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Abstract: Inter-carrier interference (ICI) in vehicle to vehicle (V2V) orthogonal frequency division multi-
plexing (OFDM) systems is a common problem that makes the process of detecting data a demanding
task. Mitigation of the ICI in V2V systems has been addressed with linear and non-linear iterative
receivers in the past; however, the former requires a high number of iterations to achieve good perfor-
mance, while the latter does not exploit the channel’s frequency diversity. In this paper, a transmission
and reception scheme for low complexity data detection in doubly selective highly time varying channels
is proposed. The technique couples the discrete Fourier transform spreading with non-linear detection
in order to collect the available channel frequency diversity and successfully achieving performance
close to the optimal maximum likelihood (ML) detector. When compared with the iterative LMMSE
detection, the proposed system achieves a higher performance in terms of bit error rate (BER), reducing
the computational cost by a third-part when using 48 subcarriers, while in an OFDM system with
512 subcarriers, the computational cost is reduced by two orders of magnitude.

Keywords: DFTS-OFDM; ICI mitigation; Near-ML; OFDM; OSIC; V2V

1. Introduction

The development of vehicle-to-vehicle (V2V) wireless communications has experi-
enced a boom in recent years due to its main applications for traffic control and road
safety, such as: reducing traffic in main avenues, collision prevention, autonomous vehicle
development, remote tracking of vehicles, etc. Different measurement campaigns and
channel sounding in the V2V environment [1,2] confirm the existence of high Doppler
spread frequencies (above 600 Hz), which causes inter-carrier interference (ICI) to be one
of the main problems that affect the receivers’ performance and greatly complicate the
estimation and data detection tasks.

The specific problem of channel parameter estimation at the receiver is further compli-
cated in V2V systems because the ICI also affects the pilot sub-carrier integrity required to
properly carry out the channel estimation. Among the works that tackle this problem, the
most relevant are [3,4]; these works propose an iterative receiver with a channel estimator
based on a two-dimensional basis expansion model (2D-BEM). However, one problem with
these approaches is that they only reconstruct the channel variations at an OFDM frame
resolution, omitting the temporal variation of the channel within one OFDM symbol. In
addition, these works employ a linear data detection scheme that is unable to mitigate ICI
in highly time-variant channels. Furthermore, the iterative receivers in [3,4], require at least
5 iterations to deliver acceptable performance in terms of bit error rate (BER). In [5], channel
estimation and tracking are performed by resolving dominant multipath components.
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Approaches [6–8] make a substantial reduction in the computational complexity re-
quired in the data detection. This is achieved by approximating the original signal model
using a reduced signal model in the frequency domain, based on the band equalization,
where the channel matrix is truncated to keeping only a small number of bands. The
approximate observation model described in [6–8] does not include the channel frequency
diversity, which causes the linear detection the achieving of a lower performance com-
pared to the detection carried out in the complete observation model. Furthermore, the
approximate model described in [6–8] is not compatible with non-linear detectors when
including the channel frequency diversity.

Works [9,10] presents systems with data estimators suitable to counteract the dis-
tortions produced by the ICI, achieving better performance than conventional receivers.
However, they modify the physical layer of the 802.11p standard in order to introduce
additional training sequences, which decreases the spectral efficiency of the system and
represents an incompatibility problem with the 802.11p standard [11]. They also use chan-
nel estimators with an observation window that covers a large number of OFDM symbols,
increasing the memory required for their implementation and the system’s latency.

Since data detection is the process with the greatest computational complexity in the re-
ceiver, the practical feasibility of any system designed to work in real-time in V2V channels
depends mainly on the order of complexity required in the detection task. The computa-
tional complexity of the optimal detector of maximum likelihood (ML) is O(NDΩND ) [12],
being ND number of data subcarriers and Ω the constellation size. This complexity makes
the real-time implementation to be less viable in comparison with linear detectors whose
complexity is bounded in N3

D.
Recently, a series of detectors have been proposed, which have lower complexity than

the ML detector while maintaining similar performance. The spherical detector (SD) [13],
which is based on tree-search algorithms, has been applied to multicarrier systems [14],
yielding lower complexity than the ML detection [15], as it was expected. Some non-linear
detection schemes are based on the M-algorithm, and the QR decomposition of the channel
matrix [16,17]. Ordered successive iterative cancellation (OSIC) has been proposed recently
in [18]. However, all the aforementioned non-linear detectors are applied to a system
model that does not include the channel frequency diversity, as well as not exploiting an
approximation of the band channel matrix during its QR decomposition. However, all the
aforementioned non-linear detectors are applied to a system model that does not include
the channel frequency diversity, as well as not exploiting an approximation of the band
channel matrix during its QR decomposition.

An important factor that impacts the multicarrier system performance is the frequency
selectivity of the channel. This characteristic of the broadband channel makes it difficult to
recover some signals degraded by a deep fading of the channel. Because the non-linear
data detection is carried out consecutively, the channel’s selectivity causes degradation in
performance of the non-linear detection, even in conditions of high signal-to-noise ratio
(SNR). The works mentioned above [3,4] tackle this problem through the inclusion of a stage
for channel coding, with the consequent loss of spectral efficiency. In recent works [19–21],
it is observed that low-density parity-check (LDPC) codes have a better performance on
doubly selective channels compared to convolutional codes and turbo coding. In LDPC
coded transmission schemes, the system parameters are usually optimized towards a
particular scenario to achieve capacity-approaching performance. However, due to high
mobility in V2V communications, several channel scenarios can be experienced within
the narrow time window. In order to maintain the performance of the LDPC encoded
transmission schemes, the system parameters must be individually optimized for different
scenarios, which translates into an increase in the computational complexity of the system
making real-time implementation difficult. Additionally, at the signal level, no schemes
have been incorporated to effectively take advantage of the frequency selectivity in the form
of diversity to achieve better performance in the non-linear detection without significantly
affecting the system’s spectral efficiency.
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1.1. Objectives and Contributions

This paper proposes a new detection algorithm that yields similar performance to
that of ML with low computational complexity. A data precoding scheme is proposed that
efficiently exploits the channel’s frequency diversity without affecting the system’s spectral
efficiency. The proposed detector offers two main advantages:

• It assimilates the linear data precoding stage so that the operation is obtained with
equivalent channel matrices that maintain the band structure. This makes it possible
to extract the channel diversity, which significantly improves performance while
demanding low complexity;

• It uses an improved search order that enables the decoder to find the optimal solution
in fewer iterations. Furthermore, the detector’s maximum search size can be set to an
amount of operations that will not have a significant impact on performance.

Finally, an iterative reception structure is proposed that makes it possible to eliminate
ICI among data subcarriers. The performance achieved with this technique after one
iteration comes close to that obtained in conditions of exact knowledge of the channel.

1.2. Abbreviations and Acronyms

Lower (upper) case letters refer to vectors (matrices); [·]T , (·)H , (·)N and [·]T are the
transpose, Hermitian, circular shift modulo N and band truncation operators, respectively;
(·)k refers to the k-th OFDM symbol being considered. The subscripts (·)P and (·)D are
the sampled versions of the vectors in the pilot and data positions; and in the case of the
matrices, the versions sampled in the rows and columns in the pilot and data positions.

1.3. Organization

This paper is organized as follows: The signal model used is described in Section 2.
The proposed reception system with the incorporation of frequency dispersion is addressed
in Section 3. The low complexity non-linear detection proposed is described in Section 4.
The complete block structure of the transmitter and receiver is presented in Section 5.
Computational complexity analysis is addressed in Section 6. The simulation results are
presented in Section 7. Finally, the conclusions are stated in Section 8.

2. System Model

The frame structure in 802.11p consists of a preamble that contains 10 symbols, each
one lasting 1.6 µs, found at the beginning of the frame and used to synchronize the system.
Subsequently, two long training symbols are transmitted, each one lasting 6.4 µs, used for
fine synchronization and channel estimation. The remaining part of the frame, which has a
variable length, is used to transmit the payload. Depending on the different modulation
and coding schemes used, IEEE 802.11p permits a number of data transmission speeds
ranging from 3 to 27 Mbps [22]. The physical layer of 802.11p, shown in Figure 1, uses
64 subcarriers per OFDM symbol, including 48 data subcarriers, 4 pilot subcarriers located
at the indexes [−21,−7], [7, 21], 11 virtual subcarriers, and one subcarrier for direct current
(DC) component.

Figure 1. Pilot pattern in an 802.11p OFDM frame.

Let xk[n] the k-th transmitted OFDM symbol of Nb = N + Ng samples, where N and
Ng are the number of subcarriers and the length of the cyclical prefix (CP), respectively.
Assuming that the CP is long enough to absorb the channel impulse response (CIR), the
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k-th received symbol yk[n] after removing CP can be expressed in its complex baseband
representation as:

yk[n] =
L−1

∑
l=0

hk[n, l]xk[(n− l)N ] + wk[n], (1)

where n = {0, ..., N − 1}, l = {0, ..., L− 1}, L denotes the CIR length, h[n, l] is the CIR for
the k-th block in the n-th time instant for an impulse function introduced l samples earlier,
and w[n] is the circular and symmetrical additive white Gaussian noise (AWGN), with zero
mean and variance σ2

w = N0/2.
The circular convolution between the CIR and xk[n] can be rewritten in matrix form as:

yk = Hkxk + wk (2)

where

yk =
[

yk[0] yk[1] · · · yk[N − 1]
]T

,

xk =
[

xk[0] xk[1] · · · xk[N − 1]
]T

,

wk =
[

wk[0] wk[1] · · · wk[N − 1]
]T

;

in addition, Hk is an N × N matrix, indexed 0, 1, ..., N − 1 on each dimension, whose
elements are formed with the CIR coefficients as follows:[

Hk
]

n,n′
= hk[n, (n− n′)N

]
, (3)

where n, n′ = {0, 1, ..., N − 1} and CIR is assumed to be zero for (n− n′)N > L− 1. The
OFDM symbol received in frequency domain (FD) is obtained by multiplying both sides
of (2) by the matrix of the normalized discrete Fourier transform (DFT):

[F]n,n′ =
1√
N

e(−j2πnn′/N), (4)

which gives the result:

uk = FHkxk + zk, (5)

where uk is the DFT of the yk and zk is the DFT of noise sequence. Since matrix F is unitary,
Equation (5) can be expressed as:

uk = Gksk + zk, (6)

where sk = Fxk is the OFDM symbol transmitted in the frequency domain, consisting of
the χ data vector with ND data symbols, the sP pilot vector with NP pilots symbols, and
NG guard symbols. G = FHFH is the channel frequency matrix (CFM). When the Doppler
propagation is insignificant, G is a diagonal matrix, and the system is ICI-free. In V2V
environments, due to high mobility of both the transmitter and the receiver, the combined
effect of Doppler shift for each of the individual received paths results in significant Doppler
dispersion, causing the CIR to become time varying within an OFDM symbol and resulting
in matrix G to have energy on the components outside of the diagonal, giving rise to ICI.
An example of the case of the scattered matrix of the channel is shown in Figure 2.
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Figure 2. Example of the quasi-band structure of channel frequency matrix ‖G‖2 in dB, for a V2V
scenario with RMS delay spread of 0.4 µs and frequency Doppler spread of 1 kHz, modeling a
Rayleigh fading NLOS scenario.

3. Proposed Receiver
3.1. Channel Estimation

The reduced number of pilots in a single OFDM symbol and the fact that they expe-
rience ICI complicate the task of estimating the time-varying CIR. To counteract this, the
observation model of the channel estimator is extended to a sliding window that includes
adjacent OFDM symbols as follows:uk−1

uk

uk+1

 =

Gk−1sk−1

Gksk

Gk+1sk+1

+

zk−1

zk

zk+1

, (7)

where the superscript of each variable represents the position relative to the current k
symbol. In order to carry out the channel estimation with this observation model, the
algorithm proposed in [23] is used, where BEM is applied so as to obtain a compact
representation of the CIR in the interval of the three OFDM symbols as follows:

h[n, l] =
Mτ−1

∑
r=0

MD−1

∑
q=0

ρq,rφI
q[n]φ

I I
r [l] + ε[n, l], (8)

where ρq,r are the coefficients of the expression, m = {0, ..., 3Nb − 1}, Mτ and MD are
the number of functions used to expand the delay time domain and the time domain,
respectively, and {φI

q[n], ∀q ∈ [0, MD − 1]}, {φI I
r [l], ∀r ∈ [0, Mτ − 1]} are the functions that

expand the time domain and the delay time, respectively. Given that in V2V scenarios
the Doppler and delay dispersion presents statistics within a very diverse set, the discrete
prolate spheroidal sequences (DPSS) are used as base functions since they optimally con-
centrate the energy in a finite time and bandwidth window. The modeling error for this
representation in subspace is concentrated in the term ε[n, l].

To determine the number of functions needed in each of the CIR domains, we use the
approach proposed in [24]:

Mτ = dFsτmaxe+ 1, (9)

MD = d2 fD3Nb/Fse+ 1. (10)
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where d·e denotes the upward rounding operator, FS is the system’s bandwidth, τmax is the
maximum time delay spread and fD is the maximum frequency Doppler spread.

The information from the BEM of channel in the frequency and frequency Doppler
domains are found compactly in the doubly-indexed matrix:

Φk
q,r = FBk

q,rFH , (11)

with [
Bk

r,q

]
n,n′

= φq
I [n + (k + 1)(N + Ng)]φr

I I [(n− n′)N ] (12)

and the BEM coefficients given by:

ρq,r =
3N−1

∑
m=0

L−1

∑
l=0

h[m, l]φ̄I
q[m]φ̄I I

r [l]. (13)

Substituting the channel for its BEM in (6) yields the expression:

uk =
MD−1

∑
q=0

Mτ

∑
r=0

ρq,rΦk
q,rsk + zk, (14)

Annexing this representation of the channel to the Equation (7) and considering only
the positions where the transmitted and received pilots are found, yields the following:

uP = Λρ + εP , (15)

where:

ΛT =
[

Λk−1T
ΛkT

Λk+1T
]T

, (16)

Λk =
[

Φk
1,P sk

P Φk
2,Psk

P Φk
I,Psk

P

]
, (17)

uP =
[

uk−1
P

T
uk
P

T
uk+1
P

T
]T

, (18)

ρ =
[

ρ0 ρ1 · · · ρi · · · ρI
]T ; (19)

the subscript P refers to the sub-sample of the vectors and matrices in the rows and
columns corresponding to the pilots’ position. For reasons of simplification in the notation,
the indexed variable i = q + MD(r− 1) was used, where 0 ≤ r ≤ Mτ and 0 ≤ q ≤ MD − 1.
εP is the vector that concentrates the noise contributions, modeling error and intersymbol
interference in order to simplify the expressions.

It is assumed that the receiver has matrix Λ and the received vector uP , such that the
calculation of the channel’s estimated coefficient vector can be obtained by the least-squares
(LS) algorithm [23]:

ρ̂ = (ΛHΛ)−1ΛuP . (20)

Once these coefficients are obtained, any of the representations, such as the time-
varying impulse response and the channel transfer function, can be calculated directly by
computing the weighted sum of the base functions. In this way, the frequency-Doppler
and frequency response matrix can be calculated by using the expression:

Ĝk =
I−1

∑
i=0

ρ̂iΦ
k
i . (21)
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3.2. DFT Dispersion

The V2V channel selectivity makes OFDM systems susceptible to detection errors
because the instant power of some subcarriers can be low due to the deep fading, which
makes it difficult to detect the transmitted data. To counteract this problem, the precoding
by dispersion in frequency (Direct Fourier Transform Spreading: DFTS) technique is used in
this work because it uniformly distributes each symbol’s energy over the entire bandwidth
and because its implementation, by means of the Fast Fourier Transform (FFT), is low in
complexity. This operation can be represented formally on the transmitter side as follows:

sD = FDχ. (22)

This is to say, the elements transmitted in frequency in the data positions are built by
applying the Fourier matrix to the data symbols in vector χ. The elements of the Fourier
matrix are determined by:

[FD]d′ ,d = 1/
√

NDej2πd′d/ND , (23)

where d, d′ = {0, 1, . . . , ND}. Due to the fact that the data detection will only be carried
out in the data subcarrier indexes, the original signal model in (4) is reduced to the
following expression:

uD = GDFDχ + GD,PsP + zD, (24)

where uD and zD are the received signal vector and the noise vector, respectively, each in
the position of the data subcarriers. The GD matrix is obtained by taking the rows and
columns of the data carrier positions. The term GD,PsP represents the interference in the
carriers, with data from the pilot carriers.

3.3. Non-Linear Detection on DFTS-OFDM System

The main contribution in this paper is the efficient integration of the DFTS precoding
in the non-linear data detection process in the receiver. This has to be emphasized: one
of the problems when using DFTS in the receiver is the difficulty of applying the non-
linear detection algorithms while maintaining low computational complexity, since the
equivalent channel matrix GDFD does not conserve a band structure. One solution to this
issue is to find an operator that, upon being applied to the received signal, re-establishes the
equivalent channel matrix’s band structure. In this sense, the inverse Fourier transform FH

D
is used to complete the Cramer–Loève operator in the GD channel matrix. In mathematical
terms, the vector received in the data position is obtained as:

FH
DuD = FH

DGDFDχ + FH
DGD,PsP + FH

DzD, (25)

v = Kχ + FH
DGD,PsP + zD, (26)

where v = FH
DuD, χ = FH

DsD and K = FH
DGDFD is the equivalent channel matrix after

applying the inverse Fourier transform to the received symbols in the data position with
linear precoding. In order to simplify the notation, the noise vector zD = FH

DzD maintains
the same nomenclature since the orthonormal transforms does not affect its statistics.
Notice that the correlation characteristics and quasi-band structure of matrix GD imply that
matrix K also possess a quasiband structure after the transformation, as shown in Figure 3.
This structure in particular allows detection algorithms to diminish their computational
complexity, while performing close to the ML detector in terms of BER.
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Figure 3. Plot of an example of ‖K‖2 in dB, where the quasi-band structure of K in V2V-DSC allows
application of a matrix truncation with λ + 1 strips.

Maximum Likelihood Detection Criteria

The data detection using the maximum likelihood criterion can be determined from
the Equation (26) by finding the vector χ that minimizes the following metrics:

χ̂ = argmin
χ∈ΩND

‖v−Kχ‖2, (27)

where Ω is the constellation used for data modulation and ΩND is the set containing all
possible combinations of the symbols transmitted through the ND data subcarriers. This
data detection method is highly computationally complex due to the exhaustive calculation
of all of the Euclidean distances that are needed to estimate the vector χ̂. In order to reduce
the complexity required by the detection, it can be applied a truncation to the matrix K,
keeping B non-zero diagonals. These are determined using the following equation:

B = 2(λ + λc) + 1, (28)

where the B diagonals are distributed in 3 bands, one band is formed by the main diagonal
and 2λ adjacent diagonals, the second band is formed by the λc diagonals located in the
upper right corner, and the third band is formed by λc diagonals located in the lower-left
corner. The rest of the diagonals are truncated to zero. The structure of the truncated K
matrix is shown in Figure 3.

3.4. ICI Mitigation

As in related works [3,23,25], an iterative receiver is proposed, in which the estimated
data can be reused to perform interference cancellation in the data, attaining an improved
channel estimation in the next iteration. Mathematically, the estimated data in a it-th
iteration can be described recursively as:

uk
it = uk

it−1 − [Ĝk
it−1]Tsk

it−1, (29)

where the sub-index it = {0, 1, 2, . . .} denotes the iteration number; uk
it is the k-th received

signal, [Ĝk]T is the estimated channel matrix with null elements in the main diagonal and
sk

it−1 the received signal of the previous iteration.
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4. Low Complexity Non-Linear Detection

The solution in (27) of the proposed signal model (26), although optimal, is not practi-
cal for implementation due to its high computational complexity. This section describes
a methodology for non-linear detection of linearly precoded data; suitable for the signal
model described in (26). The detection process consists of two stages; first, the sorted QR
decomposition of the channel matrix K is performed. Subsequently, with the help of this
decomposition, the proposed non-linear detectors of low computational complexity are
executed. Each of the above algorithms is now described.

4.1. Sorted QR Decomposition

QR decomposition is used to obtain the matrices Q and R from the channel matrix
with precoding K. This decomposition must comply with the following relationship:

KP = QR, (30)

where Q is an orthonormal matrix that fulfils the property QHQ = I, R is a superior
triangular matrix, and P is a permutation matrix whose reordering depends on the signal
to interference ratio. This decomposition can be accomplished using different methods;
however, for this article, the method based on the Givens unit rotations is used [26]. In each
step of the orthonormalization process for determining the Q matrix, permutations are
taken in the position of the columns in order for the resulting rows in the R matrix to be
ordered according to their signal to interference ratio. The K matrix’s quasi-band structure
is exploited in order to reduce, as much as possible, the computational complexity in terms
of the number of Givens rotations required for the calculation of the QR decomposition.

To accomplish the mentioned decomposition according to the zero-forcing (ZF) crite-
rion, the following extended matrix is defined:

K = [K|v], (31)

to which a sequence of unit rotations is applied. When the minimum mean square error
(MMSE) criterion is used, the extended matrix is constructed including the noise statistics
as follows:

K =

[
K v

σ2
wI 0

]
. (32)

The advantage of using unit rotations in the orthogonalization process to obtain the
QR decomposition is that it conserves the original energy of all the elements of the original
K matrix, maintaining a dynamic range of all the variables used in the process. This
characteristic makes it easier to implement this method in devices in real-time using fixed-
point arithmetic. To simplify the notation in the successive process of Givens rotations, the
following notation:

X(0) = K, (33)

is defined. Each Givens rotation, described by matrix Θj which is calculated to cancel a
non-zero element of the X(j−1) matrix, obtained in the previous iteration. Therefore, the
process of generating the upper triangular matrix R requires a sequence of Givens rotations
to be applied to the expanded matrices (31) and (32) as follows:

X(ND) = ΘND · · ·Θ1X(0). (34)

which ultimately yields
XND =

[
R QHv

]
=
[

R ṽ
]
, (35)

for the ZF criteria case; for the MMSE criterion the following representation is obtained:

XND =

[
R QH

1 v
0 QH

2 v

]
=

[
R ṽ

0 ṽ1

]
. (36)
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The detailed description of the Sorted QR algorithm is described in [27], with the only
difference of omitting the rotation when a null element is found in the truncated channel
matrix K.

4.2. Two Approaches for Non-Linear Data Detection

Once the preprocessing of the received signal, and the QR decomposition of the
estimated channel matrix, have been completed, the next step is to perform data detection.
For accomplishing this task, this work considered the following two non-linear detectors:

4.2.1. OSIC Detection

The ordered successive interference cancellation (OSIC) algorithm is an effective
method to carry out the cancellation of the ICI. This method is suitable to apply to the
proposed model in Equation (26) combined with the QR decomposition described above,
allowing the sub-optimal detection of the data with very low computational complexity.
Substituting this decomposition in Equation (26), it results in:

v = QRPTχ + zD; (37)

pre-multiplying both sides of this equation by QH leads to the following system of equations:

ṽ = RPTχ + QHzD, (38)

ṽ = Rχ̃ + zD; (39)

where ṽ = QHv, and χ̃ = PTχ is the vector of the precoded data, ordered in decreasing
order with respect to its contained energy. The zD noise vector maintains its statistics due
to the fact that Q is unitary. Due to the triangular structure of R, the ṽ vector elements can
be expressed individually as:

[ṽ]j = [R]j,j[χ]j +
ND

∑
i=j+1

[R]j,i[χ]i + [z]j; (40)

where the notations [·]a and [·]a,b indicate the a-th element of the vector and the b-th element
of the a-th row of the matrix, respectively. This way, the detection of each of the data signal
can be obtained iteratively using the following expression:

[χ̂]ND = Q
{

[ṽ]j
[R]j,j

}
, (41)

[χ̂]j = Q


[ṽ]j −

ND
∑
i=j

[R]j,i[χ̂]i

[R]j,j

, j = {ND − 1, · · · , 1}; (42)

where the operator Q{·} is a decision operator that maps its arguments to the closest
point in the constellation Ω used by the transmitter. Assuming that at each iteration, the
previous decisions are correct, then the interference of the previously detected symbols can
be subtracted from the current symbol to be detected.

4.2.2. Near ML Detection

The ML detection using QR decomposition can be reformulated in the following way:

χ̂ = argmin
χ∈ΩND

‖ṽ−Rχ‖2. (43)
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The search for the ML solution of the χ̂ vector based on the criterion established
in Equation (43) can be reflected graphically in the construction of the tree shown in
Figure 4. At the n-th level there are q = NND−n+1

c possible candidates for [χ̂]n, where
n = {ND, ND − 1, · · · , 1}. The total minimum metric needed to determine the vector with
the minimum distance in accordance to Equation (43) is defined as:

d(χ̂) =
{ ND

∑
j=1

∥∥∥[ṽ]j − ND

∑
i=j

[R]j,i[χ̂]i

∥∥∥2}
, (44)

where:
χ̂ =

{
χ̂1, χ̂2, · · · , χ̂ND

}
, (45)

corresponds to the trajectory that forms the nodes at the n levels of the tree. The trajectory
minimizes the distance calculated in the Equation (44). The symbol vector χ is defined to
the n-th level as:

χ =
{

χND , · · · , χn
}

, (46)

with ND − n + 1 length. Adjusting the Equation (44) to calculate the partial metric for the
χ vector, the modification is defined as:

dn(χ) =
{ ND

∑
j=n

∥∥∥[ṽ]j − ND

∑
i=j

[R]j,i[χ]i

∥∥∥2}
, (47)

where dn(χ) is the value obtained from the accumulated branch metric of the [χ]n node
that has a [χ]ND . . . , [χ]n+1 as its predecessor nodes. This distance represents the addition
of all of the branch metrics from the root (ND node) to the node indicated at the n-th level.

The QRD-M algorithm based on the QR decomposition reaches a performance in
terms of BER, similar to the ML detector [27]. The QRD-M algorithm is a transversal tree
search algorithm. At the n-th level, the algorithm maintains M possible candidates before
selecting the symbol. Subsequently, the decision of the χ̂ vector is performed once the ND
levels have been processed. The search process in the QRD-M algorithm, used to detect
the symbols, is run sequentially and is initiated at the last level (n = ND). The algorithm
calculates the metric dn(χ), defined in Equation (47), for all the possible values of χi ∈ Ω.
The distances and the nodes are then arranged in ascending order, and only the M nodes
with the least distance are maintained while the rest are discarded. The same procedure
is used for the next level and continues until the first level (n = 1) is processed. The
performance of the QRD-M algorithm depends on the established value of M ≤ Nc; a
higher value makes it more probable that the optimal branch is included in the branches
selected at the n-th level. In the search process at each one of the n-th levels, the tree
extends to p = MNc branches, and their corresponding Euclidean distance is calculated in
order to select the surviving M branches at the n-th level, as illustrated in Figure 5. This
value is much lower than the number of branches q = NND−k+1

c that are required in the
ML algorithm. Additionally, in our proposal, we introduce heuristics so that the number of
surviving M branches per level can be adapted. This value is adjusted during the search
process run at each level of the tree. With this modification, the detector complexity is
variable, and for a high signal to noise ratio the savings in computational complexity of
the detector are significant, maintaining the detector’s performance close to that of the ML
detector in terms of BER.

Exploiting the R matrix structure, the estimation of the last level [χ]ND does not depend
on the symbols [χ]j, for 1 ≤ j ≤ ND − 1. An exhaustive search is done of [χ]ND , the dis-

tances are calculated using Equation (47) for the Nc constellation points, such that [χ](β)
ND
∈

Ω for 1 ≤ β ≤ Nc. It is defined d(β) = d([χ](β)
ND

) =
∥∥∥[ṽ]ND − [R]ND ,ND [χ]

β
ND

∥∥∥2
. The vector

elements d(β) are arranged in ascending order and stored in the vector dist =
{
[d]1 ≤
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[d]2 ≤ · · · [d]Nc

}
, where the smallest subindex corresponds to the least vector distance

d(β), which corresponds to the ordered set of symbols pos =
{

χ
(1)
ND

χ
(2)
ND

· · · χ
(Nc)
ND

}
in d(β) terms. The smallest super index in χ

(β)
ND

indicates the constellation symbol Ω with
the least distance in d(β). The symbol search process is continued

{
χ̂1, · · · , χ̂ND−1

}
us-

ing the QRD-M algorithm described previously assuming that [χ]ND = χ
(1)
ND

. The search

result is stored in the vector χ̂(1) =
{

χ
(1)
1 , · · · , χ

(1)
ND

}
, with a distance calculated using

Equation (44), d(1) = ∑ND
j=1

∥∥∥[ṽ]j −∑ND
i=j [R]j,i[χ̂

(1)]i

∥∥∥2
, where the super indexes of d(1) and

χ̂(1) correspond to the assumption [χ]ND = χ
(1)
ND

. A new search is run in the tree and

[χ]ND = χ
(2)
ND

is established only if it meets the following condition: [d]2 < d(1) (the first

phase demonstrates that d(β∗) = d(1)). In case it is not met the significant condition that this
search has an initial distance greater than d(β∗). The complexity of the optimal vector search
for χ̂ in the tree can be reduced further by calculating the partial distance metric to the

n-th level defined in Equation (47) d(β)
n =

{
∑ND

j=n

∥∥∥[ṽ]j −∑ND
i=j [R]j,i[χ]i

∥∥∥2}
. Additionally, if

d(β)
n ≥ d(β∗) is met, the search is cancelled at that level and restarted with the next phase

assuming that [χ]ND = χ
(β+1)
ND

. The algorithm finalizes the χ̂ optimal vector search process

when d(β∗) ≤ [d]β. A complete description of the Near ML V2V algorithm that includes
the previously described procedure is presented in Algorithm 1.

Figure 4. The tree-structured ML solution search.

Figure 5. The tree-structured Near ML search proposed.
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Algorithm 1: Recursive near ML detector for V2V system.
Input: R, ṽ, P, Nc, Ω, ND
Output: χ̂ estimated symbol
B The bold uppercase variables represent matrices
B The bold lowercase variables represent vectors
B All the variables are considered to be global, visible in any part of the function
B The use of subindexes in the variables indicates that a vector or row of a matrix is being
referenced
{MAIN PROGRAM: Recursive near ML detector}
Dmin ← ∞
skip← f alse
level← { }, void vector
χ← { }, void vector
for ` = ND : −1 : 1 do

d` ← ‖[ṽ]` − [R]`,`χi‖2, compute the metrics for all posible values of χi ∈ Ω
dist`, pos` ← d`, sort the metrics in ascending order and store its
corresponding position
[χ]` ← Ω(pos`), in ascending order
nearml(ṽ, `− 1)

end
χ̂←χ̂P
return χ̂
function nearml(ṽ, n){
for k = 1 to Nc do

if skip = true and [dist]n−1,k > [dist]n,1) then
break

end
[level]n+1 ← k
dn ← ‖[ṽ]n − [R]n,nχi −∑ND

i=n+1[R]n,i[χ]n,[level]n‖
2, for all χi ∈ Ω in ascending

order
distn ← dn + [dist]n+1,[level]n+1

χn ← Ω(posn), in ascending order
if skip = true and [distn,1] > Dmin then

break
end
if n > 1 then

nearml(ṽ, n− 1)
else

if [dist]n,1 < Dmin then
Dmin ← [dist]n,1
χ̂1 ← [χ]n,1
for i = n + 1 to ND do

χ̂i ← [χ]i,level(i)
end
skip← true

end
end

end
}

5. Computational Structure

The architecture of the transmitter and the receiver are summarized in Figures 6 and 7,
respectively. The transmitter conserves the structure of a conventional OFDM system for
the standard 802.11p. The only difference is the DFTS block, applied to the data before the
OFDM modulation is completed. The receiver is composed of four main stages. First, the
conventional OFDM demodulation is executed with the help of the FFT block, followed by
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the demapping of the OFDM symbols. The second stage consists of estimating the channel
with the use of the pilot symbols. The channel estimator block has the channel matrices G
and K as output, necessary to carry out the ICI mitigation and data estimation, respectively.
In the third stage, the DT truncation is carried out once the B bands of the matrix K are
selected. Afterward, the QR decomposition of the truncated matrix K under the ZF or
MMSE criterion is carried out. Next, the vector ṽ is calculated by multiplying v and QH .
The following step is to carry out either OSIC or Near-ML non-linear detection. At the final
stage, bit error correction is performed on the estimated vector χ̊. The estimated vector
enters a feedback loop where ICI mitigation is performed for the data subcarriers. This
process reduces the channel estimation error and improves the detection of the data. The
process is repeated until the number of iterations configured in the receiver is executed.

Mapping P/SS/P IFFT CP
Data

Encoder Interleaver Mapper LP-DFT

Figure 6. Model of the LP-OFDM transmitter.

Figure 7. Schematic structure of the 802.11p link-level receiver proposed with no-linear detection
and iterative ICI cancellation.

6. Computational Complexity

The computation complexity is first presented for the QR decomposition; it is given
in terms of O and verified by counting the number of complex operations, where Givens
rotations are implemented using conventional arithmetic. The parameters considered for
the system are:

• An OFDM system with ND = 48 data subcarriers;
• 4−QAM modulation scheme with unitary average power per symbol;
• Nc = 4 is the maximum number of surviving branches per level in the Near ML

V2V algorithm;
• The dimensions of XND is 48× 49 for the ZF criterion and 96× 49 for the MMSE criterion;
• The algorithms were performed for 2000 channel realizations, and the complex opera-

tions employed were counted independently for each algorithm and finally averaged;
• Based on simulations results, it was determined the number B = 27 bands for truncat-

ing matrix K.

As can be observed in Table 1, the complexity obtained in this proposal, in terms
of complex operations, is in quadratic order with respect to the B number of bands and
in linear order with respect to the ND number of data subcarriers. Systems with similar
orders of complexity can be found in [8,14], but the work proposed in this paper provides a
significant reduction in the complexity required for the conventional MMSE linear criterion,
which is reported in the literature in O(N3

D) order. A system that uses the real model and
LDL decomposition with a complexity similar to O(B2ND) was proposed in [8] for an
OFDM system in doubly dispersive channels. However, that work does not achieve to
improving the performance in terms of BER when compared to the conventional MMSE
detection. In the case of the OSIC and Near ML detector complexity, the necessary complex
operations were assessed for the detection of ND symbols transmitted by the system. The
number of required complex operations was counted depending on the signal-to-noise
ratio, both for the ZF criterion and for the MMSE. The results of these simulations are
presented in Figure 8.
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Table 1. Computational complexity required for sorted-QR decomposition.

QR
Decomposition

Number of
Rotations with
Banded Matrix

Number of
Rotations with

Full Matrix
Complexity

ZF 37,900 114,020 O(B2ND)

MMSE 59,650 172,780 O(2B2ND)

Figure 8 demonstrates the complexity in terms of complex operations required for
both proposed detectors. For the case of the OSIC detector the complexity, using the MMSE
criterion in the calculation of the QR decomposition, significantly reduces the complexity of
the data detection task. For the Near ML detector, none of the two mentioned criteria for QR
decomposition is affecting the complexity of finding the optimal vector. The complexity in
the OSIC detector is constant and it does not depend on the receiver’s SNR. This approach
presents the lowest complexity but its performance is not the best, as shown in Figure 9. In
the case of the Near ML detector, Figure 8 shows that its complexity tends towards a low
constant value starting at an SNR of 15 dB, where it achieves a very similar value to the
complexity obtained by the OSIC detector. On the other hand, its performance, in terms of
BER, is quite close to the ML detector, as will be discussed in detail in the following section.

Figure 8. Computational complexity of OSIC and Near ML detectors.
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Figure 9. BER vs. SNR comparison without convolutional encoder of the LMMSE with channel
knowledge vs. the proposed OSIC and Near ML detections using QR decomposition with ZF and
MMSE as criteria. The channel model uses a Jake’s Doppler profile for each channel tap. The power
delay profile is exponentially decaying with RMS delay spread of 0.4 µs and frequency Doppler
spread of 1 kHz modeling a Rayleigh fading NLOS scenario.

Table 2 summarizes the complexity required by the most representative detection
algorithms used in doubly selective channels (DSC). The main objective is to provide the
reader with an overview of the computational complexity of the compared approaches.
Table 2 shows the closeness in computational cost of Near ML detection compared to
Sorted OSIC detection. The LMMSE detection requires approximately three times the
computational cost of the OSIC and Near ML detection. The proposed algorithms achieve
a cost reduction in 1025 order compared with the Full-ML detection.

Table 2. Computational complexity in terms of complex products per OFDM symbol required for
signal detection, considering one iteration with Nc = 4, B = 27, Ω = 4, and SNR = 15 dB.

Method Complexity
Normalized Cost

ND = 48 ND = 512

ML O(ΩND ND) 5.43 ×1025 Inf

LMMSE O(N3
D) 1.5802 179.7970

Near ML Proposed O((2B2 + N2
c )ND) 1.0110 1.0110

OSIC Proposed O(2B2ND) 1 1

7. Simulations Results

The numerical results presented below were obtained from a simulator implemented
in Matlab-Simulink, replicating compatible simulation environments with the 802.11p
link [11]. The blocks that describe the internal signal processing algorithms considered for
the transmitter and the iterative receiver were discussed in Section 5.
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The standard 802.11p uses a bandwidth of BW = 10 Mhz, a cyclic prefix containing
CP = 16 samples, due to which the system can absorb a maximum tolerable delay of 1.6 µs
in the duration of the CIR from the V2V channel. Of the 64 subcarriers that compose
an OFDM symbol, 48 are used for the data transmitting. This allows the use of eight
modulation schemes which permit the handling of transmission speeds between 3 and
27 Mbps and a frame length of LF = 37 OFDM signals.

In this article, we present results using the following parameters: a 4-QAM modulation
scheme, Nc = 4 for the Near ML search tree, convolutional coding of length Lc = 7,
a code rate of Rc = 1/2 and B = 27 main diagonals, with λ = 8, λc = 5. The channel
was implemented using the filtered method explained in [28]. The channel power delay

profile (PDP) consists of six uncorrelated paths defined by p(τ) = δ(τ −mτ0)e
τ

10τ0 where
0 < τ < 1.6 µs, τ0 = 0.1 µs and m = {0, 1, . . . , }. The parameters that were used to generate
the V2V channel are reported in [3], where V2V channel models consider vehicle velocities
of v = 100 Km/h. The number of OFDM symbols transmitted by each evaluated SNR level
is equal to 1.6× 105.

Figure 10 shows the BER vs. Eb/N0, under a vehicular scenario with NLOS (no-line-
of-sight). To emulate this scenario, a channel with Rayleigh fading was considered with a
power delay profile, decreasing exponentially with root mean square (RMS) delay time
τRMS = 0.4 µs and fD = 1 kHz. This model is similar to the one called “RTV-Expressway”
described in [2]. The dotted lines show the system performance with linear detectors, using
the pilot assignment shown in Figure 1 for the iterative estimation of the channel. The
solid line is assigned to the performance of our proposed system with Near ML non-linear
detection. The tests show that the linear detection approach needs at least three iterations
in order for a floor error not to be found. In the case of the proposed Near ML non-linear
detection, no iteration is needed to achieve this. It can be seen that the proposed Near ML
detection largely surpasses the LMMSE detection approach proposed in [3].

1 2 3 4 5 6 7 8 9 10 11

Eb/No (dB)

10−5

10−4

10−3

10−2

10−1

100

B
E
R

2D BEM [4], LMMSE-iteration 1
2D BEM [4], LMMSE-iteration 2
2D BEM [4], LMMSE-iteration 4
2D BEM [4], LMMSE-iteration 5
2D BEM, Near ML proposed
Perfect channel knowledge

Figure 10. BER vs. Eb/No comparison of the Near ML detection proposed and LMMSE detection for
a frame length LF = 37 and full 802.11p compliant (no postamble). The channel model uses a Jake’s
Doppler profile for each channel tap. The power delay profile is exponentially decaying with RMS delay
spread of 0.4 µs and frequency Doppler spread of 1 kHz modeling a Rayleigh fading NLOS scenario.
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In order to more clearly quantify the Near ML and OSIC detection performance with
respect to the DFTS-OFDM-LMMSE detection, tests were completed without the use of
the convolutional encoder. Additionally, both the OSIC and Near ML detection were
evaluated using QR decomposition with ZF and MMSE as criteria. Figure 9 shows the
BER vs. SNR comparison of the proposed algorithms that includes frequency dispersion.
With the exception of the ZF-OSIC detection, the proposed algorithms present better
performance compared with LMMSE detection with ideal channel. In one particular
case above SNR = 15 dB, the MMSE-OSIC suboptimal detection and the MMSE-Near ML
detection surpass the LMMSE detection by 2.5 and 5 dB, respectively. It is important
to mention that the tendency shown by both proposed detectors does not exhibit the
undesirable error floor.

Figure 11 shows the performance of the proposed iterative receiver. With just two
iterations completed in the proposed receiver, a performance similar to the ideal channel, in
terms of BER, is achieved. This represents a substantial decrease in the number of iterations
required by the receivers reported in state of the art, which require at least five iterations to
achieve a performance similar to the ICI-free condition.

0 5 10 15 20 25

SNR (dB)
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10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Near ML
Near ML-iteration 1
Near ML-iteration 2
Perfect channel knowledge

Figure 11. BER vs. SNR for the iteration {1,2} of the Near-ML detection proposed without convolutional
encoder, using QR decomposition with MMSE as criteria. The channel model uses a Jake’s Doppler
profile for each channel tap. The power delay profile is exponentially decaying with RMS delay spread
of 0.4 µs and frequency Doppler spread of 1 kHz modeling a Rayleigh fading NLOS scenario.

8. Conclusions

This article has presented a low computational complexity receiver that achieves both
the extraction of frequency diversity, as well as efficient ICI mitigation in V2V communi-
cation systems. It was shown that reception in challenging high-mobility environments
can be achieved with the proposed scheme, also exhibiting a manageable computational
complexity. The proposal consists of an efficient treatment of the data frequency dispersion,
a time-varying channel estimation using the two dimensional basic expansion model, and
sub-optimal non-linear detectors. The results show a performance close to the one obtained
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by the ML algorithm. Furthermore, with only two iterations, it was shown that with true
low complexity, the proposed system performed equally or better, in terms of BER, than
other approximations presented as the state of the art, confirming its capacity to exploit the
available frequency diversity in doubly selective channels.
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