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Abstract: Data scientists spend much time with data cleaning tasks, and this is especially impor-
tant when dealing with data gathered from sensors, as finding failures is not unusual (there is an
abundance of research on anomaly detection in sensor data). This work analyzes several aspects of
the data generated by different sensor types to understand particularities in the data, linking them
with existing data mining methodologies. Using data from different sources, this work analyzes
how the type of sensor used and its measurement units have an important impact in basic statistics
such as variance and mean, because of the statistical distributions of the datasets. The work also
analyzes the behavior of outliers, how to detect them, and how they affect the equivalence of sensors,
as equivalence is used in many solutions for identifying anomalies. Based on the previous results,
the article presents guidance on how to deal with data coming from sensors, in order to understand
the characteristics of sensor datasets, and proposes a parallelized implementation. Finally, the article
shows that the proposed decision-making processes work well with a new type of sensor and that
parallelizing with several cores enables calculations to be executed up to four times faster.

Keywords: sensor data analytics; internet of things; data understanding; anomaly detection; data
analysis parallelization

1. Introduction

Several works, such as refs. [1,2], have already reported that sensor data is not per-
fect and datasets usually include erroneous information. They identify two main prob-
lems: (a) missed readings (that are not transmitted for some communication reason) and
(b) unreliable readings (faulty values reported by the sensors). Therefore, it is necessary to
carry out a data cleansing procedure, so it will be possible to (i) avoid or minimize data
leakage when working in machine learning (ML) models and (ii) analyze and use the data
appropriately in Big Data pipelines.

The CrowdFlower Data Science report states that data scientists spend 51% of their
time “collecting, labeling, cleaning and organizing data” [3]. The Kaggle survey for data
scientists [4] was more specific, finding that 15% of their time (on average, with a maximum
of 24%) was only for cleaning data. Anaconda conducted a survey in 2020 [5], reporting
that data scientists spend 26% of their time in data cleansing.

Such activity deals with the identification of missing values (and filling in gaps),
identifying outliers (and removing them), dealing with noise and avoiding duplication.
As these tasks are time-consuming, an important part of research has been focused on the
automation of these activities.

On the other hand, similar techniques are used to analyze sensor behavior, so it will be
possible to identify anomalies and study the “quality” of a sensor and the data it produces.
This is particularly useful in platforms that manage a large set of sensors and need to
monitor if they are working properly, thus making it possible to determine whether the
applications can trust the information they provide.
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In order to apply all of these techniques, it is necessary to understand the data in
better detail so researchers and practitioners can adapt their methods. We believe that,
sometimes, certain assumptions about datasets are made but are not always true (such as
the normality of the data), and thus require formal analysis. Therefore, our hypothesis
is that an adequate analysis based on statistics allows an understanding of the basic and
hidden characteristics of data provided by sensors from multiple domains. We propose
that such analysis will be crucial in later stages and, although some early analysis of the
data might have a rather high computational cost (as in edge environments), exploiting the
parallelization provided by current technologies makes this data pre-processing feasible.

This work sought to understand the datasets generated by several types of sensors
(used in several domains, such as smart cities and agriculture), identifying potential issues
and particularities that, when cleaning and analyzing the data, need to be addressed and
considered. We believe that there are two main topics that are related to the quality of
the data: how the data vary and the presence of outliers. Therefore, we identified several
research questions that require solutions through experimentation:

• RQ1: Which aspects of sensors are linked to the variation of data and the potential presence
and role of outliers? Are we making some assumptions that are not met?

• RQ2: Which statistical solutions can provide valuable information about these aspects, so that
we can analyze them and understand how they behave for different sensors? How can we use,
combine and interpret their outcomes?

• RQ3: In case outliers are present, how do they affect the basic characteristics of sensors’ data?
Are there alternatives that could mitigate the problem?

Additionally, because correlation is a method that can be used to compare the behavior
of similar sensors and extract additional information linked to the context of sensors, we
defined additional research questions:

• RQ4: How does correlation work with different types of sensors? What is the potential utility
of correlation in understanding data?

• RQ5: How do the different solutions perform? Are they also affected by outliers? How?

As a result, we wanted to propose a solution that could facilitate all of this analysis
for different datasets:

• RQ6: Is it possible to define a set of processes, as a way to automate and formalize data
understanding, applicable to different domains?

• RQ7: Can we exploit computational resources in a better way, increasing the efficiency of the
proposed solution?

We acknowledge that aspects such as data buffering, synchronization and the manage-
ment of missing values are important (as analyzed in some works [6,7]), but they require
specific analyses and are out of the scope of this work (although the results could be useful
to support solutions in some of those topics). We assume that such aspects are managed
at the data collection level, such that the data received contain measurements at regular
intervals and that missing values are indicated with some specific number (e.g., −99.9 in
our case).

The paper is organized as follows. Section 2 reviews previous work on data cleaning
and the detection of anomalies in data coming from sensors. Section 3 describes the process
followed and data sources used to perform an analysis of data cleansing issues. Section 4
describes the results of the observations in sensor data pre-processing and presents the
proposed processes for supporting data understanding, together with the results of ap-
plying such processes to a type of sensor not used before. Finally, Section 5 presents the
discussion and conclusions, including future work.

2. Related Work

In recent years, there have been several works analyzing how to clean data from
different sources (many of them focused on climate data). Works such as refs. [7,8] discuss
how to fill gaps in weather data and the usage of certain tests (such as the standard normal
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homogeneity test [9], Pettitt test [10], Buishand range test [11], etc.) to determine outliers in
the data.

Some works have analyzed the types of errors produced by sensors when collect-
ing data. This is the case in refs. [12,13], which identified a similar classification (ran-
dom/malfunction, bias and drift/noise) and proposed some methods for detecting them
based on data features (signal gradient, variance, mean, etc.). In ref. [2], they used some of
these solutions as the basis for defining a fault injection framework, producing benchmark-
ing data. The survey in ref. [14] also identifies types of problematic datasets and sources of
anomalies (the environment, the system, the communication and attacks). It also explains
that anomalies have been addressed from several domains: statistical methods, time-series
analysis, signal processing, spectral techniques, information theory and machine learning.
The survey in ref. [6] identifies missing values as another failure and describes multiple
approaches in the same fields mentioned, including also a few solutions for error correction.

There are solutions that have been designed to automatically clean data from sensor
networks. In the case of ref. [1], the authors proposed a system in which cleaning follows
five stages (point, smooth, merge, arbitrate and virtualize) using simple queries. In the
case of outliers and faulty readings, they propose to eliminate measurements beyond a
certain threshold and to use the mean and the standard deviation of nearby sensors.

Other solutions [15] propose a cleaning method of calculating an influence mean,
which gives weights to sensor measurements (or removes them) depending on their
reliability, based on the similarity of measurements. Such work mentions issues with
Spearman correlation in other solutions and does not take into account that similarity
might not need to be so high in terms of current value.

In the field of real-time streams, ref. [16] proposes an improved method based on
a Kalman filter applied to time series, such that it corrects the received values with the
predicted ones from the filter when a certain threshold is reached. It is focused on additive
outliers and assumes that the sensor produces continuous values, and no big jumps are
expected in the data. Moreover, variance is at the core of the model, as a key parameter to
determine the acceptable boundaries. The work in ref. [14] also mentions other approaches
in the area of time series analysis, such as auto regressive integrated moving average
(ARIMA), but obtaining good models is very complex and problem specific; moreover,
when detecting anomalies, they need to assume that the estimation is more accurate than
the real value and, therefore, values far from the estimation are considered outliers.

Finally, there is another group of solutions that attempt to solve the problem by
using machine learning techniques. The work in ref. [17] classifies solutions for anomaly
detection focused on machine learning. Parametric and non-parametric solutions are
mentioned. While the first group was mainly focused on detecting attacks and loss of
data [18], the second one was focused on the detection of abnormal values, including
solutions based on K-nearest neighbors (kNN) [19], support vector machines (SVMs) [20],
artificial neural networks (ANNs) and genetic algorithms (GA). According to the study in
ref. [21], it compared logistic regression (LR), SVM, decision tree (DT), random forest (RF),
and ANN, finding as a result that the solution based on RF performed better in general.
The applicability is huge, especially in the context of the Industrial Internet of Things
(IIoT), where we may find solutions using some statistics for dispersion together with an
unsupervised ML algorithm for anomaly detection [22] (for manufacturing), as well as
solutions applying yet another segmentation algorithm (YASA) with a one-class SVM [23]
(for the oil industry). This kind of solution also has been applied in the field of autonomous
vehicles [24], detecting anomalies in sensors (in real-time) using a long short-term memory
(LSTM) autoencoder that extracts data stream features and feeds a convolutional neural
network (CNN) for classifying the anomalies.

The problem with ML-based solutions is that they tend to be too problem-specific,
not being able to generalize for other systems and types of sensors. Additionally, paramet-
ric classifiers such as Gaussian Naive Bayes, linear discriminant analysis and quadratic
discriminant analysis assume a normal distribution of the data (because of the way they
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use statistics such as the mean and the standard deviation). Therefore, it is important to
understand if the data obtained from the sensors can fulfill such an assumption. Otherwise,
it may be necessary to apply some transformation to the data (e.g., Box-Cox [25] and Yeo
Johnson [26] transformations).

3. Research Methodology and Data Used
3.1. Research Methodology

The main research methodology followed during our work was the design science
research methodology (DSRM), as presented by Hevner et al. [27] and Peffers et al. [28]. Our
main objective was to build an artifact that would support data understanding, as part of a
more complex system for determining the trustworthiness of sensors in IoT environments.

The steps that we followed when carrying out the research were those proposed by Pef-
fers et al. [28], after analyzing several methodologies and guidelines to implement DSRM:

• Activity 1. Problem identification and motivation—As stated in the introduction, we
believe that it is necessary to formalize data understanding processes and to provide
a tool for supporting such formalization, based on statistical tests (as they can be
fast and flexible), and applicable to multiple domains. We identified several research
questions related to the approaches to use and the aspects to address (in Section 1).
With such tools, it will be possible to understand how data are expected to behave,
discarding solutions that might be affected by the nature of the data (e.g., as mentioned
in Section 2, some ML-based algorithms could show problems when using datasets
that are not following a normal distribution).

• Activity 2. Define the objectives for a solution—A set of objectives were defined, including
the concrete aspects that must be addressed (variability, distribution of the data,
presence of outliers and their effect), the application of multiple statistical solutions
(we explore as many as possible), the applicability to different domains (using datasets
from multiple domains was a must) and the efficiency of execution (therefore, the
parallel implementation, as a way to experiment with execution in multiple cores,
as available in edge environments and Cloud solutions). The solution must provide
enough information for the users to make decisions on how to process the data.

• Activity 3. Design and development—This activity was the most complex one, applying
a quantitative research method approach, in which certain experiments were carried
out to analyze different statistical solutions, with the purpose of observing which
solutions were working, what results they were providing and how they could be
used. As a result, we identified the key aspects to include and designed the three
processes to be implemented. Then, these processes were implemented with R scripts,
applying parallelization to the code.

• Activity 4. Demonstration—As a way to demonstrate the validity of the solution,
we carried out a complete analysis of a new dataset (with a new sensor type not
studied before) using the implemented R scripts. We observed the information gener-
ated by the scripts by configuring the usage of two air quality sensors. The demon-
stration included the execution with different numbers of cores, showing how the
implementation could be scaled up (10 executions were performed per script and
core configuration).

• Activity 5. Evaluation—We observed that it was possible to quickly obtain valuable
information about the characteristics of the data by using the scripts. We checked
whether the information provided was accurate, including the identification of outliers
(by comparing the generated results with the visual observation of the dataset, as well
as other graphs such as histograms). Metrics such as F-score were available in some
cases (e.g., in outliers detection). We also generated corresponding graphs for speedup
and execution time, in order to observe the efficiency of parallel execution.

• Activity 6. Communication—Once we had results to communicate, we proceeded with
the preparation of an article to explain the results from our research.
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It is important to highlight that the method followed in Activity 3 included research
based on primary and secondary quantitative research methods. In some cases, we were
the ones generating some of the datasets (as in the case of data from smartphones and
the sensors attached to the Arduino board) and, therefore, we had the control to influence
the data obtained (such as generating certain types of outliers on purpose). In other cases
(such as the Ports of Spain and air quality datasets) the data were provided by third parties
and, therefore, we could only rely on the information they provided together with the data
(such as annotations about data quality).

We carried out experimental research by writing R scripts (usually only focused on a
concrete set of aspects, such as homogeneity) that analyzed different statistical solutions in
different time windows (from basic statistical properties, such as average, range, variance
and median, to statistical tests for outliers, homogeneity or trend detection) with the
datasets we had access to, belonging to different domains (environmental monitoring,
home automation, smartphones and smart cities). Such experiments randomly selected
samples of two different longitudes and were used to answer the research questions about
the utility of the methods, the aspects of the sensors that may influence their behavior, the
data distributions we may find, the utility of correlation, the basic detection of outliers
and their influence on other results. With the information generated, by induction, we
identified the statistics to apply, how to use them and how to make them complementary.
The R scripts we implemented were evaluated later (as explained) to determine if they
were able to provide the expected results.

Taking these aspects into account, we can confirm that we fulfilled the six guidelines
proposed by Hevner et al. [27]:

• Design as an Artifact: We produced a set of processes for data understanding and
decision making, together with their (parallel) implementation;

• Problem Relevance: Our work addressed an important business problem of understand-
ing the data before carrying out complex data analytics. The implemented scripts
could support researchers and practitioners when selecting the most appropriate data
analytics and ML solutions;

• Design Evaluation: We defined a way to evaluate several aspects of our results, includ-
ing not only the capability to provide relevant information and accuracy of results,
but also the performance when executed in parallel;

• Research Contributions: We identified several aspects that affect the characteristics
of the sensors’ datasets, such as potential issues with variance, the reality about
the probability distribution of the data, statistical tests that may be problematic,
etc. This knowledge was used to implement a set of useful scripts, and we also
demonstrated the utility of parallelization as a way to increase performance when
analyzing sensors data;

• Research Rigor: As explained, we followed formal research methods to identify key as-
pects and to design the R scripts, while the evaluation method was also formally defined;

• Design as a Search Process: We used all possible means to obtain a useful solution,
adding as many sensor types (as we had access or generated new datasets) and
statistical solutions as possible, to contrast the results and gain more knowledge;

• Communication of Research: This article is a good representation of communication to a
technology-oriented audience.

3.2. Data Sources

We used data from different sources in order to cover several types of sensors, locations,
frequencies and providers, for the purpose of identifying several particularities and even
differences in datasets for measuring the same aspect (i.e., temperature) in different places.
The objective was to address several domains, such as smart cities, agriculture, home
automation and environmental monitoring (e.g., weather).

Ports of Spain provided several datasets from the area of Algeciras port, covering
meteorological stations, buoys, and tide gauges. They included data from several sensors,
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measuring sea level or wave height (in some datasets, it is an average of the last 24–26 min),
wave direction (in some datasets, it is an average of the last 24–26 min), water temperature at
the surface, speed of the ocean current (average of last 10 min), direction of the ocean current
(average of last 10 min), atmospheric pressure, air temperature, wind speed (average of last
10 min), wind direction (average of last 10 min) and water salinity. These datasets included
several years of data (in some cases, since 1996), and the collected information followed
different frequencies depending on the dataset (from hourly data to measurements every
5 min). They also contain faulty values, represented as −99.9. The Ports of Spain website
(http://www.puertos.es/en-us accessed on 29 August 2021) shows the locations of the
devices used (separated by many kilometers in some cases) and provides access to some
data.

Another source was the project HiDALGO (https://hidalgo-project.eu/ accessed on
29 August 2021), which provided data from Bosch air quality devices installed in the city
of Gyor. These devices provided information about relative humidity, temperature, air
pressure, NO2 concentration, O3 concentration, PM10 concentration and PM2.5 concen-
tration, with measurements almost every minute. They cover one week of data, which
provided measurements every minute. The devices were separated by distances ranging
from hundreds of meters to several kilometers.

Additionally, the work described in ref. [2] generated some of the benchmarking
datasets that were used. Such datasets included measurements of light intensity and
temperature in three different scenarios: indoor light and temperature (controlled by
an Intel-based platform), temperature from the SmartSantander platform (https://www.
smartsantander.eu/ accessed on 29 August 2021) and outdoor temperature from a Sen-
sorScope platform [29]. The data (raw and interpolated) were used to analyze sensor
behavior, while the datasets with fault injection (bias, drift, malfunction and a mixture
thereof) were used to analyze how certain models behave when processing certain anoma-
lies. These datasets included measurements over periods from one month to a month and
a half, at intervals of a few minutes.

Using an Arduino board and some sensors (a hygrometer for moisture and a sensor for
temperature and humidity), we built a small data collection solution, connected to the soil
of a flowerpot located in a house. It contained data for several days, with measurements
every 2 min. It also contained a few outliers on purpose (such as for irrigating the plant or
changing the location of the hygrometer), for realistic analysis.

Finally, the last source was the Physics Toolbox Suite application (https://play.google.
com/store/apps/details?id=com.chrystianvieyra.physicstoolboxsuite&hl=es_419&gl=US
accessed on 29 August 2021), executed in an Android mobile phone. Thanks to such ap-
plications, it was possible to collect in real-time data from the following sensors: G force
and linear accelerometer, gyroscope, barometer, proximity, magnetometer, luminosity and
sonometer. Data from different sensors were exported to csv, with annotations for those
situations in which something altered the measurement, whether natural (i.e., message
received by the phone or somebody walking close to the light sensor) and on purpose (i.e.,
by shaking the phone for a few seconds). These datasets cover between 30 min and 1 h of
measurements, at high frequencies and with no problems related to missing values.

4. Research Results
4.1. Sensor Types

Sensors behave differently. Although some works assume that measurements are, in
general (and if everything is fine), continuous and do not contain large gaps in the data
generated, this is not always true for all type of sensors.

As can be seen in Figure 1, water salinity sensors (we show 1 week of data in Figure 1b,
which does not contain outliers) are quite consistent in their measurements, jumping
suddenly to another level, where they spend some time, jumping again after some time.
This might be problematic when performing certain filtering of outliers or when expecting

http://www.puertos.es/en-us
https://hidalgo-project.eu/
https://www.smartsantander.eu/
https://www.smartsantander.eu/
https://play.google.com/store/apps/details?id=com.chrystianvieyra.physicstoolboxsuite&hl=es_419&gl=US
https://play.google.com/store/apps/details?id=com.chrystianvieyra.physicstoolboxsuite&hl=es_419&gl=US
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certain variation. This also happens with moisture sensors from time to time, when the soil
is irrigated.
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On the other hand, temperature sensors (Figure 1a) do not show those jumps during
normal operation, varying continuously and showing some seasonality (i.e., day–night,
seasons of the year) as well as clear trends in short-term samples (a few hours of data).

In other cases, such as luminosity, we may observe large differences when operating
indoors and outdoors. In the outdoor case (Figure 1c), the sensor behavior will be similar
to that in the case of temperature, detecting daylight with some “outliers” (due to the
shadows of people moving close to the sensor) and smooth variation. On the other hand,
indoor sensors will show quite unstable behavior, especially during the evening hours, with
unexpected peaks because of people turning a light on and turning it off later (Figure 1d).
Their data will also show a few outliers when the lights were on, also because of shadows
of people in the room.

This also has clear implications for the kind of distribution the data have. The dis-
tribution differs between sensors, although it also can be affected by other factors (such
as frequency and time observed). In any case, this must be taken into account, as certain
assumptions will make the models fail with certain kinds of sensors, removing outliers
that should be kept (depending on the purpose of the data) and losing accuracy due to
unexpected situations, even if there is some contextual information that may support the
analysis.

4.2. Units of Measurement and Ranges

Depending on the type of real aspect to measure, we will use one sensor or another,
which means that we are going to use different units of measurement (luminosity is
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measured in lux, acceleration in m/s2, humidity in mg/L, etc.). This means that the ranges
of data that a humidity sensor generates have nothing to do with a sonometer.

Moreover, even measuring the same aspect, we use different units. For instance,
temperature can be measured in ◦C, in ◦F or in Kelvin. In other cases, it happens that
we use different scales, even with the same metric. This was the case, for instance, with
the Ports of Spain and how atmospheric pressure was measured by different sensors. In
some cases, it was measured in millibars (mbar or hPa), while in others it was measured in
decapascals.

Statistics such as variance are highly affected by the ranges and scales and, in these
cases, it means that variances will differ significantly between sensors, not only among
different kinds of sensors, but also among sensors measuring the same event but with
different scales.

For instance, data from different sensors measuring atmospheric pressure, from the
Ports of Spain source, were used to calculate variance of the data. The calculation was
performed for up to three stations (REMPOR Dique Abrigo, REDEX Golfo de Cádiz and
REDCOSM Puerta Carnero) and for different time windows (full data, last year, last
6 months, last month, last 2 weeks, last week, last 3 days, last day, last 12 h, last 6 h, last 3 h,
last 2 h, last hour, last 30 min). In all cases, as the number of used measurements increased,
the variation increased as well (from 0.0039 to 13.35 in the case of Dique Abrigo).

When comparing variances in sensor data for the same periods (same dates), even
using the same scale, sensors located not very far from each other (Dique Abrigo and Golfo
de Cádiz) showed significant differences (i.e., 13.35 vs. 39.37 for last year, 0.33 vs. 0.92 for
last day). However, the difference with Puerta Carnero was much larger, since that sensor
was not using hPa, but decapascals. In that case, last year variance was 0.19 and last day
variance was 0.0067.

Because of this effect, it is hard to define generic thresholds for those solutions that
make use of variance in their models. Still, alternatives such as the coefficient of varia-
tion [30] could be helpful, because it is a unit-less metric useful for normalizing dispersion,
although it also has its limitations (i.e., sensors such as those for temperature should be
converted to Kelvin scale, as that is the only one with a meaningful zero value).

Another interesting approach is to analyze the interquartile range (IQR), which is
calculated as Q3-Q1 (the difference between 75th and 25th percentiles) and provides an
idea of the statistical dispersion of values. Because the outliers tended to be out of that
range, we eliminated the anomalies they introduced (for instance, when calculating the
mean), although the measurement units used will also affect IQR calculation (it is not a
unit-less metric; hence, the same measurements in hPa or decapascals would result in
different calculations of IQR).

4.3. Data Distribution

The statistical distribution of the data is relevant because it may affect the results of
some statistical tests that are widely used when cleaning data and finding outliers. For
instance, the standard normal homogeneity test (SNHT) [9], the Grubbs test [31] and the
Pearson correlation coefficient [32] have been defined for datasets following a normal
distribution. Therefore, not fulfilling that requirement may lead to faulty results when
applying these solutions in the data pre-processing stage.

In order to analyze the distribution, two approaches were followed: a graphical one
(with Q-Q plots and histograms) and a numeric one (Anderson–Darling test [33] for full
datasets and Shapiro–Wilk tests [34] for 20 pieces of data randomly extracted from the
dataset).

Analyzing the datasets, although some histograms showed that the distribution could
be approximately normal (as in air pressure), the Q-Q plots and distribution fit experiments
confirmed that this was not the case. In some cases (water temperature, soil moisture and
water salinity), the distribution will be light or heavy tailed (values in the extremes are
out of the expected part of the graph, and it seems the distribution is closer to a uniform
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one, as in Figure 2b). Other sensors show a skewed right distribution (as in Figure 2d),
as values tend to concentrate at the right part of the mean (i.e., air temperature, sea level,
water current speed, wind speed, precipitation, humidity). In many cases, they are close to
a gamma, Burr or lognormal distribution (even Weibull in some cases).
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Figure 2. This figure shows the graphical analysis to determine if the datasets follow a normal distribution: (a) Histogram
for a dataset with temperature measurements; (b) Q-Q plot of the same temperature dataset showing the deviation from a
normal distribution (heavy tailed); (c) Histogram for the wind speed dataset; (d) Q-Q plot of the same wind speed dataset
showing the deviation from a normal distribution (skewed right).

When reducing the time window and, therefore, the number of measurements used,
the data distribution was somewhat closer to a normal one. In the case of temperature,
for instance, when taking time windows between 30 and 10 min, 60% of the selected data
samples followed a normal distribution. This increased up to 75% when taking 10 min of
temperature data.

Therefore, depending on the type of analysis to perform and the time window that is
relevant for such analysis, it might be important to choose other ways to calculate mean
and variance, and non-parametric solutions should be selected as the preferred ones.

When errors appear in the data, the distribution may be affected, depending on the
magnitude of the errors and outliers. When malfunction error is present, the normality
may even improve (as observed with the datasets provided by ref. [2]), because it adds a
few extreme values that support the Gaussian shape of the mean. On the contrary, bias
errors are exemplified by the existence of many constant values that are overrepresented,
making the dataset less normally distributed and skewing the distribution (see example
for temperature using the same sensor as before in Figure 3). When drift error is present,
the data become heavy tailed, increasing the weight of extreme values.

Consequently, even when using time windows in which the data may follow a nor-
mal distribution, if drift or bias errors are expected, non-parametric solutions should be
preferred.
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4.4. Outliers and Homogeneity

One of the most important aspects is the identification of outliers, because these are
values that could alter the analysis of the data (i.e., with a relevant impact on means,
variance, ranges, etc.). There are specific statistical tests for detecting outliers, although
they have some limitations. The best known are Dixon’s Q test [35], Grubbs test [31] and
the extreme studentized deviate (ESD) [36] test, a type of sequential application of the
Grubbs test for more than one outlier. Although Dixon and Grubbs can detect one outlier,
ESD was designed to detect multiple outliers (the Tietjen–Moore test [37] also can do it,
but requires being provided with the number of outliers beforehand, so is not useful for
our case).

Based on the experiments performed, Grubbs was able to detect outliers in a quite
robust way (even with salinity measurements in most of the cases), although it showed
problems when there was a drift error with change in the level of the time series (because
that alters the mean and standard deviation calculation). It also exhibited issues when
there was a strong trend in the data (usually in temperature), masking outliers, and may
detect as outliers the lack of normality in the data. This is related to the usage of mean and
standard deviation, which are affected when the number of outliers is high [38]. Dixon has
the same issues and has two more of importance: it is limited to 30 points (because of the
way the critical value for the Q statistic is calculated) and its Q statistic becomes 0 when
the smallest points in the time series have the same value, because the numerator of the Q
Equation (1) equals 0. Therefore, it is better to discard Dixon and focus on Grubbs and ESD
tests for detecting outliers, transforming the dataset, if necessary, to eliminate trends and
seasonality. For trend-related transformation, a differences function (such as ‘diff’ in R) is
useful, although others such as polynomial regression can provide good results, especially
when we have different trends in the same dataset. Removing seasonality requires more
complex transformations.

Q =
x2 − x1

xn − x1
, (1)

In many cases, homogeneity tests are used in order to determine if there are values that
“break” the coherence of the dataset, detecting where this “jump” in the data happens. The
most common ones are the standard normal homogeneity test (SNHT) [9] and Pettitt [10],
although others such as the Buishand (range and U) [11,39] and Lanzante [40] are used as
well. From this list, only the SNHT and Buishand claim to assume a normal distribution of
the data; still, SNHT seems to yield good results with non-normal datasets, according to
the experiments.
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After using these tests with several types of sensors a, first conclusion is that, while
Pettitt and Lanzante seem to be very similar, SNHT and Buishand also look quite similar,
agreeing on the “change points” almost always. Although the graphs generated with the
test statistic were extremely similar for Pettitt and Lanzante, there were some differences
between the SNHT and Buishand tests.

As a limitation, the experiments showed that in datasets with strong trends, the tests
may indicate that there is a change in the data level at the center of the time series. Therefore,
again, it is important to detect trends (with Mann-Kendall [41]) and remove them.

As an example, the graphs in Figure 4 show the usage of the tests with atmospheric
pressure (6 days of data), in which a few outliers were introduced in order to illustrate
some observations (in line with the way that is done in ref. [2]). First of all, SNHT, Pettitt
and Lanzante detected both outliers very well, but whereas SNHT reaches its maximum
value in the second graph (K = 133), Pettitt and Lanzante reach their maximum much
earlier (K = 102), although in that position there is no change yet. Therefore, the three
report that the dataset is not homogeneous (SNHT reports T = 11.043 and p-value = 0.02167,
Pettitt reports U* = 1712 and p-value = 0.006501, and Lanzante reports W = 1337 and
p-value = 0.00021). This is due to limitations in the results of the tests, but it is possible to
see the peaks in the graphs clearly, whenever the outliers appear. We observed the same
peaks with the Arduino dataset (in the temperature and humidity measurements, but not
in those for moisture), in a case in which the outliers were generated by “vandalizing” the
sensors for a few minutes (blowing heat into the device and moving the hygrometer to
another location).

In the case of the Buishand range and U tests, both failed to report the anomaly
(Buishand range reported R/sqrt(n) = 1.336 and p-value = 0.2403, while Buishand U
reported U = 0.38263 and p-value = 0.07867), with a probable change point at k = 68. Still,
looking at the graph of the calculated statistics, it is possible to see some “small peaks” in
the positions in which the outliers were present.

The same experiment included Grubbs, ESD and Dixon tests in order to compare the so-
lutions. Grubbs detected the outlier with value 950.5 (the lowest value) with G = 6.0336 and
p-value = 7.073 × 10−9. The Dixon test was applied only to the middle of the dataset (due
to its limitation) and detected the same outlier with Q = 0.45954 and p-value = 0.0188. The
ESD test was executed with an upper limit of nine outliers and reported the nine correctly.

It is interesting to mention that, when testing different outlier injections and there
were only three outliers in the drift error (the one detected at K = 133), the SNHT was
not able to detect the anomaly (with a p-value of 0.387), while Pettitt and Lanzante still
detected that something was wrong (although in K = 15). The same happened in other
experiments (such as those performed with the Arduino dataset), in which the statistical
tests pointed to different locations (the K result) as the position of the outlier.

This means that, instead of relying only on the final result of the tests, it would be better
to go through the list of statistics calculated, looking for certain figures in the statistic value
that may indicate more accurately where one or multiple outliers are present. Moreover,
tests such as Grubbs, ESD and Dixon are better for detecting a small number of outliers
(malfunction errors), while homogeneity tests are useful when the number of outliers
is larger and they are concentrated (drift errors). Therefore, the tests can complement
each other.

Additionally it, is important to highlight that, in almost all the cases, the homogeneity
tests reported that some change was present, being too sensitive and causing many false
positives. This might be because of the thresholds defined for the tests, which could need
some customization. In that sense, it was possible to observe that the ranges of values of the
statistics vary significantly depending on the type of sensor and the time window. While in
some cases Pettitt yielded values between 1500 and −1500 (6 days of data on atmospheric
pressure), in other cases it was between 0 and 200 (one-and-a-half days of atmospheric
pressure data) or between 100 and −3000 (6 days of water salinity measurements). The
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same applied to all the statistics. Therefore, some normalization solution might be useful
for generalizing the results.

Finally, it is important to highlight that the presence of outliers does not mean that
there is a problem with the data. In the case of water salinity and light intensity (indoors),
because of the characteristics of the data, some changes in the time series were considered
a “jump” and reported as an outlier. The same issue occurred with moisture sensors, as
irrigation was detected as an outlier. Although this is fine from a statistical point of view,
the particularity should be considered, without removing or modifying such values.
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4.5. Equivalent Sensors and Their Locations

As mentioned before, several solutions rely on the comparison of measurements
between sensors of the same type in order to identify which ones are providing normal data
and to use such consensus of metrics to clean and adapt the data to be stored. Works such
as ref. [42] identified some general aspects on the use of correlation, but it is also interesting
to investigate how it works for different sensors and datasets. In principle, it should be
useful, as we could expect sensors in the same area to produce similar measurements, and
that these evolve similarly over time, but caution should be exercised because when there
is no consensus, it is very difficult to know which sensor (or group of sensors) is wrong.

Taking a look at data from Ports of Spain, the Dique Exento Norte and Dique Exento
Sur weather stations are 1.12 km away and are of the same type. The experimentation
consisted of taking 1 week of data and 1 day of data for two rounds of experiments,
selecting the starting time randomly (but always using the same dates for both rounds).

As mentioned before, dataset distribution is important and, in this case, taking 1 week
of data randomly showed that the data were not following a normal distribution (Shapiro–
Wilk tests gave a p-value < 2.2 × 10−16 for Dique Exento Norte and p-value = 5.371 × 10−15

for Dique Exento Sur, and Q-Q plots showed a clear light tail). For the 1-day data, in some
cases the tests determined that the data were following a normal distribution.

In order to determine similarity, three correlation tests were used: Pearson [32] (even
if the data was not following a normal distribution), Kendall [43] and Spearman [44]. In all
cases, the results were that there were no linear correlations between the datasets (all the
indexes were close to 0), as also can be seen in one of the diagrams generated (see Figure 5a).
In this case, the Pearson correlation index was −0.1081096, Kendall’s tau gave a value of
−0.08060731, and Spearman rho was −0.1227435.
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In the case of temperature, the experiments showed that, although the normality of
the data was not true at all, the correlation tests could be used to determine that the data
had a strong linear correlation (see Figure 5b,c). A few sensors from the Smart Santander
infrastructure were selected, guaranteeing that they were located in the same area and
were separated by around 30 m from each other. With 1 week of data, the Pearson, Kendall
and Spearman tests provided values close to 1, showing a positive linear correlation.

Because guides on the correlation tests indicated that Pearson might be sensitive to
outliers in the data, we took advantage of the benchmarking datasets provided by ref. [2],
performing the same analysis of datasets in which one of the sensors had some errors
injected. The same experiment was performed with each type of error, obtaining the results
shown in Table 1; hence, it is possible to compare the indexes in a situation without error
and with different errors.

Table 1. Table comparing the outcomes of correlation tests facing different failures in the dataset.

Type of Failure/Test Pearson Kendall Spearman

No error 0.916444 0.8414264 0.9399103
Malfunction 0.816932 0.752025 0.8621708

Bias 0.5387241 0.6189237 0.6764626
Drift 0.3560831 0.7168082 0.8339586

Comparing the concrete results of one of the experiments, it was possible to see that all
the correlation tests were quite robust when there was a malfunction error (a few random
values with some small peaks). In the case of bias errors (constant value breaking the conti-
nuity of the measurements for a short period), all reduced the linear correlation strength,
although the results may still have been interpreted as having good correlations, especially
when looking at the Kendall tau and Spearman rho (Pearsons’ index behaved worse).
However, the largest difference was when there was a drift error (outliers with peaks and
several dispersed values during a short period of time); in such cases, Kendall tau and
Spearman rho showed that a linear correlation was there, but the Pearson index decreased
significantly and was closer to 0, indicating that there was no correlation. Therefore, if we
expect to find outliers and errors in the data, Pearson may not be the best choice.

When analyzing data for a single day, again, linear correlation is important under
normal conditions but, depending on the number of errors injected and their duration,
the results may be worse for any kind of error. With a large number of measurements,
the errors were diluted somewhat more by the rest of the data but, as the number of
measurements decreases, any error has a larger impact.

Finally, another experiment with atmospheric pressure showed that the scale used
was not so relevant and that some events were correlated even over large distances
(see Figure 5d). The experiment used data from Ports of Spain, from the buoy in Puerta
Carnero and the buoy in Golfo de Cádiz (more than 100 km away). This time, we tried
with 1 month of data, selecting starting dates randomly again, for 10 groups of data. Again,
the data seemed not to be following a normal distribution (although for the case of Golfo
de Cádiz buoy, it was close to normal).

The Pearson, Kendall and Spearman tests determined that there was a strong linear
correlation, although it was interesting to see that, this time, the consensus was not so high.
In the case shown in the figure, the Pearson index was 0.9276692 and Spearman rho was
0.9108291, while Kendall tau was 0.7908868. Comparing the graphs with those obtained
for temperature, in this case, Pearson and Spearman seemed to be a bit overestimated.

When we performed the same experiment with 2 days of data (measurements are
taken hourly, so the time series for 1 day is rather short), the results were very similar. Again,
the data did not follow a normal distribution (although in some cases they almost followed
such a distribution, according to the tests and the Q-Q plots), and there was a strong linear
correlation between both sensors. In the example shown in Figure 6, the Pearson index
was 0.9864971 and Spearman rho was 0.9791508, while Kendall tau was 0.9220732. The
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consensus among the three tests was even stronger than before, showing again that the
Pearson index is not affected that much by the use of non-normally distributed datasets.
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Therefore, it seems that for the analysis of similarity and consensus between sensors,
the time windows and scales used were not so relevant. It was more relevant to take into
account the type of sensor we used. Although the location is also important, unless it alters
the sensor in particular, some correlation should still be there.

4.6. Proposal for a Decision-Making Procedure

Considering the analysis performed, and as a summary, we defined a few decision
processes in order to select the most appropriate way to proceed with the collected sensor
data during the data understanding phase; these processes were designed to be generic
enough to be applicable to many kinds of sensors.

The basis for defining such processes was related to existing methodologies defined
for data mining and related activities. This work took into account the cross-industry
standard process for data mining (CRISP-DM) methodology [45] and the proposed exten-
sion described in ref. [46], which is more focused on engineering domains (where IoT is
very relevant).

Data understanding and data preparation are the main phases in which this work
was focused, so scientists and practitioners will know how to deal with the data. The data
understanding phase was where the first analysis of the data was carried out, in order to
understand the knowledge, the content, the initial hypotheses and the potential quality
problems that may arise. Data preparation instead deals with tasks such as data cleaning.
Thanks to the analysis performed in this work, it was possible to perform an initial analysis
of the data with a deeper knowledge of IoT while also supporting the definition of a good
approach for the implementation of data cleaning tasks (i.e., outlier detection).

In general, it is important to always start by selecting the appropriate time window,
depending on the problem we are dealing with. If we want to analyze what happened in
the data we stored (to be used in machine learning-based solutions), a good option would
be to analyze the data as a whole and then to select samples of different lengths, so it is
possible to analyze the behavior of the sensor in different contexts. In the case of outliers
and data streams, it is interesting to use sliding windows, so that there is constant analysis
of the data. The longitude of the sliding window is not usually long because data used in
real-time is usually related to quick decision-making (as in SCADA systems).

First, the process of variation analysis (Figure 7a) is focused on understanding how
the data is spread and could help to understand if data is being created randomly or if
there is a bias error. It is important to see if the coefficient of variation is applicable (only to
those units with absolute zero, such as lux or Kelvin) and to know the data distribution
so that we will apply the right variance formulas. We can use Q-Q plots, Shapiro–Wilk
and Anderson–Darling tests to check the normality, but it is necessary to fit the data to
other distributions and to analyze the goodness of fit for them [47]. At this stage, we
checked gamma, Weibull, normal, uniform and lognormal distributions, as they were the
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ones detected in previous experiments with other sensors. The runs test was applied to
determine if the data seemed to be random and IQR also could provide an idea of the
variance of the data.

The process for analyzing outliers (Figure 7b) is focused on the detection of unexpected
peaks in the data, addressing drift and malfunction errors. First, we must determine if
there is a strong trend in the data and eliminate it (through a transformation), so the chance
of detecting outliers correctly increases. Periodicity of the data may also be problematic
(although the solution is more focused on short datasets), so a polynomial regression
might be necessary. Then, it is important that we know if the data follows a normal
distribution, so parametric (SNHT, Grubbs, Buishand range and Buishand U) and/or
non-parametric tests (Pettitt and Lanzante) will be applied, although SNHT and Grubbs
(as well as ESD) also can give good results in most cases. Looking at the results of all the
tests, it is possible to compare the results and decide whether to accept the existence of
outliers or not. Additionally, depending on the type of sensor, it might be necessary to
perform a manual check because some sensors may generate misleading results in the tests
(e.g., salinity and indoor luminosity).
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Figure 7. Processes for analyzing data from sensors: (a) Process to analyze variation of data; (b) Process for analyzing the
presence of outliers in the data.

Finally, the analysis of correlation (Figure 8) is interesting to understand if we can
analyze several sensors together, performing data fusion or checking malfunctions based
on consensus solutions. When applying sensor equivalence, it is important to understand
that it is not applicable for some sensors and that, once we decide it can be applied, we
should select the appropriate test depending on the data distribution and on the existence of
outliers (since Pearson seems to lose much of its efficiency when they are present). Because
the process is for identifying the relationship, in case of doubt, it is better to execute the
whole process.
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These procedures have been implemented as R scripts (one script per process) that
read the data in CSV format and apply different statistical tests (using the libraries nortest,
trend, outliers, EnvStats, fitdistrplus and randtests), storing the results in a file and saving
graphs from the selected data and the statistics (when possible). Since nowadays almost
any device has multiple cores, the code was implemented in such a way that it can be
executed by parallelizing the calculations in different cores, through the %dopar% feature
(from the foreach and doParallel libraries). Taking into account the increasing number of
sensors and data available, as well as the computational capabilities of new systems and
devices, it is important to understand whether it is possible to reduce execution times,
thus facilitating the inclusion of more complex pre-processing features, especially for edge
devices (allowing them to apply some data cleansing and filtering before sending data to
complex analytical tasks).

The implementation selects several main indexes in a random way, as the point to
start extracting data samples. Then, from those indexes, it generates a sliding window
with the number of steps selected, having as a result a nested iteration that analyzes all the
window steps as if they were “screenshots” of the sensor data (in the same way a complex
event processing engine would do). The parallelization has been applied to the outer
iteration, so each core analyzes all of the complete sliding window of a main index. This
allows the CPUs to take advantage of their cache memory, while giving each core enough
computational complexity to benefit from the parallelization (otherwise, the overhead for
managing parallelization would be too high compared to the calculation time). Spreading
each “screenshot” of each sliding window among the different cores might require that
the CPUs access the main memory many times because the data is not already stored in
their L1 or L2 caches, whereas handling the process in the same core takes advantage of
the existence of all the data values already loaded into cache memory, except one.
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4.7. Evaluation Applying the Processes

To validate the proposed solution, we used the data from air quality sensors in order
to check the variation of the data, if outlier detection worked normally, and if there were
any correlation between sensors. The experiment consisted of the selection of two of the
devices (which are located in the center of the city, at a distance of 750 m) and the analysis
of the NO2 sensor (Figure 9 shows the measures), which is a type of metric not studied
before. Long and short windows of data, as well as sliding windows, were used in order to
analyze the data. While the size of the long windows covered 6% (10 h) of the total amount
of data, the size of the short windows covered only 1% (75 min of data).
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Figure 9. Datasets used for analysis with NO2 measurements: (a) Sensor 1 measurements; (b) Sensor 2 measurements.

4.7.1. Variation Analysis Process

For the study of variation, the two datasets were studied independently, running
the script three times for each. This experiment generated, for each sensor, 12 long data
windows (sliding the window 50 positions) and 20 short data windows (sliding the window
15 positions), with a total of 2700 results.

In the case of the first sensor, for long windows, none of the tests confirmed a normal
distribution, although when fitting the data to a known distribution, the normal was the
one chosen in most cases (794), followed by the lognormal (468) and gamma (334). There
were many data chunks also reporting gamma and Weibull as the best distributions, but
none of them selected the uniform one. When using short windows, a few tests confirmed
the existence of a normal distribution. For the rest, the one most selected was gamma,
followed by lognormal (246 and 216, respectively).

The analysis of the second sensor, with long windows, reported that the data were
never following a normal distribution according to the statistical tests, and when fitting
with other distributions, the gamma distribution was the one that yielded the best results,
followed by Weibull (985 vs. 321 times). The lognormal and normal distributions were
also the best fit in several cases, but the uniform distribution was never selected. In the
case of short windows, some tests confirmed a normal distribution, and the distribution fit
selected the normal as the best one, followed by the lognormal (298 vs. 213), Weibull (177)
and gamma (172) distributions.

Because the concentration of NO2 is measured in µg/m3, we considered that it has
an absolute zero. Therefore, the coefficient of variation (CV) was also calculated. For the
first sensor, the CV ranged from 0.27 to 0.77 in long windows and from 0.20 to 1.07 in short
windows (although around 2/3 of the values were below 0.50). The CV mean was 0.49 for
long windows and 0.44 for the short ones, while the median was 0.48 and 0.38, respectively.
For the second sensor, values ranged from 0.31 to 0.73 in long windows, although high
values were unusual, and most experiments reported coefficients of variation between
0.50 and 0.35, with a mean of 0.45 and a median of 0.40. In the case of short windows, CV
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went from 0.19 to 1.32 (in a few cases with extreme variation), with a mean of 0.42 and
a median of 0.35.

With respect to the IQR value, in the first sensor it ranged from 9.49 to 36 for long
windows, and from 5.86 to 45.34 for short windows (with 2/3 of the cases below 20). Mean
IQR was 18.96 for long windows and 17.09 in short ones, while the medians were 17.28 and
17.09, respectively. In the case of the second sensor, it ranged from 7.96 to 46.24, although
such extreme values were very unusual, with most IQRs between 15 and 25, a mean of
19.87 and a median of 18.19. For short windows, IQR went from 5.09 to 42.99 (with just a
few cases above 25.0), with a mean of 14.54 and a median of 12.94.

In general, we can say the variation was a bit high. The calculated CVs were in line
with the CV for an outdoor luminosity sensor with some outliers (around 0.42). In the
case of IQR, the calculated values were higher than in sensors for temperature, and much
higher than those for salinity (where IQRs reported just 0.1 in 4 days of data). Moreover,
thanks to this process, we learned that the data do not really follow a normal distribution
and gamma is preferred in most cases for window lengths applicable to real-time analysis.

4.7.2. Outlier Analysis Process

For outlier analysis, the process used 10 long data windows (sliding 30 positions) and
15 short windows (sliding 15 positions), and it was executed twice. For the first sensor, with
long windows, Grubbs reported the existence of outliers in all the data chunks (including
the sliding windows), except in one case, in which the homogeneity tests reported the
potential existence of change in the level of the time series. Looking at the graphs, it is true
that there were many outliers spread in the time series. With short windows, only 1/3 of
the cases reported no outliers. The Grubbs test was, again, the one that reported most of
the outliers (275 out of 327), going from very clear ones (with p-value 1.07 × 10−12) to some
near the limit of the test (with p-value 0.0489). In cases marked by doubts, the use of sliding
windows supported the detection of some outliers (because they became more evident).
The process was quite accurate with outlier detection, failing only four times (compared to
visual checks). Therefore, its accuracy was calculated as 0.9 and its F1-score was 0.77.

Analyzing the second sensor with long windows, just a few cases were free of outliers
(17 out of 600). In most of the cases (570) the Grubbs test (with its p-value ranging from
0 to 0.0491) detected the outliers correctly because there were many of them. In only one of
the cases (including with sliding windows), homogeneity tests detected the main problem
(which looked like a drift error in the data). When using short windows, only 80 out
of 450 cases reported no outliers in the data. Grubbs, again, performed as the main test
detecting outliers (in 312 cases), with p-values ranging from 9.06 × 10−12 to 0.048 (for the
detected outliers), and reported very few false positives (compared to test results with
visual inspection). The homogeneity tests reported some false positives as well. In general,
the sliding windows worked fine, with values varying as expected for the detection, and
only failed in four cases. In this case, the accuracy was 0.9 and F1-score was 0.77 (although
precision and recall differed from the first case).

The conclusion of the outliers analysis was that these datasets contain many of them,
especially individual peaks that sometimes were quite evidently errors (e.g., negative values
such as −66.3), while in other cases it was not so clear, and perhaps automatically removing
them would not be a good approach. In any case, the datasets required a careful cleaning.

Because the datasets did not contain drift errors, Grubbs was the most useful approach,
and the homogeneity tests provided a few false positives. Therefore, it would be interesting
to check if the results would improve using weights or a fuzzy model with the test outcomes,
in order to give more importance to some of the concrete ones, while perhaps the use of
polynomial regression, instead of the R ‘diff’ function, could also provide better results
when transforming the data. This last modification is important if the selected window
size includes some periodicity in the dataset, as it could mask outliers. Another aspect
to analyze would be an implementation of the recursive extreme studentized deviate test
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(R-ESD) [48], which claims to outperform the seasonal hybrid extreme studentized deviate
(SH-ESD) [49] test from Twitter.

4.7.3. Correlation Analysis Process

When analyzing correlations, the implemented process used 12 long data windows
sliding the window 50 positions and 15 short data windows with sliding windows of
15 steps, and it was executed three times (for a total of 1800 experiments).

The correlation tests with long windows reported that 1072 experiments detected
correlations, while 728 did not. Moreover, while the maximum value of the Spearman
test was 0.8819, the maximum value of the Kendall test was only 0.6898. The minimum
values were 0.046 and 0.0321, respectively. It is interesting to highlight that in 494 out of
1800 cases, the Spearman rho was higher than 0.75, whereas, in the case of Kendall, in
632 cases the tau statistic was higher than 0.50. When calculating with the full datasets,
Spearman’s rho was 0.659, while Kendall’s tau was 0.4764. Pearson was never computed
because no normal distributions were detected.

In the case of short windows, the results were even worse. Out of 675 cases, 594 reported
that there was no correlation (so only 81 cases detected correlation). The minimum values
of the statistics were −0.371 for Spearman rho and −0.2627 for Kendall tau. In these
experiments, only 15 cases provided a Spearman rho higher than 0.75 and a Kendall tau
higher than 0.5. Pearson was computed only a few times (because of the small number of
cases following a normal distribution). Nonetheless, due to the large number of outliers
detected before, it was ignored (although it did not show relevant differences with the
Kendall’s and Spearman’s tests).

This analysis showed that the correlations were very weak (because values were not so
close to 1), or even nonexistent in some parts of the data. In the short datasets (1 h of data),
there was no correlation in most of the cases. Even if there were many outliers (similarly
to the malfunction error), in the case of a good correlation, Spearman and Kendall values
should not be so low (as we saw in Table 1). It makes sense because of the type of sensor,
how pollution is accumulated in certain areas and how it moves (hence, there might be
some delay in the correlation, being more effective to use longer windows), so we have
to be very careful if we want to use solutions based on correlation when dealing with the
data, as they might not be adequate.

4.7.4. Performance Analysis

Because the R scripts were implemented with parallelization taken into account, it
was important to also analyze the results related to performance and determine if such
parallelization made sense in this kind of problem, following the guidelines described in
ref. [50].

The scripts were executed on a laptop equipped with an Intel® Core i5-8350U vPro
processor (four physical cores at 1.70 GHz and 3.60 GHz in turbo mode, 6 MB smart cache
and a bus speed of 4 GT/s) and 8 GB DDR4 2400 MHz RAM. The software used was a
Windows 10 Enterprise (compilation 19041.1052) operating system with R version 3.6.2.

For the analysis, the three implemented scripts were executed 10 times independently,
using as input the same datasets with air quality data that were utilized before. The mea-
surements were taken with the “system.time” function (we used the elapsed time property),
that covered the entire code, except the initial load of the CSV file with the full dataset
(because in a real-time system, such information might be available through streams).

As we can see, the use of a high number of cores was not always synonymous with
better performance (see Table 2 and Figure 10). Because there were only four physical cores
(and eight virtual threads), the operating system and the application became saturated.
The maximum configuration was with seven cores, because selecting eight could seriously
affect all performance of the system. Still, when using six or seven cores, there were some
issues, with the system failing, the R engine going down, and even the system reporting
issues with memory allocation.
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Table 2. Results of the performance analysis for the R parallelized scripts.

R Script Results Serial 2
Cores

3
Cores

4
Cores

5
Cores

6
Cores

7
Cores

Variation
Process

Mean 94.72 48.42 34.37 27.73 34.77 23.58 31.99
Best 57.48 45.23 24.05 21.39 29.52 21.08 26.87

Worst 138.88 52.53 38.32 34.12 47.17 26.13 34.84
C. of Variation 0.28 0.04 0.13 0.15 0.12 0.06 0.06

Outlier
Process

Mean 471.42 247.58 212.99 208.1 154.95 160.91 186.21
Best 432.64 235.89 199.65 178.57 143.91 144.05 169.06

Worst 535.75 255.68 218.5 230.13 159.91 178.54 202.19
C. of Variation 0.08 0.02 0.02 0.09 0.03 0.06 0.04

Correlation
Process

Mean 4.36 2.82 2.47 2.45 2.63 2.75 2.83
Best 4.09 2.68 2.36 2.39 2.55 2.53 2.77

Worst 4.69 3.25 2.89 2.53 2.75 2.97 2.92
C. of Variation 0.05 0.07 0.05 0.01 0.01 0.04 0.01
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The graphs in Figure 10 illustrate the scalability obtained with the three scripts. While
the graphs at the left show the speedup compared to the linear ideal situation and the
serial overhead ideal (determined by Amdahl’s equation [51]), the graphs at right show the
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execution time, also comparing the real result with the linear ideal scalability and the serial
overhead ideal (again, based on Amdahl’s equation, using as the base the serial execution
time). The linear ideal assumes that all the code would be running perfectly in parallel in
all the cores (1/number of cores). On the other hand, Amdahl’s equation differentiates
between the code that cannot run in parallel (serial code) and the estimated parallel code,
providing a more realistic ideal boundary. This analysis used the same dataset for all
the runs, so we fulfilled the requirement to use Amdahl’s equation (2), where pctPar was
the estimated percentage of parallel code and p the number of threads/cores used. The
percentage of parallel code was estimated by measuring the serial and parallel parts of
the code in 10 executions of the non-parallelized version of the scripts and calculating an
average among those 10 executions.

Speedup =
1

(1 − pctPar) + pctPar
p

, (2)

It is interesting to see that all the cases improved very well using two cores, and using
three still yielded very good results in scalability. Then, only the variation script kept
scaling well with four cores. With more than four cores, in most of the cases, the scalability
declined (even worse than with fewer cores), as mentioned before. Testing with CPUs
providing more cores would clarify if having more physical cores available still facilitates
better scalability, or if there is some limit imposed by the code itself.

It is also worth mentioning the case of the correlation script, where around 71% of the
code was estimated to be parallel (compared to the 99% in the outlier script and the 93%
in the variation script). It was much more limited in the scalability it could reach because
of that 29% of serial code. Therefore, it did not make sense to use more than three cores,
unless the complexity of the calculations was increased (using four or more cores took
more time to execute).

In any case, applying parallelization improves the execution time of the scripts. This
is very relevant, especially for real-time environments, in which a faster response allows
one to apply more complex calculations for data filtering and failure detection, adding
more functionality at edge devices (so that data can be cleaned in early stages and some
mitigation actions can be applied faster in cases of failure, such as in autonomous vehicles),
although other offline systems (such as Cloud and HPC environments) can also reduce
execution times drastically, making more efficient use of resources.

Finally, as Figure 10a,b shown, the variation script provided real measurements that
were somewhat better than the boundary defined by Amdahl’s law. Even if the difference
was very low (only 0.1), this may happen because the parallel execution of the foreach
iterations does not print on-screen some of the information that the serial version does.
Additionally, this is not unusual because memory and hard drive caching mechanisms
sometimes may improve the measurements taken.

5. Discussion and Conclusions

This work analyzed different aspects of data generated by sensors that may impact the
efficiency of applying certain solutions for data processing. As mentioned previously, some
ML-based solutions (parametric classifiers) simplify the data processing, while adding
certain assumptions (such as the distribution of the data). Further, as the presence of outliers
may be misleading for the solutions, the proposed processes are useful to understand the
data from sensors.

Both researchers who are developing models and dealing with data (e.g., complex
solutions for repairing errors in the data, such as anomalies and missing values) and
practitioners who want to process data to solve a concrete problem can benefit from this
solution because it may save time and allow them to omit the application of certain methods
in the early stages of the data preparation phase or determine which transformations to
apply to their data as quickly as possible.
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5.1. Particularities of Sensor Data

The type of natural element or property measured, the context of sensors, the measure-
ment units and the time window used all affect the data generated and the basic statistical
features that are widely used (e.g., mean, variance). This is not new at all, but we wanted
to see the particularities of different sensors, as it would be easier to understand the results
obtained from some analyses (such as the outliers, as some “false positives” may not be
wrong at all). Looking at the datasets, it was evident that providing generic solutions
would be quite difficult, as a solution that may work for temperature would fail with water
salinity.

Using unit-less solutions, such as the coefficient of variation, is useful but they are not
applicable in all cases (because of the lack of absolute zero or because the application of the
typical statistics requires complex processing). IQR is also interesting because it may avoid
the effects introduced by outliers, although it is not unit-less. There might be an interesting
area of research applying these types of solutions instead of variance or standard deviation,
to certain parametric models (both statistical methods and ML methods).

A key aspect is the analysis of the probability distribution of the data. Although
many works using large datasets with average values (using yearly or monthly means)
reported (or assumed) that the data followed a normal distribution (e.g., in the case of
temperature [7]), the observations show that raw data, in many cases, does not follow
normal distributions and, therefore, the assumptions of some models and solutions would
not be right.

The selected time windows also have an impact on the distribution of the data. One of
our observations was that, even using the same time window, different samples taken from
the same dataset also followed different distributions. Therefore, the methods selected
to apply may appear to be suitable for part of the data, but not for all of the samples
we may select. We have highlighted how several sensors follow certain distributions
(lognormal, Weibull and gamma were the ones selected most of the time, aside from the
normal distribution). Because of so much variation, the use of non-parametric solutions is
recommended unless the selected distribution is the one fitting in a high percentage of cases
(only in one experiment did we observe a distribution as the one selected in more than
50% of the samples, and that was the gamma distribution). Still, in the cases in which the
distribution appears close to normal (although statistical tests provide a negative answer,
Q-Q plots and histograms provide good support in this case), the tools and methods to
apply might still be valid (although perhaps they will not provide the best accuracy).
In cases where applicable, another option that could be explored would be to propose
solutions that adapt themselves as the distribution changes.

In some cases, it is hard to find complete information about this kind of characteristic
of the data when looking at the statistical and ML-based solutions listed in Section 2 (the
surveys in [6] and [14] mention potential issues with semi-supervised learning techniques,
but do not mention the distributions we may find), so it is not so clear that they are given
enough importance (such as in refs. [21,22,52], to name a few). In some cases, authors
apply some previous transformation to the data that may solve the problem, but we do
not know about the original conditions of the data, as in ref. [24]. Additionally, removing
trends and seasonality is also shown as a solution [48], but we could still obtain datasets
with non-normal distributions (such as a uniform distribution). Therefore, we consider this
work useful because it is important for data scientists using sensors to address this aspect
as soon as possible in their work, identifying appropriate strategies early in the process
(the work in ref. [53] notes some issues when using non-normal datasets with ANNs and
data distribution that should be taken into account when normalizing the input values for
the models).

Another aspect addressed is the detection of outliers and their role in other character-
istics of the data. As mentioned in Section 4.3, outliers may affect the data distribution by
adding extreme values that can modify the original distribution. Therefore, we believe that
a good way to proceed when preparing data would be to analyze the data distribution first
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(to understand if the application of certain methods for managing outliers might not be
appropriate), then detect outliers (cleaning those that are real errors) and analyze the data
distribution again as the last step.

In the case of outlier detection, as we sought to perform preliminary data processing,
we proposed using certain statistical tests that can give a good idea regarding their presence
(requiring transformation of the data in cases where trends and seasonality are present).
Although there are other solutions that might be more appropriate in each case (e.g., ML-
based solutions [22–24] can be more accurate in the concrete context they were designed for,
but they can be affected by imbalanced datasets and require re-training and more analysis
for new contexts), the statistical tests seemed to work fine, in general, in all the datasets we
used, and more complex models can be applied later.

We observed that solutions such as Dixon’s Q were not adequate because of the
potential issues with equal values. On the other hand, Grubbs and ESD worked fine
when detecting small peaks. When multiple wrong values were together (drift failures),
homogeneity tests demonstrated better performance (whereas Grubbs and ESD were
missing outliers). Therefore, we applied a combination of both to detect most of these
failures, instead of using only one, as proposed in previous works.

In fact, in the case of homogeneity tests, it was interesting to observe the presence
of peaks in the position of the outliers when we generated a plot with the calculated
statistics (SNHT T, Buishand R and U, Pettitt U and Lanzante U). Even in cases in which
they provided a different position for the outlier, the peak was in the same location in the
plot, although other values, in the end, set the reference value for the statistic. Although
it did not happen in all cases, in those in which the peaks appeared, it would be possible
to improve the accuracy of the result, detecting such patterns and complementing the
information provided by the tests. This would be a new approach to outlier detection.

The last aspect addressed is related to correlation, a method used in several solutions
for anomaly detection that exploits the comparison with other equivalent sensors [15]. As
we have seen, correlation needs to be analyzed case by case because it is not applicable to
all types of sensors (so cannot be generalized). While in some cases it will work even for
sensors separated by kilometers (such as those monitoring atmospheric pressure), others
do not show correlation even when they are close (such as with air quality and wind speed).

Due to the robustness shown with outliers, Spearman is the best solution to apply
(despite the potential issues mentioned by ref. [15]), but it is always interesting to also
have Kendall and Pearson to compare results. Although they can be useful for comparing
sensors, we must be aware that using Pearson when drift errors are present may cause the
solution to fail. This may affect some solutions focused on principal component analysis
(PCA) techniques.

Correlation also can be used when comparing sensors of different types, when we
think they are related, in such a way that we can better understand the context of each
sensor. This needs to be analyzed case by case as well because not all types of sensors are
correlated in every environment. Although we did not include this aspect in the processes
we defined, it would be possible to include some correlation analysis for datasets with
multiple sensors (all vs. all), in order to indicate which relationships should be analyzed
more carefully.

5.2. Proposed Processes and Their Implementation

This article proposed following three processes to gain insights into sensor data before
applying cleansing mechanisms or using the data. These processes addressed data variation
(including data distribution), outliers in the data and correlation between similar sensors.
Such processes can be seen as a way to specify and implement certain steps that are part
of the CRISP-DM methodology. They fit very well with the data understanding phase,
and our implementation can automate part of it, reducing the time spent by data scientists
working with sensor data, thus enabling them to focus on their models.
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The analysis of a new type of sensor (for air quality) showed that these processes can
work for new cases, and they provide very relevant information, although some improve-
ments could be explored, for example, by studying more distributions and applying other
transformations to the data (such as polynomial regression or Fourier transforms for the
seasonality of data). Therefore, although we cannot generalize to all kinds of domains, we
can claim that our proposed approach is valid in sectors such as home automation, environ-
mental monitoring, agriculture and smart cities. We understand that some domains, such
as industrial environments, may have specific characteristics; therefore, we will continue to
analyze more types of sensors from more domains.

The best way to implement the processes was through R script because of the strong
support for the statistical methods available in this language (as multiple libraries are
available). It would be interesting to compare implementations with other languages
such as Python (also with good support for data processing), in order to analyze their
performance and potential integration with other existing solutions.

Additionally, a parallel implementation of the processes was proposed to improve
the performance of the solution. As more and more devices become available, more data
streams will be available, and the computational resource requirements will be higher.
Exploiting parallel processing is a step towards higher efficiency in the use of resources,
already available in edge devices, as well as Cloud and high performance computing (HPC)
environments. Although other works focused only on the solution itself, we considered
this to be an important point to address for enabling new capabilities.

As a way to facilitate data processing in Cloud environments, for example, it would be
possible to exploit multiple cores available in edge devices in order to perform a real-time
preliminary analysis of data, annotating the data that arrives to the processing environment
and facilitating complex data analysis. It could even raise alerts under certain circumstances
(e.g., when detecting a large number of outliers).

The parallelization strategy was based on the iterations performed when a sample
was selected (one core assigned to each sample). Each core calculated all the statistics for
sliding windows belonging to the same sample (not parallelized), taking advantage of
memory caching mechanisms. Otherwise, sending sliding windows to different processors
would result in more calls to main memory, as pages in cache would fail.

The parallel implementation showed its utility, especially when using up to three
cores, and it is a topic to explore for more solutions. The code was not scaling as well as it
could, but this might have been due to the machine and operating system we used. We
believe that the performance and scalability could improve with a Linux-based system,
and it would be deployable in multiple environments.

5.3. Research Limitations

This research is subject to several limitations. The first one is related to the general-
ization of the results to other domains beyond smart cities, environmental monitoring,
home automation or agriculture. We did not have access to datasets from domains such
as manufacturing or personalized medicine, in which sensors are also widely used today.
Therefore, we will look for open datasets and industrial partners that will be able to share
a few datasets that could improve our study.

On the other hand, the study of the effect of parallelization in edge devices requires
access to certain hardware in order to be totally accurate with respect to the results. Even if
the results obtained are questionable, access to specific devices, such as the BullSequana
Edge (https://atos.net/en/solutions/bullsequana-edge, accessed on 29 August 2021),
would show the potential of applying parallelization when processing sensor data.

5.4. Conclusions

The processing of sensor data is not easy, and we have seen that it requires some
preliminary analysis. The solution we propose can facilitate understanding of the data,
in line with widely applied methodologies such as CRISP-DM. Its added value is in the

https://atos.net/en/solutions/bullsequana-edge
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combination of several techniques based on statistics that provide valuable and crucial
information about the data in early stages (even proposing a new way to interpret the out-
comes from certain homogeneity tests), in a fast and efficient way (thanks to parallelization),
and applicable to several domains without the need to (re-)train models.

Still there is room for improvement. The data from more sensor types will be analyzed
to investigate the behavior of as many sensors as possible. Other aspects will be explored,
including more data distributions and different transformations of the data, as well as new
ways to improve and complement the detection of outliers.

Additionally, a deep analysis of the different properties of the data could be used to
propose a mechanism that is able to perform sensor profiling, classifying and identifying
them automatically.

Finally, we will continue exploring the parallelization of implementations, as it will
gain more relevance in the near future and might be especially relevant if devices such as
massively parallel processor arrays (MPPAs) become part of the mainstream environment,
because they allow for much more parallelization at the core level.
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