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Abstract: Recent emerging automotive sensors and innovative technologies in Advanced Driver
Assistance Systems (ADAS) increase the safety of driving a vehicle on the road. ADAS enhance
road safety by providing early warning signals for drivers and controlling a vehicle accordingly
to mitigate a collision. A Rear Cross Traffic (RCT) detection system is an important application of
ADAS. Rear-end crashes are a frequently occurring type of collision, and approximately 29.7% of
all crashes are rear-ended collisions. The RCT detection system detects obstacles at the rear while
the car is backing up. In this paper, a robust sensor fused RCT detection system is proposed. By
combining the information from two radars and a wide-angle camera, the locations of the target
objects are identified using the proposed sensor fused algorithm. Then, the transferred Convolution
Neural Network (CNN) model is used to classify the object type. The experiments show that the
proposed sensor fused RCT detection system reduced the processing time 15.34 times faster than the
camera-only system. The proposed system has achieved 96.42% accuracy. The experimental results
demonstrate that the proposed sensor fused system has robust object detection accuracy and fast
processing time, which is vital for deploying the ADAS system.

Keywords: ADAS; object detection; Convolution Neural Network; sensor fusion; rear cross traffic;
radar; camera

1. Introduction

Most traffic accidents occurred due to human error. Rear-end crashes are a frequently
occurring type of collision, and approximately 29.7% of all crashes are rear-ended colli-
sions [1]. Recent emerging automotive sensors and innovative technologies in computer
vision enhance car and road safety. Advanced Driver Assistance Systems (ADAS) are
intelligent systems that help drivers to avoid collisions and increase driving safety, such
as Automated Emergency Braking (AEB), Blind Spot Detection (BSD), Lane Departure
Warning (LDW), etc. ADAS are proven to reduce road fatalities by detecting obstacles in
advance, generating warning signals for drivers, and controlling a vehicle accordingly.

A Rear-Cross Traffic (RCT) detection system is one of the ADAS applications, activated
when a driver drives a vehicle backward. The RCT detection system warns the driver when
obstacles are detected near the backing path. It is a challenging task because obstacles are
approaching fast from the sides, which requires the system to react appropriately in a short
time. The RCT detection system detects objects in blind spots or locations where obstacles
are hard to be viewed through mirrors.

Currently, many commercial RCT detection systems are implemented using radar
sensors. However, in many ADAS applications, using a single sensor is not enough
for system accuracy. A radar sensor can detect object speed and range accurately and
works under adverse weather conditions. However, the radar sensor often has too much
noise and low resolution. Furthermore, a radar sensor is not able to classify the object
types. On the other hand, the camera sensor has the advantages of low cost and high
resolution. However, the camera sensor is susceptible to illumination changes. Therefore,

Sensors 2021, 21, 6055. https://doi.org/10.3390/s21186055 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8405-066X
https://doi.org/10.3390/s21186055
https://doi.org/10.3390/s21186055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21186055
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21186055?type=check_update&version=3


Sensors 2021, 21, 6055 2 of 16

the performance of an object detection system based on a camera sensor degrades easily
under poor illumination conditions caused by sun glares or low illumination on rainy or
foggy days [2]. Thus, an integration of an automotive radar sensor with a camera sensor is
considered an efficient approach for an on-road obstacle detection system. Furthermore,
since radar and camera sensors complement each other, combined information from two
sensors can improve ADAS applications’ performance. In addition, horizontal field-of-view
(FOV) is very important in the RCT detection scenario, and the system can achieve the
wider FOV by combining more than two sensors. Normally, the camera sensor’s horizontal
FOV is generally narrower than a radar sensor’s detection range. Therefore, by fusing the
information from camera and radar sensors, the RCT detection system’s detection range is
expanded, and the system accuracy can be improved.

Nowadays, many vehicles are equipped with a rearview camera, and it has also
become a trend to mount short-range radars on the rear bumper for object detection
in blind spots. This paper proposes a robust and cost-effective RCT detection system
by fusing information from the rearview camera and short-range radars. The overall
architecture of the proposed RCT detection system is presented in Figure 1. First, the
proposed system combines signals from two radars mounted on the left and right sides
on the rear bumper. Then, these combined radar signals are fused with the information
from the camera sensor to detect the rear-end obstacles. Radar signals are transformed
into an image coordinate system to fuse the information from the different sensors. Then,
the proposed Region of Interest (ROI) extraction algorithm identifies target ROIs. Several
Convolutional Neural Network (CNN) models are implemented using transfer learning
technology to classify the object type. The identified ROIs in the camera image are fed
into the transferred CNN model to classify the object type. Simultaneously, radar sensors
provide the corresponding distance and speed of the detected object, which is critical
information for collision avoidance.

Figure 1. The overall architecture of the proposed RCT detection system.

In this paper, Section 2 presents a detailed literature review in the field of sensor
fused object detection and the RCT detection system. Next, Section 3 presents a detailed
methodology of the sensor fused RCT detection system. Then, Section 4 discusses the
experimental results. Finally, we conclude the paper in Section 5.
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2. Related Work

In camera-based image perception tasks, deep neural learning methods, especially
CNNs, are popular and powerful techniques. For object detection in the automotive
field, a Single Shot Detector (SSD) [3] has gathered many researchers’ interests due to its
detection accuracy and speed. Meng et al. [4] made modifications to the original SSD
model to improve detection performance, such as an image pyramid architecture for big
objects detection and a strategy of image block method for small objects detection. In
Zhang et al. [5], two additional deconvolutions and pooling layers were added to the
SSD model in the feature pyramid. The proposed model in Zhang et al. [5], DP-SSD, has
enhanced feature extractors that generate small bounding boxes for small objects with
comparable accuracy and speed. Although these studies highlight the power of the camera
and CNNs in object detection, depth information, one of the most important considerations
in an automotive application, is not involved. In Guo et al. [6], through analyzing texture
cues and blur cues from an image, depth information can be obtained. However, the depth
information acquired by using only a camera sensor is not very accurate.

A radar sensor provides amplitudes, range, and velocity information for radar-related
environment perception techniques to find obstacles. Lee et al. [7] proposed a purely
radar-based system for object classification and recognition. A CNN model is utilized to
distinguish objects based on their micro-Doppler signatures generated by the Doppler
radar. However, they did not provide the details about the data they used in their ex-
periments. Lombacher et al. [8] accumulate the radar data over several timestamps to
develop radar grid maps for static object classification. Visentin et al. [9] present a post-
processed range-velocity map fed to the CNN model for object classification, and Kim
et al. [10] complete moving object classification by a series of radar range-velocity maps
and CNN. However, those classification methods based on only radar sensors did not
provide promising results. In addition, most of the experiments were conducted either
in-door or in simulation environments.

Bi et al. [11] presented a method of coordinate conversion between radar and camera
coordinate systems for radar-camera sensor fusion techniques. The radar signals are
projected onto camera images using the proposed method. However, they assumed that
the object type is known for the ROI generation using different widths and heights for
vehicles and pedestrians. Hyun et al. [12] use a vehicle rooftop camera and a radar mounted
on the front bumper to find the target object. However, the ROI information (range, radial
velocity, and angle) is not the bounding box information in the proposed system. The
authors did not provide details on finding the object’s bounding box information as ROI.
Chadwick et al. [13] proposed a method that uses one Doppler radar and two cameras.
Two cameras have different focal lengths. The one with a short focal length is used to
observe wider FOV and the other with a long focal length is responsible for acquiring
distant object information. The fused radar scans with camera images are used for object
detection by a neural network to improve performance. Among those radar-camera sensor
fusion publications, very few strategies are solving vehicle rear-end scenarios. A safe
lane changing method is proposed in Kim et al. [14], based on radar and vision sensor
fusion. They applied a CNN model to the rearview to detect objects. Then, radar signals
are fused with the detections. For target tracking and motion path prediction, a Kalman
filter is applied.

Among these publications, a significant portion is related to the radar-camera sensor
fusion algorithm to detect the objects in front. However, very few strategies are solving
vehicle rear-end-related problems. Huang et al. [15] proposed a stereo vision-based obstacle
detection system focused on reverse gear driving scenarios. In their proposed method,
the obstacles can be detected based on a disparity map with depth information. However,
because the proposed method depends on the depth disparity map, errors can easily
occur in calculations when the disparity map is not obvious. As Takahashi et al. [16]
mentioned in their survey, people often feel nervous when backing out due to the blind
spot at the driver’s side. Since backing out is the most common parking style in North
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America because of the wide parking space and the purpose of loading cargo easily, the
RCT detection system assists drivers when backing from a 90-degree parking spot or a
60-degree parking spot. In a cross-traffic scenario, the object’s motion path is defined as
crossing from one side of the host vehicle to the other side of the host vehicle (perpendicular
to the host vehicle’s moving path). Further, the moving objects usually approach from
the driver’s blind spot. By considering these requirements in the RCT detection system,
expanded FOV for object detection is desirable.

3. The Rear Cross Traffic Detection Methodology

Radar and camera sensors complement each other. A combination of these two sensors
is ideal for building a robust RCT detection system. The radar sensor provides useful
data about the obstacles, such as distance, angle, and velocity signals. That information
is important for the host vehicle to mitigate and avoid any possible collision. However,
radar signals cannot accurately classify the object type because signals are low-resolution
and noisy. On the other hand, the camera sensor classifies object types by using the
deep CNN model. However, the deep CNN-based object detection model requires a high
computational cost to find object locations in an image. The high computational cost makes
it difficult to be deployed on real-time applications. Besides, the system’s performance
based solely on the camera sensor degraded severely with adversary weather conditions
because the camera sensor is sensitive to illumination changes. Because of these reasons,
sensor fusion is clearly the most effective way to improve any ADAS as the data from
different sensors complement each other, making the system robust. This paper proposes a
robust sensor fused RCT detection system by combining the information from two radars
and a wide-angle camera sensor.

3.1. Hardware Set-Up for the RCT Detection System

To build the proposed sensor fused RCT detection system, two Delphi SRR radars
(Aptiv, Troy, MI, USA) and one Spinel camera with a 2.1 mm Sony IMX179 lens (Spinel,
Newport Beach, CA, USA) are selected [17]. The radars are mounted on the rear bumper’s
left and right sides to detect objects behind and on the host vehicle’s sides. The camera is
mounted on the rear license plate, under the lid of the rear windshield, and above the rear
bumper, as shown in Figure 2.

Figure 2. Hardware setup for the RCT detection system.

The radar system consists of two rearward-looking single beam mono-pulse radars
located at each corner of the vehicle to detect objects behind and to the side of the host
vehicle. Each radar can cover 180◦ FOV horizontally. The left and right radars have some
overlapped FOV and the combined radar system has 300◦ FOV, as shown in Figure 3a.
One radar is a right-handed radar and the other one is a left-handed radar. Further, the
two radars need to be installed with an angle of 30 degrees (+30 yaw of the vehicle travel
direction), as presented in Figure 3b.
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Figure 3. (a) Radar system FOV: 10 m per range grid, 30◦ per angle grid; (b) radar alignment illustration.

The signals from two radars are collected using CAN bus messages simultaneously.
The signals utilized are amplitude, angle, range, range rate, and validity level. The defini-
tions of these signals are as follows. The amplitude signal represents the millimeter-wave
reflectivity of detected object surfaces. The angle signal is the measured angle from the
detected object to the centerline of the radar. The range information represents the distance
from the detected object to the radar. The range rate shows the changing rate of range
information, which is useful for tracking a moving object. Finally, the validity level repre-
sents the validity level of the collected data. If the validity level value is high, the radar is
confident about the detected object. To validate the radar signals from two radar sensors
mounted on the rear bumper, a testing vehicle is placed on the pre-measured location at
the center of the rear bumper, as presented in Figure 4a. The signals captured by two radar
sensors are plotted in Figure 4b. The blue dots are signals from the right radar, and the red
dots are signals from the left radar. Both left and right radars captured the white vehicle
near the 90◦ axis.

Figure 4. Validation of radar signals: (a) The test vehicle is placed on the pre-measured location at
the center of the rear bumper; (b) red dots are signals from the left radar and blue dots are signals
from the right radar.

3.2. The Sensor Fused RCT Detection System

The proposed RCT detection system consists of several main modules, as presented
in Figure 1. First, the radar signals are transformed into a 2D camera image coordinate
system. The projected radar signals onto 2D image space are utilized to determine the
possible object locations in the image. The transformed radar signals are filtered out based
on speed, range, and validity level information to detect moving objects. Since the radar
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signals are several points on the target object (low-resolution) and often contain noisy
signals, it is difficult to have the whole contour of an object solely rely on the radar signals.
The proposed sensor fused ROI extraction algorithm finds the candidate ROIs in the given
image accurately. Finally, the identified candidate ROI is fed into a CNN classifier to
determine the object type.

3.2.1. Coordinate Transformation and Radar Signal Filtering

To fuse the information from the camera and the radar sensors, the radar signals’ polar
coordinates are transformed into the world coordinates and projected onto the camera
images. To calculate the transformed coordinate (u, v) from the given radar signals, the
transformation matrices adapted from [11] are presented in Equations (1) and (2).

Xc
Yc
Zc
1

 =


0 −1 0 Lx
0 0 0 Ly
1 0 0 Lz
0 0 0 0




r cos θ
r sin θ

0
1

 (1)

where Lx, Ly, and Lz are the distances between radar and camera in the x-, y-, and z-axis
direction, respectively. According to the hardware set-up in this project, Lx = 0.7507 m,
Ly = 0.2413 m, and Lz= 0 m. In Equation (1), the corresponding camera coordinate system
(Xc , Yc , Zc) is calculated using the given radar range, r, and angle signal, θ. Using Equa-
tion (2), those signals are transformed into camera image coordinates (u, v) and projected
onto an image.

Zc

 u
v
1

 =


1

dx
0 u0

0 1
dy

v0

0 0 1


 f 0 0 0

0 f 0 0
0 0 1 0




Xc
Yc
Zc
1

 (2)

where symbols used in Equation (2) are defined in Table 1.

Table 1. Parameters to find the transformed coordinate (u, v).

Symbol Description Value

dx Physical x pixel length in the image coordinate -
dy Physical y pixel length in the image coordinate -

u0
x pixel coordinate of the intersection point between axis Zc

and image plane 640

v0
y pixel coordinate of the intersection point between axis Zc

and image plane 480

f Camera focal length 0.0021 m
u x pixel coordinate of radar detection plotted on the image -
v y pixel coordinate of radar detection plotted on the image -

In the proposed RCT detection system, a wide horizontal FOV 180◦ is used, so the
dx and dy values are adjusted empirically. Adjustment for dx is made using Equation (3) for
the given radar range, r, and angle signal, θ. First, a radar reflector is placed in the center
of the camera image and the radar signals on the reflector are recorded. The location of the
radar reflector in the x-direction is u = 345 and the corresponding radar range, r, and angle,
θ, signals for the reflector are r = 6.5 m and θ = 60◦. Using Equation (3), the value of dx is
calculated as 1.07× 10−5. Similarly, the value of dy is also calculated.

dx =
(Lx − r× sin θ)× f
r× cosθ × (u− u0)

. (3)

Since the FOV covered by two radar sensors is much wider than the FOV of the
camera sensor, 300◦ versus 180◦, some radar signals are located outside of the images.
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Figure 5 presents the expanded areas, such as 400 pixels on the left and 400 pixels on
the right side. Those expanded areas hold additional information about the approaching
obstacles even though they do not contain any corresponding camera pixel information.
The expanded areas can be utilized as early approaching warning signals before obstacles
enter the camera FOV.

Figure 5. Projected radar points over the corresponding image frame and beyond of the camera image.

After the signals from two radars are successfully transformed into the image coor-
dinate system, then moving objects can be identified using the range rate information
from the radar sensor. The range rate information is useful to identify a moving object. In
the proposed RCT detection system, the primary goal is to detect all moving objects with
speed > 0.1 m/s (equals to 0.36 km/h), and the range is within a 30 m range. Therefore,
valid radar signals have a range value less than 30 m, range rate > 0.1 m/s (equals to 0.36
km/h), and validity level ≥ 1. In Figure 6, the small blue dots represent static objects. The
green circles represent the radar signals for moving objects obtained from the left radar.
The red circles are the radar signals for moving objects obtained from the right radar.

Figure 6. Static and moving points separated and projected: (a,b) The small blue dots represent static
objects. The green and red circles represent the radar signals for moving objects from left and right
radar, respectively.

3.2.2. The Proposed ROI Extraction Algorithm

Because the radar signals cannot classify the object type due to the low-resolution
information, the ROI extraction is a challenging task. However, if the ROIs for object detec-
tion are identified correctly, this reduces the processing time tremendously by removing the
step for scanning a whole image using a sliding window with different sizes for searching
the potential object in the image. In this paper, a sensor fused ROI extraction algorithm is
developed. The procedures for the proposed ROI extraction algorithm are explained below:

Step 1: Find a list of radar signals that belongs to the same object
The radar information, Ri, contains the converted coordinates in 2D image space,

(x, y), range, r, range rate, v, and angle, θ:

Ri = {(x, y), r, v, θ}, where i = 1, 2, . . . , k. (4)

Each signal in Ri is represented using the ‘.’ notation such that the notation Ri.r
represents the range signal in Ri. For each radar information, Ri, the bounding box,
BBi = {(x1, y1), (x2, y2)} is defined as reverse proportional to the range, Ri.r:

α = 80− Ri.r (5)
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BBi.x1 = Ri.x− α, BBi.y1 = Ri.y− α (6)

BBi.x2 = Ri.x + α, BBi.y2 = Ri.y + α (7)

where the coordinates (x1, y1) and (x2, y2) are the top left point and the bottom right
point in the bounding box, BBi, respectively. On the other hand, the parameter α is reverse
proportional to the range in Ri. Step 2: Merging bounding boxes

Two bounding boxes, BBi and BBj will be merged if the Intersection Over Union (IOU)
is greater than 0.5. The IOU

(
BBi, BBj

)
is a ratio of the area of intersection of two bounding

boxes to the area of the union of them.

IOU
(

BBi, BBj
)
=

BBi ∩ BBj

BBi ∪ BBj
. (8)

At the end of Step 2, all bounding boxes that belong to the same object are merged into
one, becoming one ROI for the object, as shown in Figures 7a and 8a. In Figures 7a and 8a,
the green square box represents the bounding box, BBi, generated by the radar signal,
Ri, i = 1, . . . , k. After the merging process, the merged ROI is presented in the red square.
Due to the low resolution and noise in the radar sensor information, the defined ROIs
in Step 2 are not accurate enough in many cases. Therefore, the roughly estimated ROIs
in Step 2 have been further adjusted by utilizing the image information from the camera
sensor in Step 3.

Step 3: Update the ROIs using temporal correlation in the video frames
For each ROIk = {(x1, y1), (x2, y2) }, k = 1,..., p, the motion matrix, Mt, is calculated

using the intensity differences between the previous frame, Imgt−1, and the current image
frame, Imgt.

∀(x, y) where x ∈ [x1 − β, x2 + β] , y ∈ [y1 − β, y2 + β],
Mt(x, y) = |Imgt(x, y)− Imgt−1(x, y)|. (9)

In the motion matrix, Mt, the offset, β = 20, is added to the ROI defined in Step 2.
The offset is added to cover the ROI shift between the previous frame, Imgt−1, and the
current frame Imgt. With the expanded ROI, the motion is calculated using Equation (9).
The motion output that exceeds the range of [0, 255] is truncated and the first gradient
of Mt is calculated. By thresholding the first gradient of Mt, a binary image is generated,
as shown in Figures 7b and 8b. Since the frame rate in the camera sensor is 30 frames
per second, contents in consecutive frames are highly correlated. The object locations are
overlapped within small consecutive frames (e.g., 5 frames) due to the temporal correlation
in consecutive image frames [18]. The final ROIk is determined by tracing the locations of
ROIk in the previous frames (e.g., 5 frames). The accurate final ROIk is found using the
temporal correlation map. The temporal correlation map also solves the problem of missed
radar signals between image frames.

The plots in Figures 7 and 8 present the steps of the proposed sensor fused ROI
generation algorithm.

Figure 7. The proposed ROI generation algorithm: (a) the green bounding boxes are generated from the radar signals, the
merged ROI is presented with the red square; (b) the first gradient of the motion image after binarization; (c) the temporal
correlation map; (d) redefined ROI in the blue rectangular using the temporal correlation map.
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Figure 8. Refined ROI result from the proposed ROI generation algorithm: (a) the green bounding boxes are generated
from the radar signals, the merged ROI is presented with the red square; (b) the first gradient of the motion image after
binarization; (c) the temporal correlation map; (d) redefined ROI in the blue rectangular using the temporal correlation map.

3.2.3. Object Classification Using the Transferred CNN Model

Object classification refers to a task that identities the category of the object belongs
to. In many ADAS applications, different control signals are generated depending on
the identified object type, such as car, pedestrian, bike, etc. Since AlexNet [19] achieved
an outstanding improvement on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012, the state-of-the-art CNN models have achieved a remarkable break-
through in object classification. Those CNN models were trained with 1.2 M image data
samples to classify 1000 classes. Those CNN models are AlexNet [19], VGG-16 [20],
VGG-19 [20], DarkNet [21], Resnet-50 [22], and GoogLeNet [23], etc. The architectures of
those CNN models are summarized in Table 2 and Figure 9. The GoogLeNet architecture
contains the “Inception” module presented in Figure 9a. The inception module improves
the computational cost by adding a 1 × 1 convolutional layer, which reduces the output
dimension. The dimension reduction allows for a gain of computational efficiency and en-
sures the capability of a deeper and wider network. The overall architecture of GoogLeNet
is displayed in Figure 9b.

Table 2. Architectures of the state-of-the-art CNN models.

Layer AlexNet VGG-16 VGG-19 DarkNet ResNet-50

Convolution 5 13 16 19 49
Max Pooling 3 5 5 5 1
Avg. Pooling - - - 1 1

Fully Connected 2 3 3 - 1
Softmax 1 1 1 1 1

Parameters (Millions) 62 M 138 M 144 M 20.8 M 25.5 M
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Figure 9. GoogLeNet: (a) inception module in GoogLeNet [23]; (b) summary of GoogLeNet architecture.

It is a challenging task to develop an object classification system with a relatively small
dataset. In general, the neural network trained with a small number of data samples is
prone to poor performance and overfitting. However, by utilizing the state-of-the-art CNN
models in Table 2 and Figure 9, which were trained with a large amount of data, those
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learned features could be transferred to a new system with a smaller dataset. Transfer
learning is a machine learning method that reuses those pre-trained CNN models as a
starting point. For example, those CNN models learned the image’s shapes, edges, and
lighting in the lower layers with visual image data presented in Figure 10a,b. Because these
features are generalized across most types of images, utilizing those trained features to the
new task with the relatively small data provides an overall better accuracy than training a
new model from scratch. In Figure 10c, the first three outputs in the last fully connected
layer are presented. Those three outputs are strongly activated to the corresponding class.

Figure 10. Features learned in GoogLeNet: (a) the first 64 features extracted in the 2nd convolution layer; (b) the first 64
feature output in the 1st inception module; (c) the first three outputs in the last fully connected layer.

To develop the object classification system inside the proposed RCT detection system,
the training data were collected from [24–27]. In total, 8044 training image samples were
collected, including 2651 samples for the bike class, 3381 samples for the car class, and
2012 for the pedestrian class. The sample images of the training dataset are given in
Figure 11. Using the collected data, six state-of-the-art CNN models in Table 2 and Figure 9
are retrained using transfer learning. Figure 12 demonstrates the extracted features after
transfer learning of GoogLeNet. In Figure 12a,b, the features transferred in the low level of
the network are very close to the original features in Figure 10a,b. This is because most of
the original features are reused in the transferred system in the lower layers of the network.
The channel output images in Figure 12c represent the selected classes such that the channel
image for the ‘bike’ class contains distinct wheels of the bike, the channel image for the ‘car’
class contains the shape of vehicles, and the pedestrian shape is represented in the channel
output for the pedestrian class. Thus, it demonstrates that transfer learning is completed
successfully.

Figure 11. Training data sample images from [24–27].

Figure 12. Features learned in GoogLeNet: (a) the first 64 features extracted in the 2nd convolution layer; (b) the first 64
feature output in the 1st inception module; (c) the three outputs in the last fully connected layer.
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The training dataset is divided into 90% for training and 10% for validation during the
training. The validation results in Table 3 show that VGG19, GoogLeNet, and VGG 16 have
the classification accuracy of 97.01%, 96.89%, and 96.52%, respectively, with the learning
rate α = 0.0001. In Table 3, the performances with the smaller learning rate α = 0.0001 are
better than the performances with α = 0.0002 in general. Transfer learning comes with a
variety of benefits, other than just helping improve the performance of a small dataset. It
also saves time during training. Because fewer data are required and low-level features are
already learned in the pre-trained CNN models, only a few weights need to be updated
during the training process for the new system. In Table 3, the longest training time is
about 6.5 h taken to train VGG19.

Table 3. Training results for object classification.

CNN Models
Training Time for Transfer

Learning (min) Validation Accuracy (%)

α = 0.0001 α = 0.0002 α = 0.0001 α = 0.0002

AlexNet 10 8 93.28 92.41
VGG-16 115 115 96.52 95.40
VGG-19 390 385 97.01 95.65

Darknet-19 50 49 87.81 87.56
Resnet-50 57 57 93.28 93.91

GoogLeNet 27 27 96.89 96.89

4. Experiments on the RCT Detection System

The transferred CNN models are tested for the classification performance on the
dataset collected for the proposed RCT detection system. The testing data samples contain
a total of 12,807 samples, including 4796 samples for the ‘bike’ class, 3332 samples for
the ‘car’ class, and 4679 for the ‘pedestrian’ class. Figure 13 shows the sample image
patches used to test the transferred CNN models. The classification results generated by
the transferred CNN models are summarized in Table 4. Overall, three transferred CNNs,
VGG-19, GoogLeNet, and VGG-16 generate good performances on the test dataset. The
average accuracies of the top three models, VGG-19, GoogLeNet, and VGG-16, are 96.42%,
96.17%, and 95.04%, respectively.

Figure 13. Sample image patches used to test the transferred CNN models.

Table 4. Testing results for object classification by the transferred CNN models.

Class
Accuracy (%) per Class Type Overall

Accuracy (%)Bike Car Pedestrian

AlexNet 92.91 87.48 99.17 93.78
VGG-16 92.47 97.72 95.77 95.04
VGG-19 96.96 94.60 97.16 96.42

Darknet-19 88.05 78.72 90.55 86.54
Resnet-50 95.23 93.91 78.31 88.70

GoogLeNet 94.83 95.77 97.82 96.17
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In the proposed RCT detection system, the proposed sensor fused ROI extraction
algorithm finds the ROIs using the radar signals first. Then, the ROIs are adjusted correctly
using the motion and the temporal correlation information in the consecutive image frames.
Finally, the identify ROIs are resized to the input image size of the trained CNN model and
fed into the CNN model. The CNN model classifies the object type, and the matching radar
signals provide the distance to the object from the host vehicle, as presented in Figure 14.
Several detection results are presented in Figure 14. From left to right, the target classes are
car, bike, car, pedestrian, car, and car, respectively. In the RCT detection system, most of the
classification errors have happened in two cases. In Figure 15a,b, when the object is located
in the boundary of the images, the full shape of the object is not presented yet in the image.
Thus, the classification result is not accurate. The other case presented in Figure 15c,d is
when the object is at a larger distance from the host vehicle. Since the object is located far
away from the camera sensor, its shape is becoming smaller, and it becomes similar to the
shape of another object.

Figure 14. Example images of object detection results.

Figure 15. False classification examples: (a,b) false classification because the shape of the objects is partially presented;
(c,d) false classification because the shape of the bike looks similar with the shape of pedestrian.

To compare the performance of the sensor fused RCT detection system with the
camera-only detection system, a camera-only detection system is implemented using the
Faster R-CNN architecture [28]. The Faster R-CNN architecture contains the convolutional
layers as the feature extraction network. The top three CNN models in Table 4 are used
as the feature extraction network inside the Faster R-CNN model. The vehicle detec-
tion systems with various architectures are trained with the Udacity vehicle dataset [29]
that contains 8738 images with labeled data. The different architectures of the vehicle
detection systems are evaluated with the vehicle dataset of 6233 image frames collected
in the RCT detection system. The performance of each vehicle detection architecture is
measured with two metrics, precision and recall. The two metrics are defined as follows:
precision = TP/(TP + FP), recall = TP/(TP + FN), where TP = True Positive, FP = False
Positive, and FN = False Negative.

The experimental results of the various rear cross vehicle detection systems are pre-
sented in Table 5. The best architecture for the sensor fused RCT detection system is VGG19,
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which has 0.9798 precision and 0.9668 recall. The average processing time of the VGG-19
based architecture is 0.0057 s, including the time for the ROI detection by the radar sensors.
The average processing time is measured using the Dell G7 laptop computer with the Intel®

Core™ i7 processor, 16GB memory, and the NVIDIA GeForce GTX 1060. For the camera-only
system, the best performance is generated by VGG-16faster R-CNN, which has 0.9986 preci-
sion and 0.8589 recall. The camera-only systems based on the faster R-CNN have low recall
rates because the CNN-based object detection systems have poor performances in detecting
small size objects. The average processing time of the VGG-16faster R-CNN is 0.0931 s.

Table 5. The performance comparison: sensor fused RCT detection system vs. camera-only detec-
tion system.

Vehicle Detection System Processing Time per
Fame (s) Precision∗100 Recall∗100

Sensor Fused
detection
System

VGG-16 0.0052 97.97 96.32
VGG-19 0.0057 97.98 96.68

GoogLeNet 0.0047 97.97 96.20
Camera only

detection
system:

VGG-16faster R-CNN 0.0931 99.86 85.89
VGG-19faster R-CNN 0.1170 98.81 81.84

GoogLeNetfaster R-CNN 0.4095 98.64 80.37

The proposed sensor fused RCT system achieved better detection performance and
reduced the processing time. The sensor fused system based on VGG19 is 19.53 times
faster than the processing time of the VGG-19faster R-CNN and 16.34 times faster than
the processing time of the VGG-16faster R-CNN. In the camera sensor-only system, the
trained CNN model scans an image using anchor boxes to find the possible locations of
objects and classify the object type if the location was determined to contain the object.
This detection process requires a high computational cost and makes it difficult to be
deployed. On the other hand, in the proposed sensor fused RCT detection system, the
sensor fused ROI generation algorithm detects all possible targets by combining radar
signals and information from the camera images. The identified ROIs are fed into the CNN
model to classify the object type. The proposed algorithm reduces the object detection time
tremendously by removing the step for scanning the whole image.

In addition, the FOV of the system is extended using the proposed system. Because
two radars are implemented in the proposed system, radars’ horizontal FOV is greatly
expanded. Comparing to one radar installed in the middle of the rear bumper, two radars
installed on the sides of the rear bumper have a horizontal FOV of 300◦ (with some
overlapped region in the middle), whereas a single radar only has a horizontal FOV of
180◦. So, more information can be captured by an expanded FOV. It is observed that the
object tracking by two radar sensors is robust, as presented in Figure 16. In Figure 16, the
left radar points are represented by green circles, and the right radar points are indicated
by red circles. As shown in Figure 16a, the object is on the left side of the host vehicle,
and the left radar (more green circles than the red circles) mostly captures the object. In
Figure 16b,c, the object is moving toward the middle of the image, and the signals from the
left and right radar sensors detect the object. On the other hand, in Figure 16d, the object is
on the right side of the host vehicle, and only signals from the right radar are observed on
the image.

Figure 16. Tracking robustness by two radar sensors: (a) the left radar (more green circles than the red circles) mostly
captures the object; (b,c) the signals from the left and right radar sensors detect the object; (d) only signals from the right
radar are captured the object.
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5. Conclusions and Future Scope

In this paper, a robust sensor fused RCT detection system has been proposed using
two radars and one wide-angle camera. The novelties of the proposed RCT detection
system are summarized as follows. (1) The integration of the radar and camera sensors
for the RCT detection system. As far as sensor fusion is concerned, the radar points are
mapped to camera images by transforming the radar coordinate system into the image
coordinate system. Furthermore, the static and moving objects are distinguished using the
information from the two radar sensors on the overlay image. (2) The new sensor fused
ROI extraction algorithm is developed by fusing the information from the two radar signals
and the corresponding image data. The proposed sensor fused ROI extraction algorithm
accurately identified the ROIs of the objects. The proposed algorithm makes the processing
time 15.34 times faster than the processing time of the camera-only system by avoiding
scanning the whole image for the possible locations of the object. The identified ROIs
are fed into the CNN model for object classification. (3) We carried out experiments on
transfer learning for the object classification task. Regarding CNN object classification,
six CNN models have been selected for comparison studies. Through experiments, the
trained system can differentiate vehicles, bikes, and pedestrians in the image frame at
different levels of accuracy. Three transferred CNN models, VGG-19, GoogLeNet, and
VGG-16, have good performances on the RCT detection system dataset. The average
accuracy of the top three models, VGG-19, GoogLeNet, and VGG-16, are 96.42%, 96.17%,
and 95.04%, respectively. (4) The experiments for the comparison between the proposed
sensor fused system and the camera only system. A comparison between the sensor fused
RCT system with the camera-only system has been conducted. The proposed sensor fused
RCT detection system reduced the processing time and was 15.34 times faster than the
camera-only system. The experimental results demonstrate that the proposed sensor fused
system has robust object detection accuracy and short processing time, which is vital for
deploying the ADAS system.

For future research scopes, comparison tests can be carried out between two radars on
the sides of the rear bumper and one radar in the middle of the rear bumper. In addition,
further research on the embedded programming for real-world implementation is required.
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