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Abstract: Icing is a hazard which is important for the aerospace industry and which has grown
over the last few years. Developing sensors that can detect the existence not only of standard icing
conditions with typically small droplet size, but also of Supercooled Large Droplet (SLD) conditions
is one of the most important aims in order to minimize icing hazards in the near future. In the present
paper a study of the Fiber Bragg Grating Sensors’ (FBGSs) performance as a flight icing detection
system that predicts the conditions of an icing cloud is carried out. The test matrix was performed in
the INTA Icing Wind Tunnel (IWT) with several icing conditions including SLD. Two optic fibers
with 16 FBGS in total were integrated in the lower and upper surface of an airfoil to measure the
temperature all over the chord. The results are compared with a Messinger heat and mass balance
model and the measurements of the FBGS are used to predict the Liquid Water Content (LWC) and
Ice Accretion Rate (IAR). Finally, the results are evaluated and a sensor assessment is made. A good
correlation was observed between theoretical calculations and test results obtained with the FBGS in
the IWT tests. FBGS proved to detect the beginning and end of ice accretion, LWC and IAR quickly
and with good precision.

Keywords: ice detection; FBGS; icing; aircraft; fiber optic; ice modeling; latent heat; temperature;
SLD

1. Introduction

Atmospheric icing occurs when aircraft fly through a cloud with supercooled droplets.
Currently, there is a need for sensors that can detect and evaluate the hazard in a short time
and in a feasible way. Actual sensors used in aircrafts (A/C) such as the magnetostrictive
sort [1] have proven to work reliably in standard icing conditions described in the aviation
safety standards FAR 25 Appendix C (App.C) [2] where small droplets with a Median
Volume Diameter (MVD) of 10 to 40 microns are present. Many sensors can only alert users
to the fact that icing in this condition has started but cannot evaluate the icing condition
with its MVD and Liquid Water Content (LWC) [1]. Up to now that was sufficient to satisfy
the A/C safety. Commercial aircraft is certified against App. C condition and can fly in this
condition for a predefined time using its counter measures against icing. Nowadays, the
A/C safety requirements ask for sensors that are also able to detect big and Super Large
Droplets (SLD) in access of 100 microns MVD which has shown to be very dangerous
for A/C safety, although they normally occur only relatively seldomly. These dangerous
icing conditions, addressed in Appendix O (App. O) of the FAR25 [3], require new sensors
that are able to differentiate when the supportable App. C condition is present or when
the hazardous App. O condition starts and special measures need to be taken. The App.
O requirements make very important the development of sensors that can evaluate SLD
conditions and give as much information about MVD, LWC and ice accretion rate (ACR)
as possible.
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Several Flight Icing Detection Systems (FIDSs) have been developed (Jackson [1]) but
in this paper a latent heat based sort is going to be studied that uses optic fiber Bragg grating
sensors (FBGSs) and measures temperature changes produced by the instant phase change
of liquid supercooled droplets to ice. The first heat transfer based sensor was patented by
Tribus and Moyle [4] in 1956. The apparatus was based on detecting the voltage difference
between two thermocouples, one of them in contact with the air flow. FBGSs have the
advantage over thermocouples that they are immune against electromagnetic interference;
they have very low mass, fast response and very low heat conduction, so they can give a
lot of information about the thermodynamic events during a test. An FIDS using FBGS has
been developed by Frövel et al. [5]. In this patent an FBGS is embedded in an airfoil. In the
optic fiber several FBGSs are located along the chord for knowing the temperature in all
the airfoil.

Many heat transfer studies have been carried out in order to predict the ice accretion in
airfoils. Messinger [6] did a heat balance study introducing the concept of freezing fraction
which was developed by Ruff [7]. Those concepts were used in much ice prediction
software like LEWICE [8,9]. In the case of large droplets, new models have been made [10].
Myers [11] made a model that takes conduction into account.

An important issue of modelling heat transfer is the convective heat transfer coefficient
calculation. On turbulent flow, the heat transfer coefficient depends on the equivalent sand-
grain roughness height [8,12]. The equivalent sand-grain roughness height calculation has
been considered a too complex approximation for this problem [13].

In this work a model for the prediction of the icing cloud conditions, heat transfer
coefficient and ice accretion rate is presented based on the models from the LEWICE
software [8] and G. Fortin [13]. The theoretical results are compared with experimental
data obtained with the FIDS from Frövel et al. The tests were performed in the INTA icing
wind tunnel (IWT) in typical aeronautical icing conditions.

2. Materials and Methods
2.1. Fiber Bragg Grating as a Temperature Sensor

Firstly, it is important to describe briefly all the components involved in the tests. One
of them is the Fiber Bragg Grating Sensors (FBGSs) from the company FBGS INTERNA-
TIONAL, manufactured in the so-called draw tower process coated with ORMOCER [14]
and with a typical fiber diameter of 125 microns. These so-called Draw Tower Gratings
(DTGs) are high resistant sensors that present almost the same breaking strength values
as the optical fiber without any grating. The FBGS optic fiber sensors use the principle
of Bragg reflection in a specific broadband.The reflected wavelength is a function of vari-
ables such as temperature or stress [15]. Reference [16] shows an equation that relates
temperatures and wavelength (λB). Equation (1) shows a relationship between wavelength,
temperature, strain (ε) and refractive index (n) [17]:

λB(ε, T) = 2n(T)Λ(T, ε) (1)

In order to isolate the FBGS from strains (ε), the optic fiber was introduced in a
capillary, so Equation (1) can be simplified as a third degree polynomial function T(λB) =
aλ3

B + bλ2
B + cλB + d [17,18] ( Reference [17] Section 8.2 provides a table with different

thermal expansion and thermo-optic coefficients depending on the temperature; it can be
seen that the thermal expansion coefficient is almost constant at temperatures higher than
250 K and the thermo-optic can be expressed as a polynomial). The curve is obtained by a
calibration process using a SIKA TP3M165E2 highly precise temperature calibrator with an
accuracy of 0.3 ◦C and stability of 0.01 ◦C.For this calibration, the instrumented airfoil was
introduced in the temperature calibrator and three cycles with five temperature steps were
applied between 20 ◦C and −30 ◦C. In order to determine the accuracy of the calibration,
the average value of the standard deviation of the grating values is obtained (Equation (3).
The accuracy of the sensors at the temperature T is accT . The number of gratings is Ngratings
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and the standard deviation of the wavelength values in the three cycles at temperature T is
λT

grating. The accuracy results are represented in Table 1:

std(x) =

√
∑3

cycle=1(xcycle − x̄)

3
(2)

accT =
1

Ngratings

Ngratings

∑
grating=1

std(λT
grating) (3)

Table 1. Calibration accuracy.

Temperature (◦C) 20 10 0 −10 −20 −30

accT (pm) 1.1 1.1 1.0 1.2 1.0 1.1

acc (◦C) 0.1 0.2 0.2 0.2 0.2 0.2

As previously mentioned, for isolation reasons and to avoid any parasitic strain, the
optic fiber is located in a freely movable manner inside a polyimide capillary with an
external diameter of 0.55 mm. The capillary is filled with silicone oil to enhance the thermal
heat transfer from the sensor surface to the sensor and, this way, its response time is
improved. The sensor zones were chemically stripped in a sulfuric acid bath to remove
the coating and guarantee a high precision of the sensors’ temperature measurements
by avoiding any influence of a coating material. The distance between gratings was one
centimeter and the width of the grating Λ was 8 mm. A commercial optical interrogator
was used, the Luna Hyperion si155, with a wavelength range of 1500 to 1600 nm and an
accuracy of 1 pm. The si155 features a high power, wide swept wavelength laser with
guaranteed absolute accuracy on every scan, which is realized with Micron Optics patented
Fiber Fabry-Perot filter and wavelength reference technology. The interrogator counts on
rapid, full-spectrum data acquisition and flexible peak detection algorithms of FBGSs.

The spectral response of the fiber can be seen in Figure 1. The spectral response of the
lower surface is weaker than the spectral response of the upper surface, but all peaks can
be detected without problems. Both responses were represented for different temperatures,
22 ◦C and −15 ◦C, before and during icing, respectively.
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Figure 1. Spectral response of the sensor for two different temperatures.
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2.2. Model Resolution

In order to predict the ice conditions, it is important to define a model. For modelling
the temperature in the surface of the airfoil, the heat (5) and mass balance (4) equations of
reference [8] are used. The control volume used is represented in Figure 2. It represents
the initial control volume previous to the ice accretion. The airfoil surface is divided into
nodes, and each one represents a control volume node, as can be seen in Figure 3. Normally,
the modelled temperature in the ice accretion codes is the ice surface temperature, but
in this document it is considered that initially the ice surface temperature is similar to
the airfoil surface temperature. The airfoil has been made in Polylactic Acid (PLA) using
additive manufacturing. The PLA thermal conductivity is less than ice, so the conduction
heat flux is negligible (normally in the icing accretion codes [8], conduction is considered
negligible when an ice layer is formed; PLA has lower thermal conductivity than ice so this
hypothesis could be applied in the present case).

ṁnode
ice = ṁnode

im + ṁnode
rb − ṁnode

out − ṁnode
evap (4)

In Equation (4), ṁnode
ice is the mass flux of ice formed in the surface, ṁnode

im is the mass
flux of water that impinges the surface, ṁnode

rb is the mass flux that enters in the control
volume represented in Figure 2, ṁnode

out is the mass flux that leaves that control volume and
ṁnode

evap is the mass flux of water that is evaporated.

F( f node, Tnode
sur ) = qnode

lat − qnode
evap ± qnode

sens + qnode
k − qnode

nc = 0 (5)

The first term in the energy balance equation represents the fusion of impinging water
which is the product between the impinging water mass flux (ṁim) and the water latent
energy of fusion (L f ). The impinging water mass flux is proportional to the collection
efficiency value β, the Liquid Water Content (LWC) and the airspeed (V∞):

qnode
lat = ṁnode

im L f = βnodeV∞LWCL f (6)

The second term represents the evaporation of a small liquid mass in the air. It is
produced due to the water vapour concentration difference between the surface and the
air. The evaporative flux heat is proportional to the evaporative mass flux and to the latent
heat of vaporization (Lv). The mass flow rate between the surface and the air (ṁevap) could
be expressed as [13]:

qevap = ṁnode
evapLv = hnode

g (ρnode
vs − ρnode

ve )Lv (7)

The evaporative term is only taken into account in case of glaze ice, because in rime ice
there is not a water film that flows on the airfoil surface. The water vapour densities at the
surface ρvs and in the air ρve are expressed as functions of the saturated vapour pressure
Pvs at the surface and in the airflow and the relative humidity φ (G. Fortin 2006 [13]).

ρnode
vs =

Pvs(Tnode
sur )

RvTnode
sur

(8)

ρnode
ve = φ

Pvs(Tnode
e )

RvTnode
e

(9)

Pvs(T) = 610.8e
Lv
Rv (T

−1
f −T−1) (10)

The convective mass transfer coefficient hg [8] is expressed as a function of the Lewis
number (Le) and the convective transfer coefficient (hcon). The Lewis number is the ratio
between the thermal and mass diffusivity Dav:

hnode
g =

hnode
con

ρacp,aLe2/3 (11)
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Lenode =
knode

a
ρacp,aDav(Tf ilm, pst)

(12)

The third term represents the sensible heat of water and ice. In this term, the sensible
heat of water and of ice on the surface of the impinging (qsens,im) and the incoming water
(qrb,im) mass flow are included:

qnode
sens = qsens,im + qsens,rb (13)

Figure 2. Heat Transfer Control Volume.

node =0

node =1

node =2

node =3

node =4

Figure 3. Airfoil surface discretization.

The sensible heat of impinging water depends on the impinging water mass flow and
of the specific heat of water in the airfoil surface (cp,w) and of ice (cp,i):

qsens,in = −ṁnode
im

(
cpnode

w (Tmp − Tnode
st ) + cnode

p,i (Tnode
sur − Tmp)

)
(14)

Additionally, the sensible heat of incoming water depends on the specific heat of water
in the previous control volume cnode−1

p,w and of the specific heat of ice.

qsens,rb = −ṁnode
rb

(
cnode−1

p,w (Tmp − Tnode−1
sur ) + cp,i(Tnode

sur − Tmp)
)

(15)

The fourth term represents the heat flow gained by the surface due to the kinematic
energy of the incoming droplets:

qnode
k = ṁim

V2
∞
2

(16)

The last term represents the convective heat transfer. Normally, it is defined as the
net convective loss from the body (Equation (19)) which is the difference between the
convective heat lost and the frictional heat gained [9]. The convective heat flux transfer is
proportional to the difference between the airfoil surface temperature Tsur in the control
volume and the static temperature T∞. It is highly dependant on the convective heat
transfer coefficient.

qnode
con = hnode

con (Tnode
sur − T∞) (17)

The frictional gained heat flux is proportional to the difference between the recovery
temperature Trec and the static air temperature T∞

qnode
f ric = hnode

con (Tnode
rec − T∞) (18)
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qnode
nc = qnode

con − qnode
f ric = hnode

con (Tnode
sur − Tnode

rec ) (19)

For solving the energy balance equation, the collection efficiency and convective heat
transfer coefficient must be calculated. Both parameters depend on the fluid field which
is calculated with a CFD model (Section 2.2.1). Once the fluid field has been solved, the
laminar convective heat transfer coefficient (Section 2.2.2) and the collection efficiency
(Section 2.2.3) are calculated as well. Finally, an energy balance resolution algorithm is
used for obtaining the temperature profile in the airfoil (Section 2.2.4).

2.2.1. CFD Model

The air stream around the airfoil was modelled using OpenFoam. Normally, in
ice accretion codes, a potential flow model is used for solving the airflow. Due to the
anomalous airfoil used for the tests (Figure 4) a turbulent Spalart–Allmaras model [19] was
considered. The selected kinematic viscosity is 12.43 × 10−6 m2/s. The rest of the constant
values are similar to reference [20]. All the conditions of the model are exposed in Table 2.

2.2.2. Convective Heat Transfer Coefficient

One of the most important parameters in predicting ice accretion behaviour is the
convection. Many efforts have been made to determine the values of the convective heat
transfer coefficient Samad, A [21]. For calculating the heat transfer coefficient, a laminar
integral boundary layer method has been used [22], with δT being the thickness of the thermal
boundary layer and ka the thermal conductivity of air (Equation (20)). The result can be
expressed as a function of the external flow temperature Ve [9]:

hl =
2ka

δT
(20)

The thermal boundary layer thickness can be expressed as a function of the surface
distance from the stagnation point (s):

δT(s) =
46.72νa

Ve(s)2.87

∫ s

0
Ve(x)1.87dx (21)

The integral will be solved using the trapezoidal rule. The external airspeed was
selected taking a vector with a direction that is normal concerning the airfoil surface and
its modulus is a distance that satisfies the condition that the exterior airspeed is constant in
the surface normal direction.

Another way to calculate the convective heat transfer coefficient in the stagnation
point is by using Equation (22). According to the reference [23], the heat transfer along a
cylinder in the stagnation line is a function of the air density ρa, air viscosity µa, airspeed
U∞, Prandtl number Pr, leading edge equivalent diameter D and thermal conductivity
of air:

hc = 1.14
(

ρaV∞D
µa

)0.5
Pr0.4 ka

D
(22)

For an airfoil an equivalent diameter of the leading edge is calculated. The NACA
0012 leading edge equivalent diameter D is a 3.16% of the chord [24] of the original airfoil.
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Figure 4. Airfoil dimensions.

Table 2. CFD model parameters.

Airspeed (m/s)
Inlet Free stream velocity

Outlet Free stream velocity
Airfoil walls No slip

Kinematic
Pressure (Pa)

Inlet free stream Pressure
Outlet free stream Pressure

Airfoil walls Zero Gradient

Turbulent
kinematic
viscosity (m2s−1)

Inlet ≈ν f luid
Outlet ≈ν f luid

Airfoil walls 0

Spalart-Allmaras
model modified
viscosity (m2s−1)

Inlet ≈4ν f luid
Outlet ≈4ν f luid

Airfoil walls 0

2.2.3. Collection Efficiency Calculation

The value of the impinging water mass depends on the local collection efficiency
β(x). Using a Lagrangian perspective, the local collection efficiency is calculated inte-
grating trajectories of a droplet population distribution (Chang et al. [25]). The local
collection efficiency was calculated with Equation (23) and the droplets’ trajectories were
integrated according to the equations of reference Zarling [26] and using a Euler method.
In Equation (23), the term dy0 represents the variation between the droplet initial and
final heights and ds represents the airfoil distance between the airfoil point where the y
component is equal to the initial point of the droplet trajectory and the last point of the
integrated trajectory [8].

β(s)dropsize =
dy0

ds
(23)

Once the collection efficiency of each droplet size has been calculated, their weighted
average with the volume percentage is made. In this paper it has been considered that
all the droplet population collection efficiencies can be approximated as a unique droplet
trajectory where the diameter value is equal to the MVD of the droplet population (without
this simplification the problem would be different for each droplet distribution).

2.2.4. Model Resolution

The model algorithm resolution begins in the stagnation point node (node 1 in
Figure 5). In the stagnation node, the mass flow of incoming water does not exist. The
resolution is made in two steps [8]. Firstly, glaze ice conditions are assumed. In glaze ice,
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the freezing fraction is less than one and the surface temperature is the same as the melting
point temperature [6]. If the mathematical solution of the freezing fraction with a glaze
hypothesis is higher than the unity, the previous assumption is wrong, so the model would
be resolved with a rime supposition. In the case of being less than one, the hypothesis was
right, so the water flow mass that is going out of the control volume is calculated using the
mass balance equation. In glaze ice, the equation is non-linear, so the Newton–Raphson
method is used in order to calculate the freezing fraction of each node.

In the case of rime ice, the surface temperature is less than the melting temperature
and the freezing fraction is one. In rime ice, the evaporative term is null ( Messinger [6]),
so the energy balance equation is linear. Once a feasible result has been obtained, the same
process is done with the following node (see Figure 5).

node = 1

cp,ws
node 

Tsur
node

fnode

Newton-Raphson
Energy Balance

F(fnode,Tsur
node=0)=0

no

yesfnode >1 

Newton-Raphson
Energy Balance

F(fnode=1,Tsur
node)=0

cp,ws
node 

Tsur
node

fnode

Store Data

cp,ws
node 

Tsur
node

fnode

min

Mass Balance

cp,ws
node=0 =0

Tsur
node=0 =0

fnode=0 =0
min =0

cp,ws
node 

Tsur
node

fnode

min

node =node+1

cp,ws
node 

Tsur
node

fnode

min

Figure 5. Algorithm resolution scheme.

2.3. Tests Description

Several tests at different temperatures and ordered in a test matrix were carried out in
order to obtain repetitive results. The tests were planned to have outcomes in two types
of ice—glaze and rime. All tests were recorded with the same time sequence for having a
visual explanation of the sensor signals and for giving sense to the signal events recorded.

The test matrix was designed with the goal of comparing the results with a constant
parameter in different conditions of LWC and MVD. Each test matrix has constant ambient
temperature and a fixed air speed of 70 m/s. Two matrices were tested, one at −5 ◦C and
the other at −13.5 ◦C. Conditions are described in Table 3. There is one Appendix O [3],
freezing drizzle conditions, with LWC ≈ 0.3 g/m3 and with MVD of 40 µm.

Table 3. Test Matrix. (a) Tt ≈ 5 ◦C. (b) Tt ≈ 13.5 ◦C.

Test MVD LWC Test MVD LWC
Number (µm) (g/m3) Number (µm) (g/m3)

1 20 0.39 10 20 0.39
2 40 0.35 11 40 0.35
3 70 0.33 12 70 0.33
4 20 0.65 13 20 0.65
5 40 0.63 14 40 0.63
6 70 0.64 15 70 0.64
7 20 0.95 16 20 0.95
8 40 0.92 17 40 0.92
9 70 0.93 18 70 0.93

(a) (b)
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The airfoil used in the tests is a NACA 0012, cut for not having a too large chord
for testing in the icing tunnel. The dimensions of the airfoil are shown in Figure 4, with
sensors uniformly separated all over the chord of the airfoil. This airfoil was chosen due to
its thickness and because of its symmetry. Several tests with different airfoils were done
previously in order to find out the effect of the airfoil thickness in ice formation with SLD
conditions. A NACA 0012 was selected for these tests because it was observed that in
airfoils with less thickness the large droplets impinge farther from the leading edge.

In order to detect ice formation and to obtain information about the temperatures
in different locations all over the chord, eight sensors were placed in the upper surface
and another eight in the lower surface. Of those, four were placed in the leading edge,
two in the upper and another two in the lower surface. Leading edge sensors have a big
temperature step in the conditions of Table 3 so they are very useful for ice detection. The
other sensors can be useful in order to know the environmental icing conditions. Positions
and names of each sensor are in Table 4.

Table 4. Chordwise distance of each sensor from the leading edge.

Sensor x (mm) Sensor x (mm)

A8 0 A16 −0
A7 3 A15 −3
A6 10 A14 −10
A5 18 A13 −18
A4 27 A12 −27
A3 35 A11 −35
A2 46 A10 −46
A1 56 A9 −56

(a) Upper surface sensors (b) Lower surface sensors

Every test consists of one icing cycle of approximately 90 s. An example of the signals
of the tests can be seen in Figure 6. The tests have three stages:

1. The temperature is stabilised in an equilibrium temperature before the fogging.
2. In the 40th second the temperature rises abruptly due to the beginning of the icing

cycle. It stabilizes in a new equilibrium temperature.
3. In the 130th second the fogging stops and the temperatures drop abruptly.

0 25 50 75 100 125 150 175

 time (s)

� 16

� 14

� 12

� 10

� 8

� 6

� 4

� 2

T
(º

C
)

FBG1

FBG2

FBG3

FBG4

FBG5

FBG6

FBG7

FBG8

Figure 6. Test structure example. Angle of attack: 10◦. VTS = 70 m/s.



Sensors 2021, 21, 6053 10 of 22

3. Results
3.1. Ice Model Validation

Several tests were carried out in order to validate the thermal model (Equation (5)).
The first model will be in rime, zero degrees of angle of attack, seventy meters per second
of airspeed and with the cloud conditions described in Table 3. The results of the model can
be seen in Figure 7. Two repetitions in rime ice with 0◦ angle of attack were conducted: The
first repetition in blue and the second one in red. The analytical model results in continuous
lines and the experimental one results in discontinuous lines. The model seems accurate
close to the leading edge but there is an increase in the error downstream from the leading
edge. This is because of the turbulence generated by the ice roughness. There are many
models that try to simulate the roughness of the ice depending on many parameters (G.
Fortin [13]), but they are difficult to implement, so in this case they have not been used to
keep the problem simple.

Another aspect to take into account is the similarity between Figure 7 curves and a
typical local collection efficiency curve. In case of rime ice, the impinging water function is
proportional to the local collection efficiency, and the latent heat term of the energy balance
equation is the most relevant, so the collection efficiency is an important parameter in order
to determine the temperature profiles. In the analytical results of Figure 7, it can be seen
that in the test cases (a), (b) and (c), the impinging limits are between −20 and 20 mm
and in the test cases (g), (h) and (i) they are between −40 and 40 mm. This fact occurs
because there are differences between the MVD of both (test cases (a), (b) and (c) have an
MVD of 70 µm and (g), (h) and (i) cases have a MVD of 20 µm). Figure 8 shows that the
ice forms farther from the leading edge in the case of large droplets. The FBGSs do not
detect the larger impingement in SLD conditions because the turbulence generated by the
ice accretion makes inaccurate the temperature predictions in the sensors located farther
from the leading edge.
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(a) (b)
Figure 8. Pictures taken from IWT tests with:(a) MVD = 20 µm (Test case 13). (b) MVD = 70 µm
(Test case 15).

There is a high accuracy of the model in rime ice with different angles of attack as well.
For example, in Figure 9, several test results with minus five degrees of angle of attack
are shown. The temperature distributions seem similar in the analytical and experimental
results. This model can give an idea about where the point of maximum accretion is. In
this case, it is in the airfoil upper surface, where the stagnation point on an airfoil with an
angle of attack is located. There is a no symmetric ice accretion between the upper and
lower surfaces due to the angle of attack. In the tests with higher liquid water contents, the
equilibrium temperature is higher than with lower LWC (Figure 9c,f,i). There is an error
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which can be produced by a certain cloud non-uniformity. The non-uniformity of the icing
cloud produces dispersion of ice accretion along the span of the airfoil, and high variability
in the temperature profile.

Glaze ice results are less accurate because in the applied model the evaporative term
causes different solutions depending on the relative humidity of the air. Another problem of
glaze ice tests is a temperature drop during the nebulization (Figures 10 and 11). This could
be an air cooling due to the supercooled water spray. Furthermore, there are equilibrium
temperature errors probably because the leading edge sensors do not reach the equilibrium
temperature (Figure 11) during the fogging cycle, so the experimental results are slightly
lower than the analytical model. There is another source of error and there is a large
required time for reaching the equilibrium temperature in some cases, for example, the
sensor located 3 mm from the leading edge in Figure 11. Another difficulty in order to
determine the equilibrium temperature can be seen in Figure 11 as well. For example, in
the sensor located in the upper surface, in x = 0.01 m, there is a temperature rising to −2 ◦C,
and then a drop to −3 ◦C. This could be produced by non-stationary effects

1. Initially, it was observed that there is more water fluency in the surface of the airfoil
than in the end of the test. This could produce a more intense water freezing in
the areas further away from the leading edge in the beginning of the test and less
water freezing in the area close to it. This fact can be corroborated in Figure 11, in
which initially the temperature of the grating located in x = 3 mm is similar to the
temperature of the grating in x = 1 cm. This means that there is a similar latent energy
realised in both gratings and a consequent similar ice accretion as well.

2. After a certain time, less water flowing was observed in the test, so there is more ice
accretion in the area close to the leading edge. In Figure 11 can be observed a growth
in the temperature difference between the sensors located in x = 3 mm and x = 1 cm.
This corroborates the existence of water flow that was seen during the test. There is
more ice formed in the leading edge, so there is less quantity of water running back
and wetting the surface downstream and consequently less latent energy released in
the back sensor.

The freezing fraction is the magnitude that measures the fraction of water that freezes
as a function of the position. In the Figure 11 test it can be concluded that the freezing
fraction is not stationary and changes during the test because the water accretion and
fluency changes with time. In the case of rime tests, this effect cannot be seen because of
the freezing fraction concerning the unity.
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Figure 9. Rime test matrix. Angle of attack: −5◦. Test cases: (a) 10 (b) 13 (c) 16 (d) 11 (e) 14 (f) 17 (g)
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Figure 10. Test conditions: angle of attack: −5◦. V = 70 m/s. LWC = 0.39 g/m3. MVD = 20 µm.
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Figure 11. Test conditions: angle of attack: −5◦. V = 70 m/s. LWC = 0.95 g/m3. MVD = 20 µm.

3.2. Convective Heat Coefficient in Rime Ice

One of the advantages of using FBGSs in rime ice is the easiness of the convective
heat transfer coefficient calculation. Considering the sensors’ positions i as the nodes of the
energy balance equation, it could be expressed as a function of the mass flux of impinging
water, recovery temperature, specific heat of ice in the surface cp,is, latent heat of fusion,
specific heat of water cpw, airspeed and surface profile detected by the sensors:

hi
c =

ṁi
im

Ti
sur − Ti

rec

(
ci

p,is(T
i
sur − Tmp) +

V2
∞
2

+ Li
f − ci

p,w(Tmp − T∞)

)
(24)

The Ti
sur are the FBGS values along the chord. The convective heat transfer coefficient

values compared with the laminar solution in Section 2.2.2 can be seen in Figure 12. The
value of the laminar heat transfer coefficient is accurate in the sensors located close to
the leading edge because the flow is completely laminar. After a certain point, the flow
begins to be turbulent and the convective heat transfer coefficient begins to depend on
other parameters like the equivalent sand-grain roughness height or Reynolds number
(K. Yamaguchi [12]). Figure 12 shows that the convective heat transfer coefficient could
be approximated as constant in the laminar region. The variations in the laminar region
are not as high as the differences of heat transfer coefficient between the laminar and the
turbulent regions.

It is shown that FBGS can be a very useful tool in order to predict where the transition
between laminar and turbulent flow is located. In this case, as can be seen in Figure 12,
the laminar to turbulent transition occurs at approximately 1 cm from the leading edge.
Other possible applications in the case of rime ice could be to determine an approximate
quantification of the convective heat transfer coefficient magnitude in the turbulent side. A
problem of quantifying the convective heat transfer coefficient using Equation (24) is the
ignorance of the exact value of the impinging water mass flow. It is impossible to determine
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an exact value of impinging water because the icing cloud is not uniform in the test section,
so the value is approximate.
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Figure 12. Convective heat transfer coefficient. Test cases: (a) 13 (b) 14 (c) 15 (d) 16 (e) 17 (f) 18.
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4. Liquid Water Content Evaluation Algorithm

Once the test temperature has reached the equilibrium temperature (Figure 6), the
temperature profile is represented along the chord. Knowing the true airspeed and the
angle of attack, a CFD model could be calculated (see Section 2.2.1). The LWC prediction
should be done using the sensors close to the stagnation point where the laminar flow is.
The problem is that, in a real case, the droplet size of the population is unknown so the
collection efficiency is impossible to calculate.

For certain conditions, collection efficiency is higher than 0.8 so high LWC accuracy
could be achieved. The conditions with high collection efficiencies were calculated using
the method laid out in reference [27] and represented in Figure 13.
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M
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β<0.8

Figure 13. Collection efficiency in function of the airspeed and of the MVD.

The LWC prediction procedure consists in calculating the impinging mass flow in the
stagnation point sensor using the impinging water mass flow mnode

im . Using Equation (5)
and simplifying it for the rime ice case, the impinging water mass flow is:

ṁnode
im =

hnode(Tnode
sur − Tnode

rec )

cnode
p,is (Tnode

sur − Tmp) +
V2

∞
2 + Lnode

f − cnode
pw (Tmp − T∞)

(25)

The collection efficiency of the problem is unknown so a β0 = 0.9 is selected because
it is between the minimum collection efficiency in the envelop β0 = 0.8 and the maximum
collection efficiency β0 = 1. Once the impinging water has been calculated, the LWC is:

LWC =
ṁim
Vβ0

(26)

The prediction results can be seen in Table 5. The errors are less than 20%. These errors
could be interpreted as very high, but they are normal. According to the SAE 5905 [28],
“the uniform icing cloud is defined as the area of the test section over which the LWC does
not vary by more than ±20% from the test section centerline LWC value”. The sensor
accuracy is inside the test error range, so the results are accurate.

In terms of modeling, glaze ice has the problem that the stagnation point temperature is
0 ◦C, for whatever LWC. It has the additional disadvantage of relative humidity dependence
(Messinger [6]), so using this method to predict glaze LWC is not accurate. While the exact
LWC value cannot be predicted, an assessment of the minimum LWC could be done. If the
equilibrium surface temperature of the airfoil reaches 0 ◦C, the liquid water content is the
one calculated from Equations (26) and (28) or higher. Another parameter that can be useful
in order to know the LWC order of magnitude is the airfoil points where temperatures are
0 ◦C. More airfoil surface with more than 0 ◦C implies higher water flow on the surface
and, therefore, more LWC.
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Table 5. Icing blade and predicted LWC comparison.

Predicted LWC (g/m3) Icing Blade LWC (g/m3) Error (%) MVD (µm)

0.46 0.39 18.55 20
0.76 0.65 16.27 20
0.68 0.65 4.89 20
0.79 0.95 16.57 20
0.87 0.95 8.52 20
0.38 0.35 8.73 40
0.63 0.62 2.36 40
0.7 0.62 12.6 40

0.95 0.92 3.04 40
0.89 0.92 2.8 40
0.39 0.33 19.05 70
0.73 0.64 13.88 70
0.69 0.64 7.32 70
1.09 0.93 17.08 70
0.82 0.93 11.98 70

4.1. Ice Accretion Rate Algorithm

The accretion rate was calculated using the heat balance Equation (5). In rime ice, the
impinging water mass flow calculation (Equation (28)) is necessary. Once the impinging
water mass flow has been calculated, the ice accretion rate (d∆/dτ) is:

d∆
dτ

=
ṁim
ρice

(27)

Combining Equations (27) and (28), the ice accretion rate can be known:

d∆
dτ

=
h0(T0

sur − T0
rec)

ρice

(
c0

p,is(T
0
sur − Tmp) +

V2
∞
2 + L0

f − c0
pw(Tmp − T∞)

) (28)

This variable does not depend on the liquid water content, the stagnation collection
efficiency or the freezing fraction, so the value is expected to be more accurate. The
total temperature of the test is the leading edge sensor temperature before nebulization.
In Table 6 the ice accretion rates of different tests can be seen. The ice accretion rate is
calculated dividing the ice thickness during the test with the test duration.

Table 6. Ice Accretion Rate prediction.

MVD LWC Analytical Accretion Measured Accretion Error
(µm) (g/m3) Rate (mm/min) Rate (mm/min) (%)

20 0.39 1.07 1.05 2.0
20 0.65 1.79 1.57 14.3
20 0.95 2.51 3.05 17.8
40 0.35 0.94 1.05 11.0
40 0.62 1.7 1.77 3.8
40 0.92 3.64 3.07 18.9
70 0.33 1.04 1.21 13.7
70 0.64 2.31 1.97 17.2

Using the ice accretion rate, it is possible to know approximately the ice geometry in
the airfoil, applying Equation (28) in all sensors. The results of the ice accretion prediction
can be seen in Figure 14. The results seem accurate for rime ice accretion.
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Figure 14. Ice accretion predictions. Test cases: (a) 13, (b) 14, (c) 15, (d) 16, (e) 17, (f) 18.

5. Conclusions

An optic fiber with eight FBGSs was integrated in each of the upper and lower surfaces
of a cut NACA 0012 aerodynamic profile in order to measure the temperature in sixteen
points along its chord. An icing test campaign was performed in the INTA IWT, some of
them in hazardous SLD conditions. Analytical and experimental results, using a Messinger
heat and mass balance model and the FBGS measurements show a good correlation of
the theoretical and empiric data. The icing prediction temperatures obtained with the
integrated FBGSs along the chord are quite accurate near the leading edge, demonstrating
that these optical sensors enable fast and precise detection of the beginning and the end
of the icing hazard, the evaluation of the liquid water content and the ice accretion rate.
Downstream from the leading edge an increment of errors occur that are caused by the
aerodynamic turbulence. The LWC predictions obtained in the test campaign show a
maximum error of 20% for Table 3 icing cloud conditions. The ice accretion rate presents
acceptable results as well.The uncertainties that are obtained may be caused by not knowing
cloud non-uniformity, collection efficiency or the heat transfer coefficient.

Finally, it is important to note that the integrated fiber optic sensors can be used
not only for the ice detection and icing condition evaluation in aircrafts, which is what
they were initially developed for, but can help also to know and properly interpret some
physical events during IWT tests. Knowing the surface temperature during an icing test
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can give much information about the heat transfer events and, therefore, the ice accretion
in the airfoil surface in the first moments of the flogging cycles. An integration of the
tiny fiber optic sensors in these IWT test models can be carried out normally without a
significant influence in its aerodynamic performance.
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Abbreviations
The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
FBGS Fiber Bragg Grating Sensor
IAR Ice Accretion Rate
IWT Icing Wind Tunnel
LWC Liquid Water Content (g m−3)
MVD Median Volume Diameter (µm)
SLD Supercooled Large Droplets

Nomenclature

cp,a Air specific heat (J m−2 kg−1)
cp,i Ice specific heat (J m−2 kg−1)
cp,w water specific heat (J m−2 kg−1)
Da,v Mass diffusivity (m2/s)
f freezing fraction
hcon Convective heat transfer coefficient (W m−2 K−1)
hg Mass Transfer coefficient (m/s)
ka Air thermal conductivity (W K−1 m−1)
Llat water latent energy of fusion (J/kg)
Lv Latent heat of vaporization (J/kg)
Le Lewis number
LWC Liquid Water Content (g/m3)
ṁice mass flux of ice formed in the surface (kg m−2 s−1)
ṁim mass flux of water that impinges the surface (kg m−2 s−1)
ṁrb mass flux that enters in the control volume (kg m−2 s−1)
ṁout the mass flux that leaves that control volume (kg m−2 s−1)
ṁevap the mass flux of water that is evaporated (kg m−2 s−1)
Pvs Saturated Vapour pressure (Pa)
Pst Static Pressure (Pa)
qlat impinging water gained Fusion heat flux (W m−2)
qevap Water evaporation loss heat flux (W m−2)
qsens Sensible heat flux (W m−2)
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qk Kinetic droplet gained heat flux (W m−2)
qnc Net convective heat flux (W m−2)
qc Convective droplet heat flux (W m−2)
q f ric frictional gained heat flux (W m−2)
s Surface distance (m)
Tst Static temperature (K)
Tmp Melting point temperature (K)
Trec Recovery temperature (K)
Tsur Surface temperature (K)
Ve Airspeed in the exterior of the boundary layer (m/s)
V∞ Airspeed (m/s)
x Horizontal distance (m)

Greek Letters

α thermal expansion (1/K)
β Collection efficiency
δT Thermal boundary layer (m)
∆ Ice thickness (m)
λB Reflected wavelength (nm)
µa dinamic viscosity (N s m−2)
νa kinematic viscosity (m2 s−1)
ρa Air density (kg/m3)
ρvs Water Vapor density at the surface (kg/m3)
ρve Water Vapor density in the air (kg/m3)
τ time (s)
φ Relative humidity
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