s is the most common time duration employed for TV commercial advertising (source:
Nielsen Report, 2013 [36]). Then, we selected two shorter spots (20 and 15 s) taking care
to select non-contiguous ones in order to have four spots distributed along the whole
commercial break.

2.2. Neurophysiological Data Recording

The cerebral activity was recorded by means of a portable EEG system (BEmicro
and Galileo software, EBneuro, Firenze, Italy). Ten Ag/AgCl electrodes were placed
according to the 10–10 International System, at the following channels: Fp2, Fpz, Fp1,
AF7, AF5, AF3, AFz, AF4, AF6, and AF8, all referred to the earlobes (REF channel). EEG
activity was collected at a sampling rate of 256 Hz while the impedances were kept below
10 kΩ by employing conductive gel to adapt them. The raw signals were fully analysed
offline through MATLAB software (MathWorks Inc., Natick, MA, USA). The power-supply
interference was removed with a notch filter at 50Hz. Moreover, signals were bandpass
filtered by a 5th-order Butterworth filter [2,30] Hz) in order to remove interferences in
frequencies not of interest. Independent component analysis (ICA) was then performed,
in particular by employing the SOBI algorithm [37], to remove Independent Components
related to ocular and muscular activity. On average, 2 ± 1 components were manually
selected and removed by the same neurophysiology expert. The reconstructed EEG signal
was then segmented into 1-s-long epochs with 0.5 s of overlap in order to avoid any
“boundary effect”, and three additional criteria for detecting artifacts based on the signals’
amplitude and trend [38,39] were applied in order to remove those portions of data still
affected by artifacts that had not been corrected before.

At the beginning of the EEG recording, the participants were invited to close their eyes
for 60 s. Such a time interval was then employed for the calculation of the individual alpha
frequency (IAF), i.e., the peak of the signal power spectrum within the traditional alpha
frequency range (7–12/13 Hz). According to Klimesch and Doppelmayr [40], the IAF was
then used to define the individual EEG frequency bands of each participant as a function
of the IAF itself ([IAF–x, IAF + x] Hz). In particular, for the purposes of this study two EEG
frequency bands have been investigated, the whole alpha [IAF–4Hz, IAF + 2 Hz] and the
upper alpha [IAF–2Hz, IAF + 2 Hz] [41]. Then, the EEG signals for each subject were filtered
in these specific sub-bands and the global field power (GFP) [42] was computed in order to
obtain a synthetic indicator of the synchronous de-/activation of brain cortical areas.

In terms of autonomic measures, Galvanic Skin Response (GSR) and Photopletismo-
graphic (PPG) signal were recorded with a Shimmer3+ (Shimmer Sensing, Ireland) device
applied to the non-dominant hand. Two electrodes were placed on the palmar side of the
middle phalanges of the second and third fingers according to scientific best practice [43],
with the PPG sensor over the thumb. These signals were acquired with a sampling rate
of 64 Hz. From the PPG signal, the Heart Rate (HR) was obtained by means of the
Pan-Tompkins algorithm [44]. On the other side, the tonic component of the skin conduc-
tance (Skin Conductance Level, SCL) was estimated with the LEDAlab software and the
Continuous Decomposition Analysis [45].

At this point, from the available biosignals pre-processed as described so far, three
indices with different natures were considered in the analysis.

1. Index 1: general descriptor of the frontal cerebral activity. It was computed as the
inverse of the upper-alpha GFP over all the frontal electrodes. It is generally related
to the attentional processes [46,47];

2. Index 2: descriptor of the frontal alpha asymmetry [48]. It was computed as the
difference between the GFP over right (Fp2, AF4, AF8) and left (Fp1, AF3, AF7)
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electrodes. Such a “neurometric” is frequently employed in EEG studies [49,50], and
it is known as the Approach-Withdrawal index [51];

3. Index 3: descriptor of the autonomic response, namely, the emotional index (EI),
computed as the combination between the SCL and the HR measures, as described by
Vecchiato and colleagues [52].

Each Index is a time-series with a time resolution of 1 s for each task and for each
subject. In general, individual indexes were then averaged among the subjects in order to
estimate the population index.

2.3. Data Analysis and Statistics

Among all the 12 tasks (i.e., TV spots), four in particular were chosen for the analysis:
two 30-s-long (the maximum length of the tasks in the present protocol) in order to verify
the task-independency of the results, one 20-s, and another 15-s-long in order to also
investigate the effect of task duration. At first, for each of the selected spots and for each of
the three indices, 25 subgroups of subjects’ numerousness (from 10 to 34 participants) taken
from the 36 participants at the study were considered in the analysis. For each of these
subgroups, 630 different random combinations of subjects were selected using a bootstrap,
from the initial population. It was carried out to avoid any possible effect associated to the
choice of subjects. The number of combinations for each subgroup (630) was chosen since
it is the maximum number of possible combinations considering a subset of 34 subjects
from the initial sample of 36 (Equation (1)).

C(36,34) =
36!

(34!(36 − 34)!)
= 630 (1)

For coherence, this number of combinations was extended to the other 24 subgroups of
subjects by randomly selecting 630 out of all the possible combinations for that specific case.

Keeping in mind that for each task, each index corresponds to a t-long (with t = 30, 20, 15)
vector (i.e., the population index ‘v’), for every subgroup, for each spot, and for each index,
we computed:

1. Group-mean values of the index (function of t, i.e., the task duration), for each of the
630 combinations. We so obtained 630 vectors ‘v630’ (thus resulting in a matrix 630 x t);

2. Pearson correlation between each ‘v630’ (630 x t) and the vector ‘v’ (1 x t), containing
the mean values of the index computed over the entire population (36 subjects);

3. Mean Squared Error (MSE) to describe the error committed considering each ‘v630’
rather than ‘v’ along each task (within-task variability):

MSE =
∑t

i=1(v630i − vi)
2

t
(2)

In this formula ‘v630’ represents the vector of the observed values while ‘v’ is assumed
as the vector of predicted values (i.e., the unique possible vector of each index if considering
the full population).

4. The standard deviation of the 630 values assumed by the vectors ‘v630’, for every
second of the task itself (between-groups variability):

STD =

√
∑630

n=1
(
v630n − v630

)2

630
(3)

The effect of the sample size reduction was explored considering the variables de-
scribed in the previous section.

In order to ensure the statistical power of the analysis, only five subgroups with a
steady reduction of the sample size were considered. Specifically, they were subgroups of
32, 28, 24, 20, and 16 subjects.
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In the figure below (Figure 1), it is possible to visually appreciate, for a representative
spot and index, the increasing variability of the index itself when decreasing the sample
size. In fact, they represented the maximum (Max) and the minimum (Min) values of the
index among the 630 combinations of the n-th sample size (n = 32, 28, 24, 20, 16), i.e., the
‘v630’ vectors with respect to the ‘v’ one (full sample size, i.e., ALL).
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Figure 1. The graph represents the trend of ‘v’, the mean value of Index1 computed over the entire
population (36 subjects) during SPOT1 (ALL). The dashed lines show the trend of the maximum and
minimum values (Max, Min) of the index among the ‘v630’ for each second, in each subgroup of
subjects (32, 28, 24, 20, 16).

The statistical analysis was performed on these data to assess the differences among
the five sub-groups. At first, the Pearson correlation between each ‘v630’ with respect to ‘v’
was conducted for each subgroup of subjects and the number of significant correlations
were reported. The p-value for these correlations was corrected through the Bonferroni
method in order to avoid any improper deduction due to the type I error, the likelihood of
which is higher with greater numbers of repeated statistical tests carried out. In particular,
being that the multiple comparisons were equal to 630, the test was deemed significant
for p < 8 × 10−5 [53]. The Shapiro Wilk test [54] of normality demonstrated that data
(the Rho correlation coefficients, MSE, and STD values) were not Gaussian; hence, the
non-parametric Friedman test [55] was performed to assess the difference between groups.
Specifically, the subgroups of subjects (32, 28, 24, 20, 16) were considered as within factors
for the analysis run over the Rho values resulting from the correlation analysis, the MSE
and the STD values. The analysis was performed for each of the three considered indices
and each of the four selected spots. Nemenyi post-hoc test [56], specifically conceived for
non-parametric repeated measures ANOVA (i.e., the Friedman test), was applied to further
analyse the significant effects and interactions.

In conclusion, the Rho correlation coefficient was computed and summarised for each
index for each task for all the possible sub-sample sizes (from 34 up to 10) in order to
visually highlight the decreasing curve of sample size-correlation relationship.

3. Results
3.1. The Effect of the Index

The analysis of the first spot (SPOT1) was conducted exploring the effect of the sample
size reduction on the three different indices.

Concerning Index1, EEG frontal desynchronization, the correlation analysis showed
that ‘v630’ significantly correlated with the vector ‘v’, associated with the entire population,
considering the subgroups of 32 and 28 subjects. Reducing the sample size to 24, to 20, and
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to 16, two correlations over 630, 33 over 630, and 151 over 630 resulted as respectively not
significant (p > 8 × 10−5). The Friedman test evidenced a significant decreasing effect of the
mean rho values depending on the sub-groups, Figure 2a (Friedman chi-squared = 1868,
p-value < 2.2 × 10−16). The post-hoc analysis showed that rho significantly decreased from
32 to 16 subjects, assuming different values for each subgroup (p < 0.05).
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Figure 2. The box plots represent the effect of the subgroup of subjects on (a) Rho values, (b) MSE
values, and (c) STD values, computed for Index 1, during the SPOT 1.

Additionally, the MSE showed dependency from the subgroups of subjects, Figure 2b
(Friedman chi-squared = 1932.3, p-value < 2.2 × 10−16): it was significantly lower for
32 subjects, increasing with the sample size reduction. The highest error was committed
considering 16 subjects instead of 36. All the groups were significantly different as showed
by the Nemenyi test.
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The analysis of the STD evidenced the effect of the groups, Figure 2c (Friedman
chi-squared = 124, p-value < 2.2 × 10−16). It was lower for 32 subjects, increasing with the
reduction of the sample size. The post-hoc analysis demonstrated that STD was significantly
different for each subgroup.

Concerning Index2, EEG frontal asymmetry, all the correlations were significant for
the subgroups 32 and 28 (p < 8 × 10−5). Concerning the subgroups of 24, 20, and 16 subjects,
13 over 630, 92 over 630, and 237 over 630 correlations were respectively not significant. The
Friedman analysis on rho, MSE, and STD showed the effect of the groups, with a significant
increase of rho (Friedman chi-squared = 1868, p-value < 2.2 × 10−16), a significant increase
of MSE (Friedman chi-squared = 1932.3, p-value < 2.2 × 10−16), and a significant increase
of STD from 32 to 16 subjects (Friedman chi-squared = 124, p-value < 2.2 × 10−16). The
post-hoc Nemenyi test evidenced that all the subgroups assumed different values of rho,
MSE, and STD.

Considering Index3, Autonomic response, for every subgroup, only the subgroup
16 presented 12 not-significant correlations over 630 (p > 8 × 10−5). The Friedman analysis
on rho, MSE, and STD showed the effect of the groups, with a significant increase of rho
(Friedman chi-squared = 2235.5, p-value < 2.2 × 10−16), a significant increase of MSE
(Friedman chi-squared = 2232.1, p-value < 2.2 × 10−16), and a significant increase of STD
from 32 to 16 subjects (Friedman chi-squared = 124, p-value < 2.2 × 10−16). The post-hoc
Nemenyi test evidenced that all the subgroups assumed different values of rho, MSE,
and STD.

The analysed variables for SPOT1 and the three indexes are summarised in Table 1.

3.2. The Effect of the Task

The analysis on SPOT2 (Table 2), with the same length of SPOT1 but different content,
showed that all the correlations between the ‘v630’ and ‘v’ were significant for the subgroups
32, 28, and 24, considering Index1 (p < 8 × 10−5), while for the subgroups 32 and 28 for In-
dex2 and Index3. The analysis evidenced that reducing the sample size at 24:10 and 49 over
630 correlations were not significant for Index2 and Index3, respectively. For a sample size
of 20 subjects, 8, 90, and 138 over 630 correlations were not significant for the three indices,
respectively. Moving on, 16 subjects, 49, 215, and 290 over 630 were not significant for the three
indices, respectively. Friedman test on rho, MSE, and STD revealed a significant effect of the
groups for the three indices, showing rho decreasing (Index1: Friedman chi-squared = 1879.4,
p-value < 2.2 × 10−16; Index2: Friedman chi-squared = 1800.9, p-value < 2.2 × 10 −16; In-
dex3: Friedman chi-squared = 1888.1, p-value < 2.2 × 10−16), MSE increasing (Index1: Fried-
man chi-squared = 2124.8, p-value < 2.2 × 10−16; Index2: Friedman chi-squared = 2151.2,
p-value < 2.2 × 10−16; Index3: Friedman chi-squared = 2182.7, p-value < 2.2 × 10−16), and
STD increasing (Index1: Friedman chi-squared = 124, p-value < 2.2 × 10−16; Index2: Fried-
man chi-squared = Friedman chi-squared = 124, p-value < 2.2 × 10−16; Index3: Friedman
chi-squared = 124, p-value < 2.2 × 10−16). The post-hoc test showed that all the compar-
isons between groups were significant.
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Table 1. Number of significant correlations (#s.c.) and eventual decreasing as percentage of the total number of combinations (630), median ± std of rho, MSE, and STD for the three
indices (I1, I2, I3) and the five subgroups of subjects (32, 28, 24, 20, 16) during SPOT1.

SPOT1(30 s)

#s.c. (p < 8 × 10−5) Rho MSE STD

I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3

32 630 * 630 * 630 * 0.96 ± 0.02 0.94 ± 0.02 0.97 ± 0.01 0.012 ± 0.01 0.014 ± 0.01 0.001 ± 0.0005 0.12 ± 0.02 0.13 ± 0.01 0.03 ± 0.003

28 630 * 630 * 630 * 0.91 ± 0.04 0.89 ± 0.05 0.94 ± 0.02 0.029 ± 0.02 0.032 ± 0.02 0.002 ± 0.001 0,18 ± 0.03 0,19 ± 0.02 0.05 ± 0.004

24 628
(−0.3%)

617
(−2.1%) 630 * 0.87 ± 0.06 0.84 ± 0.07 0.90 ± 0.03 0,05 ± 0.03 0,053 ± 0.03 0,004 ± 0.002 0.23 ± 0.04 0.23 ± 0.03 0.07 ± 0.007

20 597
(−5.2%)

538
(−14.6%) 630 * 0.81 ± 0,08 0.76 ± 0.10 0.86 ± 0.04 0,079 ± 0.06 0,089 ± 0.05 0,007 ± 0.003 0.30 ± 0.05 0.31 ± 0.04 0.09 ± 0.007

16 479
(−23.9%)

393
(−37.6%)

618
(−1.9%) 0.74 ± 0.12 0.69 ± 0.12 0.79 ± 0.06 0.128 ± 0.08 0.136 ± 0.08 0.011 ± 0.005 0.37 ± 0.06 0.38 ± 0.04 0.11 ± 0.01

Table 2. Number of significant correlations (#s.c.) and eventual decreasing as percentage of the total number of combinations (630), median ± std of rho, MSE, and STD for the three
indices (I1, I2, I3) and the five subgroups of subjects (32, 28, 24, 20, 16) during SPOT2.

SPOT2 (30 s)

#s.c. (p < 8 × 10−5) Rho MSE STD

I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3

32 630 * 630 * 630 * 0.98 ± 0.007 0.95 ± 0.02 0.94 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.001 ± 0.00 0.14 ± 0.02 0.13 ± 0.02 0.03 ± 0.004

28 630 * 630 * 630 * 0.96 ± 0.01 0.9 ± 0.04 0.88 ± 0.04 0.04 ± 0.01 0.04 ± 0.02 0.002 ± 0.00 0.21 ± 0.02 0.19 ± 0.03 0.05 ± 0.006

24 630 * 620
(−1.6%)

598
(−5.1%) 0.94 ± 0.03 0.84 ± 0.07 0.81 ± 0.07 0.07 ± 0.03 0.07 ± 0.03 0.004 ± 0.001 0.27 ± 0.04 0.26 ± 0.05 0.07 ± 0.008

20 622
(−1.2%)

540
(−14.3%)

492
(−21.9%) 0.91 ± 0.06 0.78 ± 0.10 0.74 ± 0.11 0.12 ± 0.05 0.11 ± 0.05 0.007 ± 0.003 0.34 ± 0.04 0.32 ± 0.06 0.08 ± 0.01

16 581
(−7.8%)

415
(−34.1%)

340
(−46%) 0.86 ± 0.08 0.70 ± 0.13 0.67 ± 0.14 0.18 ± 0.07 0.17 ± 0.07 0.01 ± 0.004 0.42 ± 0.06 0.40 ± 0.07 0.1 ± 0.02
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3.3. The Effect of the Time

To explore the influence of the task time duration, or rather the length of the spot in
this case, the last analysis was conducted on the number of significant correlations found
for SPOT3 and SPOT4, respectively 20 and 15 s long (Table 3). The MSE and STD were not
considered in this part of the study because they do not depend on the time. The analysis
of SPOT3 showed that all the correlations were significant for the subgroups of 32 and
28 subjects for both Index1 and Index3 (p < 8 × 10−5). Concerning Index1, 12, 53, and
136 correlations over 630 were not significant in subgroups 24, 20, and 16, respectively,
while for Index3, 2, 63, and 216 correlations were not significant in those subgroups. Con-
sidering Index2, the number of not-significant correlations increased from the subgroup
of 28 subjects in which 23 correlations were not significant, while 115, 290, and 408 over
630 correlations were not significant for the subgroups of 24, 20, and 16 subjects, respec-
tively. Friedman test on rho values revealed a significant effect of the groups for the three
indices, showing a rho decreasing related to the reduction of the sample size (Index1: Fried-
man chi-squared = 1712.1, p-value < 2.2 × 10−16; Index2: Friedman chi-squared = 1586.3,
p-value < 2.2 × 10−16; Index3: Friedman chi-squared = 2017.2, p-value < 2.2 × 10−16). Post-
hoc test showed that all the comparisons between groups were significant. The analysis of
SPOT4, showed that all the correlations were significant for the subgroups of 32 subjects, for
both Index1 and Index3 (p < 8 × 10−5). Concerning Index1 63, 214, 335 and 464 correlations
over 630 were not significant in subgroups 28, 24, 20 and 16 respectively, while for Index3,
19, 122, 296 and 423 correlations were not significant in those subgroups. Considering
Index2, the number of not-significant correlations increased, already from the subgroup
of 32 subjects in which 7 correlations were not significant, while 82, 203, 342, 450 over
630 correlations were not significant for the subgroups of 28, 24, 20 and 16 subjects, respec-
tively. Friedman test on rho values revealed a significant effect of the groups for the three
indices, showing rho decrease related to the reduction of the sample size (Index1: Fried-
man chi-squared = 1510.9, p-value < 2.2 × 10−16; Index2: Friedman chi-squared = 1263,
p-value < 2.2 × 10−16; Index3: Friedman chi-squared = 1617.6, p-value < 2.2 × 10−16). The
post-hoc test showed that all the comparisons between groups were significant.

Table 3. Number of significant correlations (#s.c.) and eventual decrease as percentage of the total number of combinations
(630), median ± std of rho values for the three indices (I1, I2, I3), and the five subgroups of subjects (32, 28, 24, 20, 16) during
SPOT3 and SPOT4.

SPOT3 (20 s) SPOT4 (15 s)

#s.c. (p < 8 × 10−5) Rho #s.c. (p < 8 × 10−5) Rho

I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3

32 630 * 630 * 630 * 0.98 ± 0.01 0.95 ± 0.03 0.98 ± 0.01 630 * 623
(−1.1%) 630 * 0.96 ±

0.026 0.96 ± 0.04 0.97 ± 0.01

28 630 * 607
(−3.6%) 630 * 0.95 ± 0.03 0.88 ± 0.06 0.95 ± 0.02 567

(−10%)
548

(−13%)
611

(−3%) 0.92 ± 0.04 0.93 ± 0.05 0.94 ± 0.02

24 618
(−1.9%)

515
(−18.2%)

628
(−0.3%) 0.92 ± 0.05 0.83 ± 0.08 0.92 ± 0.04 416

(−33.9%)
427

(−32.2%)
508

(−19.3%) 0.87 ± 0.09 0.87 ± 0.13 0.89 ± 0.04

20 577
(−8.4%)

340
(−46%)

567
(−10%) 0.88 ± 0.07 0.76 ± 0.13 0.87 ± 0.06 295

(−53.2%)
288

(−54.3%)
334

(−46.9%) 0.80 ± 0.12 0.81 ± 0.19 0.84 ± 0.06

16 494
(−21.6%)

222
(−64.7%)

414
(−34.3%) 0.83 ± 0.10 0.70 ± 0.16 0.81 ± 0.07 166

(−73.7%)
180

(−71.4%)
207

(−67.1%) 0.74 ± 0.17 0.77 ± 0.24 0.78 ± 0.08

The number of significant correlations for the three indices and the four considered
spots are summarised in Table 4.
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Table 4. Number of significant correlations (#s.c.) and eventual decreasing as percentage of the total number of combinations
(630) for the three indices (INDEX1, INDEX2, INDEX3) and the five subgroups of subjects (32, 28, 24, 20, 16) during SPOT1
(30 s), SPOT2 (30 s), SPOT3 (20 s), and SPOT4 (15 s).

INDEX1 INDEX2 INDEX3

#s.c. (p < 8 × 10−5) #s.c. (p < 8 × 10−5) #s.c. (p < 8 × 10−5)

30 s 30 s 20 s 15 s 30 s 30 s 20 s 15 s 30 s 30 s 20 s 15 s

32 630 * 630 * 630 * 630 * 630 * 630 * 630 * 623
(−1.1%) 630 * 630 * 630 * 630 *

28 630 * 630 * 630 * 567
(−10%) 630 * 630 * 607

(−3,6%)
548

(−13%) 630 * 630 * 630 * 611
(−3%)

24 628
(−0.3%) 630 * 618

(−1.9%)
416

(−33.9%)
617

(−2.1%)
620

(−1.6%)
515

(−18.2%)
427

(−32.2%) 630 * 598
(−5.1%)

628
(−0.3%)

508
(−19.3%)

20 597
(−5.2%)

622
(−1.2%)

577
(−8.4%)

295
(−53.2%)

538
(−14.6%)

540
(−14.3%)

340
(−46%)

288
(−54.3%) 630 * 492

(−21.9%)
567

(−10%)
334

(−46.9%)

16 479
(−23.9%)

581
(−7.8%)

494
(−21.6%)

166
(−73.7%)

393
(−37.6%)

415
(−34.1%)

222
(−64.7%)

180
(−71.4%)

618
(−1.9%)

340
(−46%)

414
(−34.3%)

207
(−67.1%)

3.4. Rho-Sample Size Relationship

In conclusion, the average value of the Rho correlation coefficient between ‘v630’ and
‘v’ vectors, and its standard deviation among all the 630 combinations, were computed
for all the possible sample sizes, from 34 up to 10 (generally considered as the minimum
acceptable sample size) in order to model the function of the relationship between the
correlation with the whole “Reference population (36 subjects) index” and the indexes
resulting from reducing the sample size. Represented below (Figure 3) is the graphical
representation of such a function for each spot for each index.
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4. Discussion

In scientific literature, the reduction of the sample size is a much-debated topic. De-
spite many authors claiming the importance of including an optimal number of participants,
applied research and even more studies performed in real contexts could be limited by
several constraints, and so it could become problematic to involve large experimental
samples of participants. After all, in the field of EEG research, studies published in peer-
reviewed journals do not have the same sample size, even when they consider the same
topic. For instance, Xu and Zhong, in their review on the EEG in educational research [57],
pointed out that over the 22 screened papers, the sample size varied from 80 to 5 subjects,
undermining the study outcome’s interpretability and replicability. The present research
aimed to investigate the modifications of the outcomes of a study in the context of applied
neurosciences when the sample size was reduced. An initial sample of 36 subjects was
considered as reference. This number was deemed appropriate to represent the sample
since it is around the size of participants generally involved in this kind of study. This is
confirmed by the review of Bazzani and colleagues [32], who reported that, over studies
that used advertisings as stimuli, 33 was the average number of recruited participants.
Five subgroups of subjects were randomly chosen 630 times (each n-th combination was
different from the others) and the related outcomes were compared to the condition in
which all the subjects were included. The first factor considered in the analysis was the
dependency from the index, or rather whether the sample size reduction had different
effects on indices with different natures (general EEG activity, ‘neurometric’, intended as
a combination of EEG activity features, and autonomic biosignals-related metric). Con-
sidering the targeted task, thirty seconds long, and comparing the effects found on rho,
MSE, and STD in response to the decreasing of the included sample, we observed that the
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patterns associated to the three indices were comparable. As expected, rho significantly
decreased while the MSE and STD significantly increased, moving from 32 to 16 subjects
for all the indices. This latter result is particularly relevant since in scientific literature,
while dealing with research outcomes’ discussion and their statistical power, effect size
is generally represented through the Cohen’s d coefficient [58], computed as the ratio
between the ‘µ’ mean value of the effect, and the ‘σ’ standard deviation of the measures
over the sample. Cohen [58] divided effect sizes into large, medium, and small, where
large effect sizes are about one (the mean has the same size as the standard deviation),
medium effect sizes are about a half, and small effect sizes are a quarter, while under one
eighth, the effect sizes can be considered trivial [33]. This implies that with lower sample
sizes, even if the effect “amplitude” remains comparable (i.e., the ‘µ’), standard deviation
(i.e., ‘σ’) increasing would negatively affect the effect size.

The number of significant correlations showed that, from 32 to 24 subjects, most of the
comparisons were significant for all the three indices (Table 4). Therefore, from the first
analysis, the reduction of the sample size from 36 to a maximum of 24 subjects seemed to
generate comparable outcomes, independently from the nature of the considered index,
committing an acceptable error (<0.1 on indexes with the 95% of distribution ranging
between –3 and 3). During the second part of the study, we explored whether the findings
remained consistent when the analysis was performed on a different task with same length
(i.e., SPOT2). In this phase we pointed out that during SPOT2, rho, MSE, and STD values
followed the same patterns observed in SPOT1: rho significantly decreased while MSE and
STD significantly increased when the participants were reduced, for all the three indices.
Furthermore, most of the correlations were significant considering the same threshold
of 24 subjects, and the maximum deviation from 630 was observed in Index3, for which
the decrease of significant correlations was equal to 5.1%. Hence, we concluded that
the observed results were independent from the task when considering a spot of 30 s.
The last factor investigated in the study was the effect of the time. In this phase, only
the correlation was explored in the analysis since MSE and STD are not time-dependent
variables. Considering spots shorter than 30 s, the correlation still decreased with the
reduction of the participants but, contrarily to the SPOT1 and SPOT2, the threshold for
which all the correlations were significant changed. Considering SPOT3, 20 s long, the
threshold of significant correlation was 28 subjects for Index1 and Index3 but not for
Index2, for which in 3.6 percent of cases (23/630), the correlation resulted as not significant.
For SPOT4, the threshold increased for all the three indices: the analysis of the significant
correlations showed most of the combinations were significantly correlated until 32 subjects
instead of 24. These findings suggest that the modification of the outcomes related to the
reduction of the sample size depended on the time, or rather on the length of the task
employed in the study. It has been highlighted that the number of subjects for which the
outcomes remained comparable increased with the decreasing of the spot duration, i.e., in
general of the task.

If looking at the distribution of the Rho coefficients with respect to the different sample
sizes (Figure 3), it has to be taken into consideration that in scientific literature the range
0.5–0.7 is considered as ‘Moderate correlation’, the range 0.7–0.9 as ‘High correlation’, and
the range 0.9–1 as ‘Strong correlation’ [59]. Therefore, we can notice, independently from
the index and the task length under 30 subjects, the correlation values moved from strong
to high correlations, while under 18–20 subjects from high to moderate correlations, i.e.,
the probability that a subset of, for instance, 16 participants will represent the population
behaviour over time is lower. This result is relevant considering that the statistical errors
matter. As it is well known, statistical errors are classified in ‘Type I error’, i.e., the mistaken
rejection of the null hypothesis (“false positive”), and ‘Type II error’, i.e., the mistaken
acceptance of the null hypothesis (“false negative”). As stated in the introduction, this topic
was not the focus of the study, since the experimental question was if the trends (significant
or not) revealed by the study results coming from smaller samples are actually correlated
with the “Reference population” behaviour (where ‘Reference population’ stands for the
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ideal case of the 36-sample dataset assumed as representative of the theorical population).
Of course, the reduction of the sample size will undoubtedly increase the probability of a
type II error, as commonly agreed upon in the literature and supported by our results (data
standard deviation increasing with sample size decreasing). However, our results also shed
light on the moderate correlation between a large sample and small sub-samples, meaning
that it is not implicit that small samples are always representative of the population
behaviour, thus increasing the probability of committing even type I error. In any case, the
latter sentence has to be intended as a mere deduction, and was not demonstrated by the
present study.

Therefore, it can be concluded that, as assumed, the correlations between the outcomes
associated with the entire ‘Reference population’, considered as 36 observed samples, and
the outcomes computed for different subgroups of subjects, decreased with the reduction
of the sample size. As expected, the errors committed with the decreasing of the sample
size increased as well as the dispersion of the data. However, it was possible to determine
a threshold of subjects, above which almost all the comparisons were significant, the
outcomes remained comparable, and the committed errors and the data dispersion were
acceptable. This threshold was 24 subjects when the task lasted 30 s and 28 when the
task length was reduced, even 32 when reduced up to 15 s. Further investigations will be
necessary to explore whether these findings are replicable in the same and in other contexts,
considering different kind of datasets. In addition, also the effect of the time needs to be
examined further; for instance, it could be interesting to analyse whether the outcomes
change considering different parts of the same task, or maybe with respect to specific events
as well as in conditions discriminability, a common problem when employing machine-
learning techniques [60,61]. In fact, in this study, time-varying functions (with a time
resolution of 1 s) were employed, but in some research there is no need of achieving such a
high time resolution of assessment: in some experimental protocols, lower time resolutions
are enough (from some seconds to even minutes) [18,62,63]; alternatively, in other protocols,
EEG indexes are employed as large averages on the entire task in order to investigate task
discriminability [64,65]. In these cases, the lower time resolution would decrease the intra-
subject variability, thus impacting the group average of the indexes, and therefore sample
size variation could have different effects. Another common neuroscientific experimental
approach envisages the analysis of Event-Related Potentials (ERPs) [24,66]; in this case,
temporal resolution is even higher (milliseconds), but signal-to-noise ratio is increased by
increasing the number of repetitions and computing multiple averages over them. Again,
also in this kind of application, sample size variation could have different effects; therefore,
neuroscientific field encloses several methodologically different applications.

This is the main limitation of the present research: the results of this study have to be
considered as strictly related to this case study. The consistency of the results among the
different tasks in the experiment and the outcomes of the research need to be investigated
with larger samples (more than 36) and in other contexts to be generalisable. This should
encourage further research to generalise the outcomes, i.e., ideally (but probably it would
sound utopistic) to define a mathematical model able to predict the proper sample size of
an experiment as a function of for example experimental design, time resolution, type of
indicators, and so on. In addition, another topic that should be investigated more in depth
is that one related to the probability of committing statistical errors. As discussed before,
this study demonstrated why the probability of committing type II errors increases when
decreasing the sample size. However, this study also hinted at the possibility of inferring
wrong conclusions and committing type I errors with small sample sizes.

In conclusion, this study, of course, has not to be interpreted as an encouragement to
reduce sample size in scientific research. However, in a context when participants recruiting
is limited for several reasons, the present study aimed to provide an overview of sample
reductions consequences in order to shed light on this concern when discussing research
outcomes. It can be claimed that the reduction of the sample size does not necessarily affect
the outcomes of research. However, it is necessary to carefully establish the degree of this
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reduction since there is a “threshold” above which the findings might lose their coherence
and validity.

5. Conclusions

The present research aimed to investigate the modifications of the outcomes of a study
in the context of applied neurosciences when the sample size was reduced, specifically up to
16 subjects from an original experimental sample of 36 subjects. Three different neurophysi-
ological indexes have been considered, two based on EEG and one on autonomic—GSR and
HR—activities, during four different tasks of decreasing time duration, i.e., from 30 to 15 s.
This study highlighted how, for longer tasks (30 s), sample size decrease up to 24 partici-
pants did not dramatically affect the results, i.e., the computed neurophysiological indexes
kept significant correlation with the same indexes computed on the whole population, of
course with the compromise of increasing mean error and standard deviation. Under this
“threshold” (24 subjects), results began to lose statistical power (no significant correlations)
and measure variability (MSE and STD) still increased. These effects increased in terms
of magnitude as short as the task was; in fact, with 15-long-tasks, the results suggested to
consider 32 as the minimum sample size.

In the light of these results, although further investigation is required to assess these
findings as generalisable, it is important to underline that, even in those applied research
situations where it becomes difficult to have large sample sizes, it may still be unwise to
conduct research with too small a sample because the results could be not representative of
the population.
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