
sensors

Article

Hierarchical Pooling in Graph Neural Networks to Enhance
Classification Performance in Large Datasets

Hai Van Pham 1,* , Dat Hoang Thanh 1 and Philip Moore 2

����������
�������

Citation: Pham, H.V.; Thanh, D.H.;

Moore, M. Hierarchical Pooling in

Graph Neural Networks to Enhance

Classification Performance in Large

Datasets. Sensors 2021, 21, 6070.

https://doi.org/10.3390/s21186070

Academic Editors: Jan Cornelis and

Stefania Perri

Received: 18 June 2021

Accepted: 7 September 2021

Published: 10 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information and Communication Technology, Hanoi University of Science and Technology,
1 Dai Co Viet, Le Dai Hanh, Hai Ba Trung, Hanoi City 10000, Vietnam; thanhdath97@gmail.com

2 School of Information Science and Engineering, Lanzhou University, Feiyun Building, 222 Tianshui S Rd,
Chengguan Qu, Lanzhou 730030, China; ptmbcu@gmail.com

* Correspondence: haipv@soict.hust.edu.vn

Abstract: Deep learning methods predicated on convolutional neural networks and graph neural
networks have enabled significant improvement in node classification and prediction when applied
to graph representation with learning node embedding to effectively represent the hierarchical
properties of graphs. An interesting approach (DiffPool) utilises a differentiable graph pooling
technique which learns ‘differentiable soft cluster assignment’ for nodes at each layer of a deep graph
neural network with nodes mapped on sets of clusters. However, effective control of the learning
process is difficult given the inherent complexity in an ‘end-to-end’ model with the potential for
a large number parameters (including the potential for redundant parameters). In this paper, we
propose an approach termed FPool, which is a development of the basic method adopted in DiffPool
(where pooling is applied directly to node representations). Techniques designed to enhance data
classification have been created and evaluated using a number of popular and publicly available
sensor datasets. Experimental results for FPool demonstrate improved classification and prediction
performance when compared to alternative methods considered. Moreover, FPool shows a significant
reduction in the training time over the basic DiffPool framework.

Keywords: knowledge graphs; graph classification; graph neural networks; graph convolutional
network; hierarchical graph pooling; FPool

1. Introduction

A field of research which has gained significant traction is the application of Deep
Learning (DL) inspired by Convolutional Neural Networks (CNN) [1]. DL has been
shown to be a very powerful method because of its ability to handle large datasets. DL
algorithms have demonstrated the capability to extract high-level complex abstractions as
data representations through a hierarchical learning process [2]. Moreover, DL has been
shown to be an effective method capable of solving many machine learning problems in
diverse fields which include: image processing, natural language processing, and the video
gaming industry. However, the data generated can result in large datasets represented
in spaces with a finite number of dimensions in both two-dimensional (flat) and three-
dimensional spaces.

While research has resulted in a large volume of published studies where many
different graph convolutional layers for Graph Convolutional Networks (GCN) have been
proposed, the number of proposed pooling layers remains small [1]. Notwithstanding
this limitation, intelligent pooling of graphs is a promising direction for research given
that (a) it can identify both feature-based and structure-based clusters, and (b) reduce the
computational overhead required by reducing the number of nodes [1]. Taken together,
these potential benefits “promise to abstract from nodes to sets of nodes” and are “also
a stepping stone towards enabling Graph Neural Networks (GNN) to modify graph
structures instead of only node features” [1].

Sensors 2021, 21, 6070. https://doi.org/10.3390/s21186070 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1547-9782
https://orcid.org/0000-0002-5177-794X
https://orcid.org/0000-0003-3874-8981
https://doi.org/10.3390/s21186070
https://doi.org/10.3390/s21186070
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21186070
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21186070?type=check_update&version=1


Sensors 2021, 21, 6070 2 of 20

GNN implementations are DL techniques applied to graphs and are effective for
node representation in a broad range of fields [3]. Data sets with unstructured data types
(including sensor data represented as graphs) have gained traction driven by the modelling
capabilities of knowledge graphs (KG) in heterogeneous domains. Traditional graph
classification methods are based on GNN; however, such methods generally fail to learn
the hierarchical representation of graphs [4,5]. Two-dimensional graphs are inherently flat
and only propagate information across edges of graphs resulting in a failure to capture
hierarchical information. Lan et al. in [6] propose a novel complex fuzzy inference system
using a KG with extensions designed to provide decision support. Viet et al. in [7] have
introduced extended membership graphs for picture inference systems for KG.

DiffPool [8] is a DL method using a differential graph pooling technique that generates
hierarchical representations of graphs. The experimental results (for DiffPool) show an
average improvement in the accuracy for graph classification in the range 5% to 10% when
compared to the alternative pooling methods considered [8]. However, control of the
learning process is difficult given the complexity and large number of parameters in an
end-to-end model. In related research, Ying et al. [8] and Lee et al. [9] have implemented
the DiffPool model with experiments using the same parameters. The GNN model has
demonstrated (a) the capacity to address complex hierarchical structures and the related
results derived from the clustering process and (b) a reduction in the number of parameters
with improved efficiency [1,8]. In considering the GNN model, Ying et al. [8] have also
identified reductions in the computational cost while addressing a larger number of training
models. However, the experimental results identify an unstable training issue with variable
prediction accuracy [8,9]. Moreover, the identification of the appropriate number of clusters,
when there are datasets with a large number of clusters, represents a significant challenge.

Context and context-awareness (which includes situational-awareness) are important
considerations in future intelligent information systems (IS) where intelligent context
processing with decision support (a process designed to enable personalisation and targeted
service provision (TSP) [10,11] in a diverse range of domains) is an important component
in context-aware cyber-physical systems (CACPS) [12,13]. “Embedded system design:
embedded systems foundations of cyber-physical systems, and the Internet of Things” is
introduced in [14].

Peter Marwedel [14] considers the design of such systems and identifies the opportu-
nities in domains including (a) automotive electronics; (b) railways; (c) ships, ocean technol-
ogy, and maritime systems; (d) factory automation; (e) the health sector; (f) data analytics;
(g) smart environments (cities and buildings; (h) smart grids; (i) scientific experiments;
(j) structured health monitoring; (k) disaster recovery; (l) robotics; (m) agriculture and
breeding; (n) military applications; (o) telecommunications; and (p) consumer electronics.
Additionally, Marwedel addresses the related challenges: (a) dependability and reliability;
(b) safety; (c) security, privacy, and confidentiality; and (d) availability and reparability.
Constraints include hard time constraints (applicable to mission-critical systems) and soft
time constraints.

It is significant that intelligent CACPS (including cloud-based systems using the
Internet of Things (IoT) in networked sensor-enabled systems) generally operate on large
datasets [14]. Intelligent context-awareness with decision support under uncertainty has
been considered in [15], and the application of rules in knowledge reasoning for inference
has been addressed in [16]. Future intelligent CAPS designed to realise TSP and control
will require advanced machine learning techniques to address the demands of affective
computing [17,18] and machine cognition with emotive response [19] in, for example,
humanoid robots [14,18]. To address these demands, we must accommodate large datasets
and use advanced inference and reasoning (including fuzzy systems with linguistics and
semantics using Kansei engineering and hedge algebras [20]) if we are to realise intelligent
information processing [21].

In this paper, we propose the FPool framework, which is predicated on the basic
approach adopted in DiffPool where pooling is applied directly to node representations.



Sensors 2021, 21, 6070 3 of 20

FPool is conceived as an approach designed to enhance data normalisation. We have
evaluated FPool using popular and publicly available sensor datasets (see Section 5). In
a comparative analysis (where all methods compared are implemented using the same
datasets), the experimental results demonstrate improved classification and prediction
performance when compared to the alternative methods considered. Moreover, FPool
shows an important reduction in the training time over the DiffPool framework. The
proposed FPool model is introduced in Section 4 with a discussion on evaluation and
experimental results set out in Section 5.

Our contribution can be summarised as follows:

• The FPool approach implementing hierarchical pooling in a GNN to enhance classifi-
cation performance for large datasets with significant reductions in training time.

• The FPool framework (see Figure 3) has been conceived and designed to reduce the
number of parameters in a GNN. Specifically, a single GNN layer will learn node
representation X(l) for all nodes in the graph with the representation used to assign
nodes to clusters.

The remainder of this paper is structured as follows. Related research is considered
in Section 2. Materials and methods are addressed in Section 3, where GNN, graph
classification, and hierarchical pooling are introduced. The proposed approach is presented
in Section 4. The basis for experimental testing and comparative analyses is set out in
Section 5 with the experimental results provided in Section 5.2. Simulation results for
FPool are set out in Section 5.3 with an evaluation of FPool and DiffPool presented in
Section 5.4. A discussion is presented in Section 6 with open research questions introduced
in Section 6.1. Concluding observations are provided in Section 7.

2. Related Research

Research has investigated many diverse techniques to address classification perfor-
mance related to large datasets. Many advanced methods of applying DL to structured
data (for example, graphs) have been proposed which focus on generalising CNN to graph
data. This approach includes redefining the convolution and the downsampling (pooling)
operations for graphs. In the literature, there are a number of proposed methods and
techniques based on DL and the GCN concept including (a) Self-Attention Graph Pooling
(SAGPool) [9], (b) inductive representation learning on large graphs (GraphSAGE) [22],
(c) GNN with KG ([23]), (d) Graph Attention Networks (GAN) [24], (e) Self-Attention
Generative Adversarial Networks (SAGAN) [25], DiffPool [8], (f) a Graph Isomorphism
Network (GIN) [4], (g) EdgePool [1], and (h) a GCN [26] (see Section 3.1). Text categorisa-
tion as a graph classification problem has been addressed in [27].

A Self-Attention Graph Pooling (SAGPool) approach, a graph pooling method for
GNN related to hierarchical graph pooling, is proposed by Lee et al. in [9]. SAGPool
enables pooling with consideration of both node features and graph topology. In SAGPool,
the self-attention mechanism can distinguish between the nodes that should be dropped
and the nodes that should be retained [9]. SAGPool employs graph convolution to calculate
attention scores and node features along with consideration of graph topology. The reported
experimental results demonstrate that SAGPool realises improved graph classification
performance on benchmark datasets using a reasonable number of parameters. The authors
posit that SAGPool provides advantages over the alternative methods considered in [9]
and is proposed as the first method to use self-attention for graph pooling with high
performance.

GraphSAGE [22] is a general inductive framework designed to utilise the feature data
of nodes including where such data includes text attributes. The goal for GraphSAGE is to
efficiently generate node embeddings for previously unseen data. The approach enables
unsupervised learning on graphs to overcome the “Out of memory” problem experienced
by GCN. Hamilton et al. [22] have also developed other aggregation functions including
MEAN, SUM, and Long short-term memory (LSTM) [28] which can potentially increase the



Sensors 2021, 21, 6070 4 of 20

diversity of GNN methods. A GNN using a knowledge graph (KG) has been proposed
in [23] for recommendation systems to enhance the classification performance accuracy.

The GAT method is designed to operate on graph structured data [24]. The method
uses a neural network architecture to leverage self-attentional layers with the aim of
addressing issues (identified in alternative methods) based on graph convolutions or their
approximations [24]. The approach applies layer stacking [24] where nodes can access
neighbourhood features. The reported results posit [24] (a) the “implicit” specification of
different nodes in a neighbourhood without the costly matrix operation (such as inversion)
or prior knowledge of the graph structure, and (b) the realisation of an improvement
in classification performance (where test graphs are unseen during training) using four
established transductive and inductive graph benchmark datasets: (i) Cora, (ii) Citeseer,
(iii) Pubmed citation network, and (iv) a protein interaction dataset.

Zhang et al. in [25] propose the Self-Attention Generative Adversarial Network
(SAGAN) approach which enables attention-driven, long-range dependency modelling
for image generation tasks. It is argued in [25] that traditional convolutional generative
adversarial networks (GAN) generate high-resolution details as a function of only spatially
local points in lower-resolution feature maps. Moreover, SAGAN provides a basis upon
which details can be generated using cues from all feature locations given that the discrim-
inator can check for highly detailed features in distant portions of the image which are
consistent with each other. The reported experimental results show that SAGAN improves
on the best published Inception score (36.8) with a score of (52.52) along with a reduction
in the Fréchet Inception distance from (27.62) to (18.65) for the ‘ImageNet’ dataset. From a
visualisation perspective, the authors argue that based on attention layers the generator
can leverage neighbourhoods that correspond to object shapes rather than local regions of
fixed shape.

Ying et al. in [8] proposed the use of the DiffPool approach to address the requirements
of graph representational learning based on effective learned node embeddings. An
overview of the DiffPool method is provided in Section 1.

The Graph Isomorphism Network (GIN) [4] represents the node features on the graph
as multisets with possibly repeating elements by aggregated function. Moreover, GIN is
proven to be as powerful as the Weisfeiler–Lehman test. GIN differs from DiffPool in that
DiffPool uses hierarchical pooling throughout sequential assignment layers, whereas GIN
can be considered as a global pooling architecture in which the graph embedding is the
mean of its node embeddings.

GNN focus on improving convolutional layers; however, limited attention is applied
in the development of graph pooling layers [1]. Pooling layers can provide an effective
basis upon which GNN can reason over abstracted groups of nodes instead of single nodes,
thus increasing their generalisation potential [1]. To address this issue, Diehl et al. [1]
propose the EdgePool method in which a graph pooling layer relies on the notion of edge
contraction; EdgePool applies the learning of a localised and sparse pooling transform.
Evaluation using four datasets found that improved performance was achieved for three
largest datasets. Moreover, Diehl et al. show that EdgePool can be integrated in existing
GNN architectures without adding any additional losses or regularisation.

In future intelligent IS, affective computing and the identification of emotional re-
sponse will be an increasingly an import feature implemented using text analysis [20].
Rousseau et al. in [27] has considered text categorisation as a graph classification problem
where each document is represented as a graph-of-words instead of the historical n-gram
bag-of-words. By utilising the power of graph structures, the graph-of-words captures the
word inversion with subset matching (e.g., article about news vs. news article) while the
bag-of-words fails to enable word inversion and subset matching.

Generalising the convolution operation for graphs has been shown to provide im-
proved levels of performance and accordingly has been widely used. However, (a) the
method of applying downsampling to graphs remains a challenge with significant room for
improvement, and (b) while alternative proposed methods considered achieve good results,



Sensors 2021, 21, 6070 5 of 20

the current GNN methods are “inherently flat and do not learn hierarchical representations
of graphs” (this limitation can be an issue where the goal is to predict the label associated
for an entire graph).

DiffPool introduces a differential graph pooling module that can generate hierarchi-
cal representations of graphs and can be combined with various graph neural network
architectures in an end-to-end fashion [8]. DiffPool is a deep learning approach which
learns a differential soft cluster assignment for nodes at each layer of a deep graph neural
network with nodes mapped to sets of clusters. There is, however, an issue (see Section 1)
where control of the learning process is difficult given the complexity and large number of
parameters in an end-to-end model.

While GIN, DiffPool and SAGPool perform pooling on graph nodes, SAGPool [1]
proposes a new pooling layer which performs edge contractions. The experimental results
show that EdgePool achieves high prediction accuracy on several benchmark datasets.
However: (a) EdgePool always pools roughly half of the total nodes, and (b) the exper-
imental results show that EdgePool fails to capture the hierarchical structures of some
datasets.

Summary

For the classification of knowledge graphs, a number of graph classification methods
have been considered to address graph classification performance related to large datasets.
Many methods of applying DL to structured data (for example, graphs) focus on gener-
alising CNN to graph data; this approach includes redefining the convolution and the
downsampling (or pooling) operations on graphs. Other approaches have implemented
Hierarchical Pooling (HP).

Text categorisation as a graph classification problem [27] represents an interesting
approach which may be applied to address the requirements of text analysis in many
domains. Applying such methods presents a potentially useful approach for analysing text
in intelligent context-aware systems designed to enable affective computing and emotion
recognition. Such an approach is applicable to sensor-driven autonomous robots designed
to achieve coverage path-planning (CPP) as discussed in [29].

To address the issues identified in our review of the related research we propose our
novel FPool framework which is predicated on the DiffPool method. While providing an
interesting approach, DiffPool has suffered from overfitting while training an end-to-end
model.

The study presented in this paper has investigated adjustments in parameters along
with the related training process completion. For example, in the alternative methods
considered, the graph nodes are pooled to very few clusters (they only include two clusters).
In pooling, with a reduction in the number of clusters and nodes, there is a commensurate
reduction in the training parameters. Given the reduction in the number of clusters,
many clusters (present in the datasets) may not be used in the training process leading to
significant redundant clusters and/or redundant parameters.

The proposed FPool framework is introduced in Section 4 with the materials and
methods provided in Section 3. In summary, (a) in FPool the pooling process is performed
directly on node embedding which reduces the number of parameters, and (b) to accelerate
the training and improve the generalisation for the novel FPool techniques and methods
developed and tested. In FPool, the node features will have the zero mean and unit variance
properties as discussed in [30].

While our study has researched and addressed many issues, we have identified open
research questions (see Section 6.1) which form the basis for future directions for research.

3. Material and Methods

In this section, we introduce the materials and methods used in this study, namely,
GNN (see Section 3.1), GCN (see Section 3.2), and HP (see Section 3.4. The proposed model
is introduced in Section 4.



Sensors 2021, 21, 6070 6 of 20

3.1. Graph Neural Networks

Let G(V, E) be a graph, each node v ∈ V has a feature vector xv ∈ Rd. A GNN uses
the graph structure and the node features to learn a vector representation hv for each node.
Recent GNN methods follow the message-passing mechanism where the vector represen-
tation of each node is iteratively updated by aggregating the hidden representations of
neighbour nodes [9,26]. Following completion of the k iteration, the vector representation
of v holds the information of the k-hop network where v is a centre vertex. For instance, at
iteration k, GNN perform these functions, given by Equations (1) and (2):

a(k)v = AGGREGATE(k)({h(k−1)
u : u ∈ N(v)}) (1)

h(k)v = COMBINE(k)(h(k−1)
u , a(k)v ) (2)

where a(k)v and h(k)v represent vectors of N(v) and v at iteration k, respectively. N(v) indi-
cates the set of neighbour(s) of node v where the set of neighbour(s) of node v is composed
of direct neighbour(s). For initialisation, the representation of node v is completed before
forwarding to the first AGGREGATE function h(0)v = xv.

There are a number of AGGREGATE and COMBINE functions. For example,
GraphSAGE-MAX [22] uses the AGGREGATE function as given by Equation (3):

a(k)v = MAX({ReLU(W · h(k−1)
u ), ∀u ∈ N(v)}) (3)

where W is a learning matrix parameter and MAX is the maximum element-wise func-
tion. The COMBINE function at Equation (2) represents a vector concatenation (or the
summation) of the element-wise function followed by a mapping matrix W · [h(k−1)

v , a(k)v ].
A further relevant example of a GCN where the mean element-wise is implemented is

shown in [26]. The AGGREGATE and COMBINE functions are shown in Equation (4):

h(k)v = ReLU
(

W ·MEAN
{

ReLU
(

W · h(k−1)
u : ∀u ∈ N(v)

)})
(4)

Figure 1 illustrates the GNN process on a specific (red) node showing (1) a simple
neighbourhood, (2) aggregate feature information from neighbours, and (3) the prediction
of the graph context and label using aggregated information.

Figure 1. Illustration of a general GNN inductive framework on a specific node (the red node) source:
[22]. The figure illustrates the iterative process of node assignment in the simple neighbourhood with
the aggregated feature information from neighbours. The predicted graph context and label (using
the aggregated information in step 2) is shown in this Figure.

In the initial stage, termed the neighbourhood sampling stage, a number of neighbour
nodes are selected. For large graphs, neighbourhood sampling is essential to address the
memory consumption issue when a large number of nodes with large number of GNN
layers easily leads to the ‘out of memory’ error. Following the sampling of neighbour
nodes, the AGGREGATE and COMBINE functions are implemented. Thus, the hidden



Sensors 2021, 21, 6070 7 of 20

representation of a node is forwarded to downstream tasks such as node classification and
clustering.

3.2. A Formal Description of Graph Neural Networks

Formally, a GCN is a neural network that operates on graphs. Given a graph
G = (V, E), a GCN takes as input an input feature matrix X ∈ Rn×d where n is the
number of nodes and d is the number of input features for each node and an n× n matrix
representation of the graph structure such as the adjacency matrix A of G. A hidden layer
can be written as H(i) = f

(
H(i−1), A

)
, where H(0) = X and f is a propagation function.

Each layer H(i) corresponds to a n× di feature matrix where each row is a feature repre-
sentation of a node. At each layer, these features are aggregated to form the features for
the next layer using the propagation rule f . Features become increasingly more abstract at
each consecutive layer, and with this framework variants of GCN differ only in the choice
of propagation rule f .

Specifically, the GCN approach is inspired by the notion of CNN for image processing.
CNN aggregates the adjacent pixels of the current pixel to extract local features, such as
shapes and backgrounds, of an image. When considering graphs, while image processing
operates on pixels, the GCN operates on node features. For each vertex on the graph, the
GCN approach aggregates the features of neighbour vertices and then generates the hidden
representations for that vertex.

3.3. Graph Classification

Graph classification is a crucial task where the aim is to identify the labels for each
graph in large sensor data sets. Consider, for instance, chemistry where the prediction of
chemical properties (e.g., toxicity of molecules) is crucial in medical research. Moreover,
graph classification is applied to biomedical networks to predict protein functions [31]
where (i) each graph represents exactly one protein and (ii) nodes indicate secondary
structure elements (helices, sheets, and turns). Edges connect nodes if those are neighbours
along the amino acids and neighbours in the space within the protein structure.

In a graph there are two main classification tasks including (i) on the node-level, and
(ii) on the graph level.

1. For node classification , each node v has an associated label yv and the goal is to
learn a representation vector hv that could be used to predict the label yv by using a
function f , y = f (hv).

2. For graph classification, given a set of graphs G1, G2, . . . Gn and their labels y1, y2, . . . yn,
instead of learning hv for each node, the model aims to learn the representation vector
hG for the whole graph so that hG helps to predict the label of graph, yG = g(hG).

3.4. Hierarchical Pooling

Conventional approaches (for example, see Xu et al. [4] and Duvenaud et al. [5]) do not
capture the hierarchical properties of graphs while all the node embeddings are globally
pooled. The embedding of a graph is therefore similar to a virtual node that connects to all
the nodes of the graph and such common approaches have not addressed the need to learn
the natural structures of many real-world graphs.

Ying et al. [8] proposed the DiffPool approach, a differentiable graph pooling method
which learns a cluster assignment matrix in an end-to-end fashion. The key motivation for
DiffPool is to induce learning to enable nodes to be assigned to clusters at layer l by using
the embeddings generated from the GNN layer at layer [l − 1].

We have denoted nl as the number of nodes at layer l, l ≤ L, where l = 0 is the
number of nodes of the original graph G and L is the maximum number of pooling layers.
S(l+1) ∈ Rnl×nl+1 denotes the assignment matrix at layer l + 1, and GNNl represents the
l − th GNN layer. Each GNN layer or module contains K message-passing iterations; this
means that each GNN module will repeat the Equations (1) and (2) K times. We use the



Sensors 2021, 21, 6070 8 of 20

notations GNNl,pool and GNNl,embed to indicate two kinds of GNN module used in Diff-
Pool. GNNl,pool is for pooling the graph and GNNl,embed is for learning node embeddings.
Equation (5) expresses the learning node embeddings Z(l) ∈ Rnl−1×dl for all nodes in the
graph, given l = 1, L.

Z(l) = GNNl,embed(A(l−1), X(l−1)) (5)

To generate the assignment matrix, DiffPool employs Equation (6).

S(l) = so f tmax(GNNl,pool(A(l−1), X(l−1))) (6)

Therefore, S(l)
ij (the value at row i, column j of the 2-dimensional matrix S(l)) contains

the probability of node i at layer l assigned to cluster j at the next layer. After learning the
node embedding matrix

(
Z(l)

)
at layer l, the node features matrix X(l) and the adjacency

matrix A(l) of the new graph at layer l is expressed by Equation (7) and (8):

X(l) = S(l)TZ(l) (7)

A(l) = S(l)T A(l−1)S(l) (8)

The DiffPool framework is illustrated at Figure 2. Given an input graph G(A(0), X(0)),
the adjacency matrix and the node features are forwarded to two separated GNN: GNN1,pool
and GNN1,embed. In the l − th ‘GenerateGraph’ stage, the new graph is generated given
the output of (GNNl,embed) (denoted at Z(l)) and the output of GNNl,pool (denoted at S(l)).
Equations (7) and (8) are then implemented.

Figure 2. An overview of the DiffPool framework with 2 pooling layers where the input is a graph
G(A(0), X(0)) and the output is the predicted label for that graph at the classification layer.



Sensors 2021, 21, 6070 9 of 20

To predict the label for each graph, the final layer of the DiffPool framework would be
the classification layer with a softmax function. However, it is difficult to train the DiffPool
framework using only the gradient from the classification layer. Therefore, Ying et al. in [8]
proposes two alternative loss functions: (i) the link prediction loss and (ii) the entropy loss.
The link prediction loss aims to pool nearby nodes at each layer l, l = 1, L; that loss function
is expressed by Equation (9).

LLP = ‖A(l), S(l)S(l)T‖F (9)

where ‖.‖F is the Frobenius norm (note: each node assigns completely to a cluster). More-
over, the entropy loss is assigned to a vector for each node in a one-hot vector. The entropy
loss used is given by Equation (10).

LE =
1
n

n

∑
i=1

H(si) (10)

where H denotes the entropy function and si is the assignment vector for node i. Therefore,
the whole framework is trained by using the combination of these loss functions.

4. The Proposed Model

In this section, we introduce the proposed FPool framework (see Figure 3) which is
based on the DiffPool framework (see Figure 2). The methods and processes introduced
in the FPool framework are set out in Section 3. FPool has been conceived and designed
to (a) realise improvements to the DiffPool framework and (b) address issues identified
in Section 2. FPool is a novel approach designed to incorporate significant improvements
which are:

• FPool uses only one type of GNN (GNNmerged) to learn the node representation and
node assignment to clusters, whereas DiffPool uses two types of GNN (GNNpool and
GNNembed). Therefore, when compared to DiffPool, FPool employs a different graph
pooling process and the number of GNN parameters is reduced by half (50%).

• In the output graph embedding process, every layer is concatenated prior to forward-
ing to the classification layer (to predict the graph label). The output embedding
process is inspired by the “skip-connection” idea proposed in the Resnet architecture
introduced in [32].

FPool implements a pooling and embedding stage where learning is implemented dif-
ferently to DiffPool. In FPool, given an input graph G(A(l), X(l)), the adjacency matrix A(l)

and the node feature matrix X(l) are sent to the GNNl,merged to learn the node embedding.
Thus, the learned node embeddings are used in the assignment of nodes to clusters.

In FPool, the pooling process is performed directly on the node embedding, which re-
duces the number of parameters. To accelerate the training and improve the generalisation
of the model, we have added (i) normalisation techniques consisting of L2 normalisation
applied to node representations and (ii) centring and scaling used for node features in
preparation for the training process. As a result, the node features will have the zero mean
and unit variance properties as discussed in [30].

The proposed approach has been conceived and designed to reduce the number of
parameters in the GNN. Specifically, a single GNN layer will learn node representations
X(l) for all nodes in the graph with the representations used to assign nodes into clus-
ters. The FPool model integrates both the GNNpool and GNNembed methods as shown in
Figure 2. FPool has been conceived to enable the merging of these models by reducing
the number of parameters of the GNN. Specifically, a single GNNl,merged layer will learn
node representations X(l) for all nodes in the graph and the representations are thus used
to assign nodes into clusters. The FPool framework is illustrated in Figure 3. In the FPool
framework, computing the node embeddings Z(l) ∈ Rnl−1×dl and matrix S(l) ∈ Rnl−1×nl at
layer l with l = 1, L is given by Equations (11) and (12):



Sensors 2021, 21, 6070 10 of 20

Z(l) = GNNl,merged(A(l−1), X(l−1)) (11)

S(l) = so f tmax(Z(l).W(l) + B(l)) (12)

where W(l) ∈ Rdl×nl is a weight matrix, B(l) ∈ Rnl denotes the bias matrix, and the
(so f tmax) function is applied to every row of the matrix. Equations (11) and (12) are
equivalent to the GNN and cluster stages in the FPool framework. In the GenerateGraph
stage, similar to DiffPool, Equations (7) and (8) are used given the input node embeddings
Z(l) and the assignment matrix S(l) from Equations (11) and (12), respectively. Therefore,
the new pooled graph G(A(l+1), X(l+1)) is generated.

Figure 3. The three-layer FPool framework (the proposed FPool model is introduced in Section 4).
The input is a graph G(A(0), X(0)) and the output (in the classification layer) is the predicted label
for that graph. The evaluation and experimental results are set out in Section 5 with the simulation
results presented in Figure 4.

An overview of related methods is presented in Section 2 with a comparative analysis
provided Section 5. Table 2 provides results for the classification accuracy and Table 3 sets
out in tabulated form the training time analysis. In considering the related research, the
alternative methods often increase the number of GNN layers from two to six. As a result
of increasing the number of layers in a GNN, there may be a failure to capture additional
information [4,8]. To address this issue in the FPool method, the graph representation
is the combination of all of the (L) GNN layers (instead of using only the output of the
GNN from the final layer). As shown in Figure 3 with three out-edges from the GNN
blocks, the local node embedding Z(l) at all layers are normalised and concatenated to
generate graph embedding hG prior to forwarding to the classification layer. Specifically,
the graph embedding hG is computed as shown in Equations (13) and (14), where Z(l)

F is



Sensors 2021, 21, 6070 11 of 20

the L2− normalised node embedding matrix in the graph at layer l. Given that z(l)i and z(l)i,F

are the node embedding of node i at layer l and its normalised version, z(l)i and z(l)i,F are

equivalent to one row of Z(l) and Z(l)
F , respectively. Therefore, z(l)i,F is computed as shown

in Equations (13) and (14):

Z(l)
F = Z(l)/‖Z(l)‖F, l = 1, L (13)

hG = [MEAN(Z(1)
F ), . . . MEAN(Z(L)

F )] (14)

Equations (13) and (14) are equivalent to the L2 Norm and the Concatenation stages
in Figure 3. By standardising node embeddings, the training process becomes more
stable. The MEAN represents an element-wise mean function and [.] denotes the vector
concatenation function. Therefore, hG has the size d1 + d2 + . . . + dL, where d1, d2, . . . , dL is
the size of the node representation at layers 1, 2, . . . L, respectively.

The notion of vector concatenation is inspired by the Residual block on the Resnet
architecture in computer vision [32]. Optimisation of deep networks is challenging and
increasing network depth may not lead to better performance due to the ‘vanishing gradient’
problem. Moreover, stacking more layers onto the network may result in ‘performance
saturation’ with reduced performance [33,34]. The study presented in [32] proposes ‘short-
cut connections’ (an approach which skips one or more layers) where the gradient from
upper layers could ‘flow directly’ to any earlier layers.

In the initialisation step, the node features matrix X(0) ∈ Rn0×d0 is normalised to have
zero mean and unit variance. This step is crucial as it leads the machine learning model
to converge faster and perform better [30]. The normalisation equation for node features
matrix X at column j is represented as given by Equation (15) where µj and σj denotes the
mean and standard variance values of X on column j, respectively.

X(0)
norm,j =

X(0)
j − µj

σj
, j = 1, d0 (15)

5. Experimental Testing and Evaluation

To evaluate the performance of the proposed model, we have conducted a comparative
analysis where we compare the relative performance of FPool) with the alternative methods
considered see Tables 2 and 3). Implementation for all the methods evaluated has used
the same datasets under the same testing environment. In the experimental testing we
have used several popular and publicly available data sets for the evaluation with graph
classification tasks; these sensor datasets are publicly available at http://graphkernels.
cs.tu-dortmund.de (accessed on 6 September 2021) [35]. The benchmark sensor data sets
are described in Table 1 where the identification, reference, and descriptive information is
provided.

Each dataset is a set of graphs where each graph has an associated label with each
node on the graph having its attribute and label. The node attribute can have various
dimensions on different datasets while the node label has only 1-dimension and, for a
dataset where the node attribute is not available, we denote the dimension as {0}. Because
our task is graph-level classification, it is not necessary to discriminate between the node
attribute and label. Therefore, the node feature vector is initialised with the combination of
the attribute and label. The datasets used in our comparative analysis are shown in Table 1
with a brief introduction to the datasets provided as follows.

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de


Sensors 2021, 21, 6070 12 of 20

Table 1. The descriptive data for the benchmark datasets used in the experimental testing.

Benchmark Datasets

Dataset Number of
Graphs

Number of
Classes

Node Attribute
Dimension

Contains Node
Labels

Mutag [35] 188 2 0 Yes
Enzymes [31,36] 600 6 28 Yes
IMDB-
Binary [37] 1000 2 0 No

D & D [38] 1178 2 0 Yes

1. Mutag: [35]: the dataset consists of 188 graphs equivalent to 188 chemical compounds.
These graphs are divided into two classes based on their mutagenic sensors effect on a
bacterium.

2. Enzymes [31,36]: a biological dataset for enzymes. The sensor dataset contains 600 en-
zymes with six associated classes which represent the characteristics of enzymes. Each
graph represents exactly one protein, nodes indicate the secondary structure (SSE) in
protein, and there exists a connection between two vertices if they are neighbours in
the amino-acid or on the 3-D space.

3. IMDB-Binary [37]: a social networks dataset in which each graph is equivalent to an
ego-network where nodes represent actors, edges denote two actors collaborating in
a film. Each graph is derived from a pre-specified genre of film.

4. D&D [38]: a sensor dataset of protein structures which includes 1178 graphs. Nodes
indicate amino acids and edges denote that two nodes are close to each other on 3-D
space.

In a GNN, each vertex in the input graph must have an associated feature vector.
Therefore, for graphs without a node feature matrix, we initialise it as a vector of constant
values (xv = [1, 1], ∀ v ∈ V). For graphs which contain node labels or node attributes (or
both) the feature vector for each vertex is then a concatenation of node attribute vector and
node label vector.

We have selected several methods as a comparison baseline (including DiffPool be-
cause FPool is predicated on, and is designed to directly improve, the DiffPool approach).
The methods implemented in the comparative analysis are shown in Tables 2 and 3. Each
of the alternative methods considered uses a different pooling architecture. While DiffPool
and SAGPool perform hierarchical pooling on nodes, EdgePool proposes a new pooling
layer which reduces the size of the graph based on edges. As discussed in [4], GIN uses a
global pooling architecture where the model is simpler and (as for any mean aggregator)
to facilitate graph embedding X1 and X2 are mapped to the same embedding because
the aggregator simply takes averages over individual element features [4]. Thus, the
mean captures the distribution (proportions) of elements in a multiset, but not the exact
multiset [4].

Implementation (for all methods in the comparative analysis) has been achieved
using Pytorch Geometric library (see [39]). Pytorch Geometric is a Python library which
supports many types of GNN (with some minor editing) along with many processed
datasets (including all of the data sets used in our experiments). For FPool K = 3 relates to
message-passing iterations of GraphSAGE-MEAN for each GNN module in Figure 3. The
number of hidden units is 64, with the size of the hidden representation vector being h(k)v
and k = 1, K. The number of clusters is 25 for both the first and the second pooling layers
on the Mutag, Enzymes, and IMDB-Binary datasets. On the D & D dataset, the number of
clusters is larger and is set to 125. For the final classification layer, both the DiffPool and
FPool use the same architecture:

1. Linear: embedding_size, hidden_size
2. ReLU - Linear: hidden_size, n_classes



Sensors 2021, 21, 6070 13 of 20

3. Log Softmax: where embedding_size is the size of hG, hidden_size is the number of
hidden units and n_classes indicates the number of classes to be classified

5.1. Loss Functions

Algorithm development aims to minimise inaccuracy in classifying models and the
loss function is a measure of the algorithm’s performance [40]. Fundamentally, a loss
function is a relatively simple concept which measures the ability of an algorithm to model a
dataset where the numerical output from a loss function will be higher relative to the degree
of inaccuracy [41]. It is beyond the scope of this paper to provide a detailed discussion on
the topic of loss functions (for a detailed exposition on the nature of loss functions with
consideration of the differing types with proofs see in [40,42–44]).

As discussed in Section 6.1, the loss functions used in Fpool have been inherited from
DiffPool because FPool is based on the DiffPool framework, namely, classification loss, link
prediction loss, and entropy loss. While classification loss and entropy loss are generally known
and understood, link prediction loss is less well recognised.

Link prediction loss assists in the identification of edges that are likely to arise in the
future (always assuming they do not currently exist). For link prediction, the resolution of
entities employs the network structure and attribute data to link nodes representing the
same individual. Link prediction may assess ranking related to the expected relationships
that exist between candidate nodes and links. A typical application may attempt to
predict papers (an author may for example cite, read, or write) based on (a) previous
publication history and/or (b) current research trends related to similar topics. For example,
GraphSAGE [22] has built a model that predicts citation links in the Cora dataset [45].

5.2. Experimental Results on Classification Accuracy and Training Time

In the experimental testing and evaluation, the data is separated into three sets: (i) a
training set, (ii) a validation set, and (iii) a test set; the relative proportions are 8:1:1 (i.e.,
80%, 10%, and 10%), respectively. The validation set is evaluated during training after
each epoch. When the training process completes, we identify the optimal model (which
produces the highest classification accuracy on the validation set to evaluate on the test
set). To avoid bias, and ensure a fair comparative analysis, we have applied the same
approach to implementation for all the methods compared including using the same
training, validation, and test sets at each time of running. We evaluate the accuracy on each
data set using 10 running iterations; therefore, there are 10 different combinations of the
training, validation, and testing.

The results derived from our experimental testing identify the mean value and standard
variance to measure the accuracy as shown in Equation (16):

Acc =
1
N

N

∑
i=1

(ypred,i == ytrue,i) (16)

where ytrue,i is the actual class of graph i, ypred,i is the predicted class for graph i, and N
denotes the number of graphs in a test set.

As shown in Tables 2 and 3, we have calculated (i) the results for the classification
accuracy on the test set (see Table 2) and (ii) the training time (see Table 3). The two
experiments indicate the performance of the different methods compared. the methods
compared and the datasets used are shown in Table 2 (the classification performance) and
Table 3 (the training time), respectively.



Sensors 2021, 21, 6070 14 of 20

Table 2. The relative percentage (%) classification accuracy for SAGPool, EdgePool, DiffPool, GIN,
and FPool using the Mutag, Enzymes, IMDB-Binary, and D & D datasets.

Classification Accuracy Comparative Analysis
Mutag Enzymes IMDB-Binary D & D

SAGPool 70.52 ± 2.58 21.00 ± 4.90 51.60 ± 5.61 69.49 ± 3.08
EdgePool 73.68 ± 4.71 36.67 ± 6.24 52.00 ± 5.48 72.03 ± 3.17
DiffPool 78.42 ± 10.90 44.00 ± 7.93 67.70 ± 5.29 74.84 ± 4.89
GIN 82.63 ± 10.00 54.83 ± 4.91 68.20 ± 2.96 70.09 ± 4.60
FPool 84.21 ± 6.66 67.50 ± 7.97 67.00 ± 2.45 81.60 ± 0.48

Table 3. The relative training time (in seconds per epoch) for SAGPool, EdgePool, DiffPool, GIN, and
FPool using the Mutag, Enzymes, IMDB-Binary, and D & D datasets.

Training Time Comparative Analysis
Mutag Enzymes IMDB-Binary D & D

SAGPool 0.166 ± 0.002 0.493 ± 0.005 0.804 ± 0.005 1.198 ± 0.011
EdgePool 0.280 ± 0.002 1.415 ± 0.019 2.472 ± 0.006 21.050 ± 0.336
DiffPool 0.296 ± 0.003 0.907 ± 0.043 1.365 ± 0.006 1.281 ± 0.095
GIN 0.055 ± 0.003 0.136 ± 0.002 0.209 ± 0.001 0.270 ± 0.001
FPool 0.171 ± 0.001 0.492 ± 0.003 0.731 ± 0.004 0.833 ± 0.059

The training time shows the computation cost, while the classification accuracy on
test set illustrates how well the model captures the structure of the graph. FPool has
demonstrated a significant improvement in the classification performance when compared
to the other baseline methods. For the IMDB-Binary dataset, GIN shows a shorter training
time when compared to the other methods evaluated with a relatively small improvement
in performance results in the range 0.5% to 1.2%. However, with a single exception (the
training time for the IMDB-Binary dataset), overall FPool demonstrates a significantly
improved performance over the other methods evaluated. In summary:

• GIN uses a very simple architecture and it outperforms the other methods evaluated
on the training time experiment. However, it suffers from an inability to capture the
hierarchical structure of many real-world datasets as shown in Table 2 with lower
accuracy specifically on molecular datasets: D & D, Mutag, and ENZYMES.

• The training time for FPool is faster than DiffPool due to the reduction in the number
of parameters resulting from the merging of the GNNembed and GNNpooling processes
into a single process.

• EdgePool, by contracting edges, has shown the worst training time, as evidenced in
the ENZYMES, IMDB-BINARY and D & D datasets.

• Compared with SAGPool (which also performs hierarchical pooling on nodes), the
training time for FPool is higher in the small MUTAG dataset with the different of
0.005. However, FPool is faster than SAGPool with the increasing size of the dataset.

• The training time for FPool is faster than SAGPool on the IMDB-BINARY dataset with
an improvement of 0.073 s per epoch.

• The training time for FPool is better for the D & D dataset with a value of 0.365 s per
epoch.

The overall result shows that FPool scales better than the other baseline methods
evaluated.

5.3. Simulation Results for FPool Node Clustering

Figure 4 illustrates the hierarchical cluster assignment of FPool with two pooling
layers and three example graphs taken from the ENZYMES database. Node clustering
colours indicate cluster with edge colours indicating the edge weights. In the assignment
process, matrices S(l) are real-value matrices; therefore, the generated graph is a complete
weighted graph. Because of the entropy loss function, it is expected that each node will be



Sensors 2021, 21, 6070 15 of 20

assigned to only one cluster; therefore, in this visualisation, each node is allocated to the
cluster with the highest classification value. In Figure 4, while the number of clusters is set
to 25, many clusters are empty; FPool has been automatically trained to allocate nodes to
the appropriate (highest value) clusters.

Figure 4. FPool visualisation of node assignment with two pooling layers on 3 example graphs from
the ENZYMES dataset. Shown is graph 1, graph 2, and graph 3 with the results from the simulation
for the: original graph, layer 1 assignment, and layer 2 assignment. The FPool model is introduced in
Section 4 with the three layer FPool framework shown in Figure 3.

5.4. Evaluation of FPool and DiffPool Hierarchical Structures

In the experimental testing, we have evaluated the training curves for both FPool
and DiffPool using the ENZYMES and MUTAG datasets. The results of the evaluation are
shown in Figure 5 (the training and test accuracy on ENZYMES dataset versus training
epoch) and Figure 6 (the training and test accuracy on the MUTAG dataset versus training
epoch). Figures 5 and 6 show the results for the adaptation in the training process.

Recall that in our experimental testing and evaluation the data are separated into three
sets: (i) a training set, (ii) a validation set, and (iii) a test set; the relative proportions are 8:1:1
(i.e., 80%, 10%, and 10%), respectively. The test accuracy is calculated on the current best
model on the validation set; therefore, in theory, the trend line is usually on an up-trend.
The results demonstrate that FPool provides improved performance over DiffPool in terms
of graph classifications.

In testing the relative accuracy of FPool and DiffPool, experimental results show
that FPool produces consistently better training accuracy results for graph classification
for both the ENZYMES and MUTAG datasets. The training accuracy of FPool is higher
than DiffPool for very early epoch(s) for both the ENZYMES and MUTAG datasets; this
demonstrates that FPool captures the hierarchical structure faster than DiffPool though
there remains an overfitting problem in the approaches because of less training data.



Sensors 2021, 21, 6070 16 of 20

Figure 5. The training and test accuracy on ENZYMES dataset for: FPool(training), FPool testing),
Diffpool (training), and Diffpool (testing). The X axis shows the epochs and the Y axis shows the
quantitative measure of the classification accuracy.

Figure 6. The training and test accuracy on MUTAG dataset for: FPool(training), FPool testing),
Diffpool (training), and Diffpool (testing). The X axis shows the epochs and the Y axis shows the
quantitative measure of the classification accuracy.

6. Discussion

In this paper, we have considered knowledge graphs in a diverse range of domains
along with GNN which have been shown to enable improvements in node classification
and prediction when applied to graph representation with learning node embedding to
effectively represent hierarchical properties of graphs. Traditional graph classification
methods are based on GNN. However, such methods generally fail to learn the hierarchical
representation of graphs. Two-dimensional graphs are inherently flat and only propagate
information across edges of graphs, the result is a failure to capture the hierarchical
information.

Current methods have used deep learning using a differentiable graph pooling tech-
nique that generates hierarchical representations of graphs; however, control of the learning
process is difficult given the complexity and large number of parameters in an end-to-end
model. To address this difficulty, in this paper we propose an novel approach termed FPool
which is predicated on the basic approach adopted in DiffPool (where pooling is applied



Sensors 2021, 21, 6070 17 of 20

directly to node representations). FPool implements that are newly designed to enhance
data normalisation.

We have evaluated FPool using a number of sensor datasets (see Table 1). Experimental
results demonstrate (i) improved classification and prediction performance when compared
to alternative methods and (ii) significant reductions in the training time. The evaluation
and experimental results derived from the comparative analysis and experimental testing
are set out in Section 5, with results presented in tabulated form in Tables 2 and 3. The
comparative analysis has been conducted using four publicly available datasets, details of
the datasets may be found in Section 5 with the details of the datasets shown in tabulated
form in Table 1 where the number of graphs and classes are shown with the node attribute
dimension and where code labels are included.

Considering future IS, there is a clear need to address the inherent complexity of
context and context-aware systems with decision support to enable personalisation and
targeted service provision (TSP). Moreover, the development of artificial intelligence (AI)
systems and machine learning (ML) (including machine cognition) demands future intel-
ligent IS capable of accommodating advanced learning techniques and large datasets to
address the demands of affective computing and the realisation of emotional response, using
advanced inference and reasoning to realise intelligent information processing. Addressing
these requirements will call for many AI and ML techniques including the techniques
discussed in this paper.

Considered from a practical managerial significance perspective (real-world practical
application) we argue that the FPool framework offers the potential for implementation in
real-world IS (including where intelligent IS are implemented in CACPS) which generally
operate on large datasets. As discussed in Section 2, Rousseau et al. [27] has addressed
text categorisation as a graph classification problem and has shown that documents can be
represented as a graph-of-words instead of the historical n-gram bag-of-words. Text classi-
fication forms an important role in many context-aware systems where the identification
of emotion and emotive response is a required process. Marwedel [14] has demonstrated
the diverse range of domains to which embedded systems foundations of cyber-physical
systems, and the Internet of Things applies along with the opportunities and challenges.

6.1. Open Research Questions

We have trained FPool and DiffPool using three loss functions: (i) classification loss,
(ii) link prediction loss, and (iii) entropy loss. The loss functions have been inherited from
DiffPool given that FPool is predicated on the DiffPool framework. Experimental testing
and evaluation (including a comparative analysis, see Tables 2 and 3) is set out in Section 5.
However, there remain open research questions (ORQ) we have identified in our study:

1. Is entropy loss necessary given that a GNN could handle a soft adjacency matrix which could
be translated to a complete weighted graph? The question, could using additional entropy
loss help improving performance? requires further study.

2. As discussed in Section 5.2, GIN outperforms the alternative methods considered
in the training time experiment (see Table 3). However, while GIN performs well
in terms of the training time, it suffers from an inability to capture the hierarchical
structure of many real-world datasets with lower accuracy (see Table 2). Addressing
this dichotomy and improving the training time performance for FPool requires
further investigation.

3. In Section 5.3, we introduced simulation results for FPool node clustering. However,
there is a potential issue which relates to how to learn the number of clusters to reduce
parameters when both FPool [and DiffPool] complete the training successfully? The issue
(the potential for a significant number of redundant parameters) requires further
research.

In future work, we will investigate the ORQ (points 1–3) as they relate to FPool with the
aim of further improving (i) the classification performance for the IMDB-Binary dataset for
which GIN is slightly better than FPool, and (ii) the computational overhead (the training



Sensors 2021, 21, 6070 18 of 20

time) which, as we have noted in Table 3, is slower than for FPool than is the case for GIN
across all datasets.

7. Concluding Observations

This paper has considered the graph classification problem and the application of the
GNN technique which is a popular and widely used DL approach for graph classification.
In this paper, we propose FPool which is a novel method for graph classification based
on the notion of hierarchical pooling to provide an effective method of capturing the
hierarchical structure of graphs.

While FPool and DiffPool employ the same hierarchical pooling concept, our reported
results show that FPool achieves improved classification performance in a comparative
analysis. Moreover, we have evaluated the training time and FPool is significantly faster
than DiffPool when dealing with sensor data sets. In our comparative analysis, all imple-
mentations have used the same sensor datasets and training methodology.

In conducting our study, we have identified a number of ORQ (see Section 6.1).
Notwithstanding the ORQ, we posit that FPool provides an effective and efficient method
for capturing the hierarchical structure of graphs with improved classification performance
and training time.

Author Contributions: Conceptualisation, H.V.P. and D.H.T.; methodology, H.V.P. and P.M. inves-
tigation, H.V.P., D.H.T. and P.M.; writing—original draft preparation, P.M.; writing—review and
editing, P.M.; visualisation, H.V.P.; All authors have read and agreed the published version of the
manuscript.

Funding: This research is funded by the Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number: 102.05-2019.316.

Data Availability Statement: The study uses open and freely available data sources [datasets]
identified and referenced in this paper. The data sources are reflected in other studies referenced in
this study and in other papers published by MDPI (Sensors).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Diehl, F.; Brunner, T.; Le, M.T.; Knoll, A. Towards graph pooling by edge contraction. In ICML 2019 Workshop on Learning and

Reasoning with Graph-Structured Data; Cornell University: New York, NY, USA, 2019.
2. Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and

challenges in big data analytics. J. Big Data 2015, 2, 1–21. [CrossRef]
3. Wang, Z.; Lv, Q.; Lan, X.; Zhang, Y. Cross-lingual knowledge graph alignment via graph convolutional networks. In Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2–4 November 2018; pp. 349–
357.

4. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.
5. Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P.

Convolutional networks on graphs for learning molecular fingerprints. arXiv 2015, arXiv:1509.09292.
6. Lan, L.T.H.; Tuan, T.M.; Ngan, T.T.; Giang, N.L.; Ngoc, V.T.N.; Van Hai, P.; Son, L.H. A New Complex Fuzzy Inference System

With Fuzzy Knowledge Graph and Extensions in Decision Making. IEEE Access 2020, 8, 164899–164921.
7. Van Viet, P.; Chau, H.T.M.; Van Hai, P.; Son, L.H. Some extensions of membership graphs for picture inference systems. In

Proceedings of the 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City,
Vietnam, 8–10 October 2015; pp. 192–197.

8. Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W.L.; Leskovec, J. Hierarchical graph representation learning with differentiable
pooling. arXiv 2018, arXiv:1806.08804.

9. Lee, J.; Lee, I.; Kang, J. Self-attention graph pooling. In International Conference on Machine Learning; PMLR: Long Beach, CA, USA,
2019; pp. 3734–3743.

10. Moore, P.; Hu, B.; Jackson, M. Rule Strategies for Intelligent Context-Aware Systems: The Application of Conditional Relationships
in Decision-Support. In Proceedings of the 2011 International Conference on Complex, Intelligent, and Software Intensive
Systems, Seoul, Korea, 30 June–2 July 2011; pp. 9–16; Best Paper Award.

11. Moore, P.; Pham, H.V. Personalization and rule strategies in human-centric data intensive intelligent context-aware systems.
Knowl. Eng. Rev. 2015, 30, 140–156. [CrossRef]

http://doi.org/10.1186/s40537-014-0007-7
http://dx.doi.org/10.1017/S0269888914000265


Sensors 2021, 21, 6070 19 of 20

12. Park, K.J.; Zheng, R.; Liu, X. Cyber-physical systems: Milestones and research challenges. Comput. Commun. 2012, 36, 1–7.
[CrossRef]

13. Malekian, R.; Wu, K.; Reali, G.; Ye, N.; Curran, K. Cyber-physical systems and context-aware sensing and computing. Comput.
Netw. 2017, 117, 1–4. [CrossRef]

14. Marwedel, P. Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things; Springer:
Cham, Switzerland, 2021. [CrossRef]

15. Moore, P.; Pham, H.V. Intelligent context with decision support under uncertainty. In Proceedings of the 2012 Sixth International
Conference on Complex, Intelligent, and Software Intensive Systems, Palermo, Italy, 4–6 July 2012; pp. 977–982. [CrossRef]

16. Moore, P.T.; Pham, H.V. On Context and the Open World Assumption. In Proceedings of the 2015 IEEE 29th International
Conference on Advanced Information Networking and Applications Workshops, Gwangju, Korea, 24–27 March 2015; pp. 387–392.
[CrossRef]

17. Picard, R.W. Affective Computing. Media Laboratory Perceptual Computing Section; MIT Press: Cambridge, MA, USA, 1995.
18. Moore, P. Do We Understand the Relationship between Affective Computing, Emotion and Context-Awareness? Machines 2017,

5, 16. [CrossRef]
19. Picard, R.W. What Does it Mean for a Computer to “have” Emotions? In Emotions in Humans and Artifacts; Trappl, R.E., Petta, P.E.,

Payr, S.E., Eds.; MIT Press: Cambridge, MA, USA, 2002; pp. 213–235
20. Pham, H.V.; Moore, P.; Tran, K.D. Context Matching with Reasoning and Decision Support using Hedge Algebra with Kansei

Evaluation. In Proceedings of the Fifth Symposium on Information and Communication Technology, Hanoi, Vietnam, 4–5
December 2014; pp. 202–210; [CrossRef]

21. Moore, P.; Pham, H.V. On Wisdom and Rational Decision-Support in Context-Aware Systems. In Proceedings of the 2017 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 1982–1987.

22. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. arXiv 2017, arXiv:1706.02216.
23. Tien, D.N.; Van, H.P. Graph Neural Network Combined Knowledge Graph for Recommendation System. In International

Conference on Computational Data and Social Networks; Springer: Cham, Switzerland, 2020; pp. 59–70.
24. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017 arXiv:1710.10903.
25. Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In International Conference on

Machine Learning; PMLR: Long Beach, CA, USA, 2019; pp. 7354–7363.
26. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
27. Rousseau, F.; Kiagias, E.; Vazirgiannis, M. Text categorization as a graph classification problem. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Beijing, China, 26–31 July 2015; pp. 1702–1712.

28. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]

29. Van Pham, H.; Moore, P. Robot Coverage Path Planning under Uncertainty Using Knowledge Inference and Hedge Algebras.
Machines 2018, 6, 46. [CrossRef]

30. Huang, L.; Qin, J.; Zhou, Y.; Zhu, F.; Liu, L.; Shao, L. Normalization techniques in training dnns: Methodology, analysis and
application. arXiv 2020, arXiv:2009.12836.

31. Borgwardt, K.M.; Ong, C.S.; Schönauer, S.; Vishwanathan, S.; Smola, A.J.; Kriegel, H.P. Protein function prediction via graph
kernels. Bioinformatics 2005, 21, i47–i56. [CrossRef]

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

33. Goodfellow, I.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout networks. In International Conference on Machine
Learning; PMLR: Long Beach, CA, USA, 2013; pp. 1319–1327.

34. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway networks. arXiv 2015, arXiv:1505.00387.
35. Kersting, K.; Kriege, N.M.; Morris, C.; Mutzel, P.; Neumann, M. Benchmark Data Sets for Graph Kernels, 2016. Available online:

http://graphkernels.cs.tu-dortmund.de (accessed on 6 September 2021).
36. Schomburg, I.; Chang, A.; Ebeling, C.; Gremse, M.; Heldt, C.; Huhn, G.; Schomburg, D. BRENDA, the enzyme database: Updates

and major new developments. Nucleic Acids Res. 2004, 32, D431–D433. [CrossRef] [PubMed]
37. Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E.J.; Mehlhorn, K.; Borgwardt, K.M. Weisfeiler-lehman graph kernels. J. Mach.

Learn. Res. 2011, 12, 2539–2561.
38. Kriege, N.; Mutzel, P. Subgraph matching kernels for attributed graphs. arXiv 2012, arXiv:1206.6483.
39. Fey, M.; Lenssen, J.E. Fast graph representation learning with PyTorch Geometric. arXiv 2019, arXiv:1903.02428.
40. Rosasco, L.; Vito, E.D.; Caponnetto, A.; Piana, M.; Verri, A. Are Loss Functions All the Same? Neural Comput. 2004, 16, 1063–1076.

[CrossRef] [PubMed]
41. Muñoz, M.A.; Villanova, L.; Baatar, D.; Smith-Miles, K. Instance spaces for machine learning classification. Mach. Learn. 2018,

107, 109–147. [CrossRef]
42. Shen, Y. Loss Functions for Binary Classification and Class Probability Estimation; University of Pennsylvania: Philadelphia, PA, USA,

2005.
43. Rosasco, L.; Poggio, T. A Regularization Tour of Machine Learning; MIT: Cambridge, MA, USA, 2015.

http://dx.doi.org/10.1016/j.comcom.2012.09.006
http://dx.doi.org/10.1016/j.comnet.2017.02.012
http://dx.doi.org/10.1007/978-3-030-60910-8
http://dx.doi.org/10.1109/CISIS.2012.17
http://dx.doi.org/10.1109/WAINA.2015.7
http://dx.doi.org/10.3390/machines5030016
http://dx.doi.org/10.1145/2676585.2676598
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.3390/machines6040046
http://dx.doi.org/10.1093/bioinformatics/bti1007
http://graphkernels. cs. tu-dortmund. de
http://dx.doi.org/10.1093/nar/gkh081
http://www.ncbi.nlm.nih.gov/pubmed/14681450
http://dx.doi.org/10.1162/089976604773135104
http://www.ncbi.nlm.nih.gov/pubmed/15070510
http://dx.doi.org/10.1007/s10994-017-5629-5


Sensors 2021, 21, 6070 20 of 20

44. Janocha, K.; Czarnecki, W.M. On loss functions for deep neural networks in classification. arXiv 2017, arXiv:1702.05659.
45. Cabanes, C.; Grouazel, A.; von Schuckmann, K.; Hamon, M.; Turpin, V.; Coatanoan, C.; Paris, F.; Guinehut, S.; Boone, C.; Ferry,

N.; et al. The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean. Sci.
2013, 9, 1–18. [CrossRef]

http://dx.doi.org/10.5194/os-9-1-2013

	Introduction
	Related Research
	Material and Methods
	Graph Neural Networks
	A Formal Description of Graph Neural Networks
	Graph Classification
	Hierarchical Pooling

	The Proposed Model
	Experimental Testing and Evaluation
	Loss Functions
	Experimental Results on Classification Accuracy and Training Time
	Simulation Results for FPool Node Clustering
	Evaluation of FPool and DiffPool Hierarchical Structures

	Discussion
	Open Research Questions

	Concluding Observations
	References

