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Abstract: A desirable photographic reproduction method should have the ability to compress high-
dynamic-range images to low-dynamic-range displays that faithfully preserve all visual 
information. However, during the compression process, most reproduction methods face challenges 
in striking a balance between maintaining global contrast and retaining majority of local details in 
a real-world scene. To address this problem, this study proposes a new photographic reproduction 
method that can smoothly take global and local features into account. First, a highlight/shadow 
region detection scheme is used to obtain prior information to generate a weight map. Second, a 
mutually hybrid histogram analysis is performed to extract global/local features in parallel. Third, 
we propose a feature fusion scheme to construct the virtual combined histogram, which is achieved 
by adaptively fusing global/local features through the use of Gaussian mixtures according to the 
weight map. Finally, the virtual combined histogram is used to formulate the pixel-wise mapping 
function. As both global and local features are simultaneously considered, the output image has a 
natural and visually pleasing appearance. The experimental results demonstrated the effectiveness 
of the proposed method and the superiority over other seven state-of-the-art methods. 

Keywords: photographic reproduction; vision sensing technique; feature fusion; human visual 
system; virtual combined histogram; histogram equalization 
 

1. Introduction 
In the real world, the luminance intensity of environmental scenes has a very wide 

range. From glimmer starlight to blazing sunlight, the luminance variation could span 
over ten orders of magnitude. The human visual system (HVS) has an outstanding ability 
to adapt and perceive about 5~6 orders of magnitude. Previously, most consumer cameras 
can only capture nearly 2~3 orders of luminance variation. Due to the limited dynamic 
range, the captured image severely suffers from detail loss, especially in highlight and 
shadow regions [1]. 

With advancements in optical sensing, high dynamic range (HDR) sensors that can 
capture the entire luminance range of a real-world scene have been developed [2]. For 
example, some latest high-end digital single-lens reflex cameras, or some devised sensors 
including multiple sensor elements with different exposure levels, are able to capture 
entire details of both dark and bright parts of the scene simultaneously. Although the cost 
of such HDR sensors is high, the captured HDR images can contain a larger bit depth of 
the image than 24-bit depth per pixel. Typically, HDR images are stored in floating point 
and require 32-bit depth per pixel. 
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Despite the increasing availability of HDR images, presenting HDR scenes on 
traditional low dynamic range (LDR) or standard dynamic range (SDR) displays remains 
problematic because an SDR display can only display 256 brightness levels. The high cost 
and the under-developing display technology remain major obstacles to the mass 
production of HDR display devices. To solve this problem, the photographic reproduction 
method becomes an essential technique and has been a prominent subject in the field of 
image sensing research or the image-based applications [3]. 

2. Related Work 
A photographic reproduction method should not only provide contrast adjustment 

but also the preservation of the luminance, details, and even the vividness of the colors of 
the original image. According to their modeling characteristics, most photographic 
reproduction methods are usually divided into the following three categories. First, the 
global-based photographic reproduction methods perform the same mapping function for 
all image pixels based on the global features of the input HDR image. In other words, an 
input pixel value produces a specific output value, regardless of its position. Both linear 
mapping functions and different nonlinear mapping functions are used to mimic the HVS. 
Reinhard and Devlin [4] proposed a global-based reproduction method using 
electrophysiology and the photoreceptor model that reflects human perception. It is a fast 
algorithm; however, the detail preserving is not considered. Mantiuk et al. [5] presented 
a piece-wise linear reproduction method that minimizes visible distortions by considering 
the penalty using the HVS contrast perception model. To reproduce optimal scene-
referred images on a range of display devices, their method can adjust the image content 
by considering the display characteristics and surrounding illumination. However, the 
local operation, such as sharpening, is not considered. In [6], Kim et al. proposed 
integrating a modified weighted least square filter with mapping, which can preserve 
detail and maintain the global contrast through the competitive learning neural network. 
Furthermore, the color shift issue is solved by utilizing the Helmholtz–Kohlrausch effect 
in the light correction stage. Gommelet et al. [7] designed a global-based reproduction 
method to address the optimal rate-distortion problem, which typically occurs in the 
reconstruction of an HDR signal. In [7], a novel distortion model was built that takes the 
image gradient into account. Khan et al. [8] proposed a reproduction method that uses the 
features of HVS and the threshold versus intensity curve to adjust the individual bin-
widths of the input image histogram. A global-based reproduction function is built using 
the modified histogram; however, the local information of an image is not used during 
the reproduction. 

The overall pros of the global-based photographic reproduction methods are the 
capability to preserve the global contrast of the original images, and in addition, the 
computational complexity is low. However, the global compression of the dynamic range 
is typically accompanied by the suppression of local contrast, which is the inevitable con 
of the global-based methods. Moreover, especially for the scenes with a large difference 
in brightness, the bright and dark regions are the most severely sacrificed by detail loss 
because, compared to the entire dynamic range, the local intensity variation in such 
regions are almost ignorable. 

To overcome the shortcomings of global-based methods, local-based photographic 
reproduction methods are proposed. For the local-based reproduction methods, different 
reproduction functions are designed to each pixel based on the pixel position and its 
surrounding pixels. Different pixel positions can share the same intensity but may relate 
to different reproduced values. Ahn et al. [9] proposed a local-based reproduction 
method, which utilizes center/surround retinex theory to adapt the local contrast. This 
work demonstrates superior contrast enhancement in the scenes with low log-average 
luminance. Nevertheless, in [9], sometimes over-enhancement occurs in the details. Tan 
et al. [10] proposed a halo-free reproduction method, which applies using an L0 
smoothing filter to mimic the adaptability of the HVS mechanism. Cyriac et al. [11] 
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presented a two-stage reproduction method, where the first stage is a simple gamma 
curve for global compression, and the second stage is a local-based reproduction scheme 
using psychophysical models for the visual cortex. However, the local-based processing 
in the second stage tends to degrade the overall naturalness. Croci et al. [12] proposed a 
reproduction method to reproduce the HDR video, where a tone-curve-space alternative 
is used as a substitute for the temporal per-pixel coherency to increase the computational 
efficiency. Li et al. [13] presented a clustering-based content and color adaptive 
reproduction method, which divides the input image into patches. By analyzing the local 
content information (e.g., patch mean, color variation, and color structure), the patches 
are formed into clusters, and the tone mapping is performed via a more compact domain. 
However, the patch-based processing tends to ignore the image information as a whole. 

Due to considering local features, the typical pro of the local-based photographic 
reproduction methods is to provide more local details in dark and bright regions compared 
with global-based reproduction methods. Therefore, the local-based methods are suitable to 
the scenes where a large brightness difference exists. However, they are vulnerable to 
artifacts such as halo effects and block effects, which cause an unnatural overall appearance. 
Moreover, the global contrast decreases because of the lack of global features. 

As both global- and local-based photographic reproduction methods have some 
drawbacks, some researchers have proposed decomposition-based photographic 
reproduction methods, which use decomposition techniques to obtain large-scale image 
structures (i.e., base layers) and small-scale image textures (i.e., detail layers), and thus, 
global-based (and local-based) approaches can be used for specific layers accordingly. Gu 
et al. [14] designed a local edge-preserving filter that has a locally adaptive property. 
Based on the filter, a retinex-based approach is presented, where the image is decomposed 
into one base layer and three detail layers for the reproduction manipulation. Barai et al. 
[15] proposed an HVS-inspired reproduction method, where the saliency map 
information is fed into the guided filter for image decomposition. Then, global 
compression and detail enhancement are performed in the base layer and the detail layer, 
respectively. Mezeni and Saranovac [16] presented an enhanced reproduction method, 
which decomposes the image into base/detail layers. Then, the base layer is scaled 
partially in the linear domain and partially in the logarithmic domain, and a detail 
enhancement is performed in the dark areas of the detail layer. However, when generating 
the output image, it is hard to fuse individual layers suitably. Liang et al. [17] presented a 
hybrid layer decomposition model for photographic reproduction, where a sparsity term 
is used to model the piecewise smoothness of the base layer, and the other sparsity term 
with a structural prior is used to model the piecewise constant effect of the detail layer. 
Miao et al. [18] presented a macro–micro-modeling reproduction method, in which multi-
layer decomposition is utilized from the perspective of the micro model, and content-
based global compression is utilized from the perspective of the macro model. The 
representative pro of the decomposition-based photographic reproduction methods is the 
flexibility to deal with different base and detail layers separately. However, the con of 
such a method is the difficulty of blending individual layers smoothly. That is, some blurs 
tend to occur in the final layer fusion process. 

To exemplify the superiority of this work, Figure 1 shows a visual comparison among 
the global-based, local-based, decomposition-based methods, and our proposed method. 
In view of the abovementioned shortcomings of the global-based, local-based, and 
decomposition-based methods, this paper presents a new photographic reproduction 
method, which has the following three main advantages: 
• We propose using a hybrid histogram analysis scheme to extract mutually 

compatible global/local features in parallel, and a feature fusion scheme to construct 
the virtual combined histogram, which allows us to inherit the superiority of the 
global-based (and the local-based) methods smoothly. 

• Instead of performing late fusion (i.e., finally fusing all the processed layers as the 
decomposition-based methods do), the proposed virtual combined histogram 
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equalization scheme can fuse global/local features in an earlier stage, which increases 
the naturalness of the output image. 

• Owning to the difference between the dark/bright regions and normal-luminance 
regions, we propose using the weight map to adaptively modify the weights locally 
in the feature fusion. 

 
Figure 1. A rough comparison among a global-based reproduction method [8] (bottom left), a local-based reproduction 
method [9] (top left), a decomposition-based reproduction method [18] (right), and our proposed method (middle). This 
example shows that our method inherits the advantages of both global- and local-based reproduction method, while avoiding 
the unnaturalness issue of decomposition-based reproduction method (due to processing different layers separately. 

3. Proposed Approach 
3.1. Pre-Processing for the Highlight/Shadow Detection 

Figure 2 shows the overall framework of this study. The proposed method is designed 
due to the strategy of improving the visibility of highlight and shadow areas, while 
maintaining the global naturalness of the original image. In the pre-processing stage, a quick 
photographic reproduction method [19] is applied to the original HDR signal to obtain a 
pilot image ( 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ), which is a preliminary reproduced result with a simple global 
compression. Although the pilot image might suffer from detail loss locally, it is good 
enough for us to distinguish the dark/bright regions from the normal-luminance regions. 

 
Figure 2. Flowchart of the proposed method, where the blue bold words indicate the section numbers. 
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Subsequently, we modify the work of [20] for highlight/shadow detection as follows. 
First, a specular-free image (𝐼𝐼𝑆𝑆𝑆𝑆) is defined as follows: 

𝐼𝐼𝑐𝑐𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) = 𝐼𝐼𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑗𝑗) − 𝐼𝐼𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, 𝑗𝑗), (1) 

where the subscript 𝑐𝑐 ∈ 𝑅𝑅,𝐺𝐺,𝐵𝐵 indicates one of the RGB color channels, and the dark 
channel (𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) is defined as follows: 

𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖, 𝑗𝑗) = min
𝑐𝑐∈𝑅𝑅,𝐺𝐺,𝐵𝐵

 𝐼𝐼𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑗𝑗) . (2) 

As 𝐼𝐼𝑆𝑆𝑆𝑆 is obtained by subtracting the minimum of RGB values from 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, at least 
one of the three channels in 𝐼𝐼𝑆𝑆𝑆𝑆 equals zero at each pixel position. Then, the modified 
specular-free (MSF) image is obtained by adding the average of the dark channel image 
to the specular-free image as follows: 

𝐼𝐼𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖, 𝑗𝑗) = 𝐼𝐼𝐷̅𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐼𝐼𝑐𝑐𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗), (3) 

In [20], the difference between the MSF image and the pilot image can be used to 
detect the highlight regions in the image. With this feature, we find that if we multiply a 
correction parameter (𝜃𝜃) with the threshold and compare it with the pilot image, we can 
also detect shadow regions. Therefore, the proposed highlight/shadow detection scheme 
can be expressed as follows: 

pixel 𝜖𝜖 �
highlight, if 𝛿𝛿𝑐𝑐(𝑖𝑖, 𝑗𝑗) > 𝑡𝑡ℎ𝑟𝑟 for all 𝑐𝑐
shadow,            if 𝐼𝐼𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑗𝑗) < 𝜃𝜃 ∙ 𝑡𝑡ℎ𝑟𝑟 for all 𝑐𝑐
midtone, otherwise

 . (4) 

where 𝛿𝛿𝑐𝑐 = 𝐼𝐼𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐼𝐼𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜃𝜃 = 0.8 is an empirical value (from our experiments, 0.75 ≤
𝜃𝜃 ≤ 0.85 would produce accurate detection result), and the threshold value ( 𝑡𝑡ℎ𝑟𝑟 ) is 
obtained by applying the Otsu method in the pilot image. The Otsu method is an 
automatic way of creating binarization in image processing, and we find that it is suitable 
to determine the threshold in Equation (4). Figure 3 shows an example of the 
highlight/shadow detection results, which will be used as the estimate of the steering 
weight coefficients in the feature fusion stage (described later in Section 3.4). 

  
(a) (b) 

Figure 3. An example of highlight/shadow detection. (a) The pilot image (pre-processed using the method of [19]). (b) 
Detection results from the proposed method, where the pink and cyan areas indicate highlights and shadows, respectively. 

3.2. Luminance Separation and Initial Logarithmically Normalization 
As luminance information is mainly affected by the dynamic range, distinguishing 

luminance and chrominance from the original HDR signal is a common approach in 
photographic reproduction. In this study, luminance information was extracted by 
converting from RGB color space to CIE XYZ color space through the ITU-R BT.709 
standard.  

𝐿𝐿𝑖𝑖𝑖𝑖 = 0.2126 ∙ 𝐼𝐼𝑅𝑅𝐻𝐻 + 0.7152 ∙ 𝐼𝐼𝐺𝐺𝐻𝐻 + 0.0722 ∙ 𝐼𝐼𝐵𝐵𝐻𝐻 ,  (5) 

where 𝐼𝐼𝐻𝐻  indicates the input HDR signal and 𝐿𝐿𝑖𝑖𝑖𝑖  indicates the corresponding 
luminance, which contains no chromatic information. 
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For different scenes, their dynamic range may vary quite greatly. To avoid the 
inconsistent dynamic range issue, the logarithmic function is a typical process to compress 
the luminance domain according to the following Weber–Fechner theory: 

𝐿𝐿log(𝑖𝑖, 𝑗𝑗) = log10(𝐿𝐿𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗) + 10−6), (6) 

where 10−6 is added to avoid the singularity error occurring as the input pixel luminance 
equals zero. Furthermore, to match the property that perceived brightness is proportional 
to the logarithm of the actual luminance intensity, its logarithmically normalized value 
can be expressed as follows: 

𝐿𝐿log_𝑛𝑛(𝑖𝑖, 𝑗𝑗) =
𝐿𝐿log(𝑖𝑖, 𝑗𝑗)  −  min�𝐿𝐿log(𝑖𝑖, 𝑗𝑗)�

max �𝐿𝐿log(𝑖𝑖, 𝑗𝑗)�  −  min �𝐿𝐿log(𝑖𝑖, 𝑗𝑗)�
 ,  (7) 

where max �𝐿𝐿log(𝑖𝑖, 𝑗𝑗)� and min �𝐿𝐿log(𝑖𝑖, 𝑗𝑗)� represent the maximum and minimum values 
of 𝐿𝐿log(𝑖𝑖, 𝑗𝑗) , respectively. To adapt various lighting conditions, the normalized 
logarithmic luminance value (𝐿𝐿log _𝑛𝑛(𝑖𝑖, 𝑗𝑗)), which always ranges between 0 and 1, are 
analyzed in the following steps. 

3.3. Feature Extraction through Mutually Hybrid Histogram Analysis 
The main challenge in photographic reproduction is to preserve both the global and 

local features of the original image, i.e., maintaining both the entire luminance balance 
and local detail information. In this study, the abovementioned features are neither the 
feature points used in computer vision, nor the feature vectors used in machine learning. 
The feature represents the general property of the entire image (i.e., global feature) or of 
individual local regions (i.e., local features) that are needed in the proposed photographic 
reproduction procedure. 

Some proposed reproduction methods perform the global-based (and local-based) 
processes separately; in other words, they first apply a global luminance adaption and 
then perform local detail enhancement. However, we argue that this type of two-step 
strategy may not be the optimal solution because the goals of these two steps are 
inherently conflicting: one is to enhance the global features, and the other one is to 
enhance the local features. 

As shown in Figure 4, we propose a parallel framework to simultaneously analyze 
the global histogram (constructed by the entire image) and local histogram (constructed 
by individual local image patches). The underlying concept of the proposed mutually 
hybrid histogram analysis is to extract the mutually compatible features from two 
statistical approaches. 
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Figure 4. Proposed mutually hybrid histogram analysis approach. We analyze the global and local histograms 
simultaneously using different statistical methods, i.e., Gaussian mixture model for the former and stratified sampling for 
the latter. Although different statistical methods are applied, we aim to extract the mutually compatible features to form 
a virtual combined histogram (introduced later in Section 3.4). 

3.3.1. Global Region Analysis and Global Feature Extraction 
In global region analysis, the logarithmically normalized luminance plane is first 

transformed into a global histogram of 𝐾𝐾  levels with equal bin width, where 𝐾𝐾  is 
empirically set as one thousand. When divided by the total number of pixels in the image, 
the global histogram ℎ𝐺𝐺(𝑥𝑥𝑘𝑘) can be viewed as a probability density function of pixels. A 
parametric statistical method called the Gaussian mixture model (GMM) can then be used 
to structure ℎ𝐺𝐺(𝑥𝑥𝑘𝑘) as a weighted summation of three Gaussian functions as follows:  

ℎ𝐺𝐺(𝑥𝑥𝑘𝑘) = �𝛼𝛼𝑛𝑛𝐺𝐺 ∙
3

𝑛𝑛=1

𝑔𝑔(𝑥𝑥𝑘𝑘, 𝜇𝜇𝑛𝑛𝐺𝐺 ,𝜎𝜎𝑛𝑛𝐺𝐺), 
(8) 

𝑔𝑔(𝑥𝑥𝑘𝑘, 𝜇𝜇𝑛𝑛𝐺𝐺 ,𝜎𝜎𝑛𝑛𝐺𝐺) = 1
𝜎𝜎𝑛𝑛𝐺𝐺√2𝜋𝜋

exp �−�𝑥𝑥𝑘𝑘−𝜇𝜇𝑛𝑛
𝐺𝐺�

2

2�𝜎𝜎𝑛𝑛𝐺𝐺�
2 � ,  (9) 

where {𝑥𝑥𝑘𝑘, 𝑘𝑘 = 0,1, … ,𝐾𝐾 − 1} indicates the quantized reproduced levels of 𝐿𝐿log _𝑛𝑛 , and 
𝛼𝛼𝑛𝑛𝐺𝐺 ,𝑛𝑛 = 1,2,3 is the weight of the 𝑛𝑛-th Gaussian function. The reason for using three 
Gaussian functions to approximate ℎ𝐺𝐺(𝑥𝑥𝑘𝑘) is because in photographic reproduction, we 
normally concern the following three main parts: the highlight area, midtone area, and 
shadow area. From Equation (8), we refer to the global feature set as the following: 

𝜃𝜃𝐺𝐺 = {𝛼𝛼𝑛𝑛𝐺𝐺 , 𝜇𝜇𝑛𝑛𝐺𝐺 ,𝜎𝜎𝑛𝑛𝐺𝐺|𝑛𝑛 = 1,2,3}  . (10) 

The expectation-maximization (EM) algorithm [21] was adopted to solve the GMM 
estimation problem, which is used to find the maximum likelihood estimates of 
parameters in the statistical models involving unobserved latent variables. In this study, 
the likelihood function is defined as follows: 

Likelihood(𝜃𝜃𝐺𝐺) = ln ��ℎ𝐺𝐺(𝑥𝑥𝑘𝑘)
𝐾𝐾−1

𝐾𝐾=0

� = � ln ℎ𝐺𝐺(𝑥𝑥𝑘𝑘)
𝐾𝐾−1

𝐾𝐾=0

 . 
(11) 

To efficiently find the optimal 𝜃𝜃𝐺𝐺, the derivatives of the log-likelihood with respect 
to the initial 𝛼𝛼𝑛𝑛𝐺𝐺 , 𝜇𝜇𝑛𝑛𝐺𝐺,and 𝜎𝜎𝑛𝑛𝐺𝐺 are, respectively, set as zero (i.e., the expectation step), which 
yields a new parameter set of GMM (i.e., the maximization step). The EM algorithm 
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iteratively switches between the expectation step and the maximization step until it 
converges (Please refer to [21] for the details of EM). 

3.3.2. Local Region Analysis and Local Feature Extraction 
In local region analysis, a sliding window scheme is adopted to visit each individual 

local region in raster scan order. Figure 5 illustrates the local region analysis, where a local 
region is of size 𝑀𝑀 × 𝑀𝑀 (𝑀𝑀 = 129 as the default) and is centered at the current processing 
position (𝑖𝑖, 𝑗𝑗). Each local region is first divided into sixteen units with a size of 32 × 32 
pixels, and 2 × 2 units constitute a partially overlapped subblock, e.g., the orange (or the 
green) square shown in Figure 5.  

   
Figure 5. Local region analysis, where the orange and the green squares, respectively, indicate the 
first and the second partially overlapped subblocks of a local region (the pink square with size of 
𝑀𝑀 × 𝑀𝑀). At each processing position, local features are extracted by the statistical analysis of nine 
subblocks defined in Equations (12) and (13), and its simplification is achieved by utilizing the 
summed-area table defined in Equations (16) and (17). 

With consideration of the estimation accuracy and computation cost, each local 
region is subsampled into nine partially overlapping subblocks (𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠) that correspond to 
the two corner sets. First, the top-left (TL) corner set can be expressed by the following: 

{𝐶𝐶𝑛𝑛𝑇𝑇𝑇𝑇,𝑛𝑛 = 1,2, … ,9} . (12) 

where 𝐶𝐶1𝑇𝑇𝑇𝑇 = (𝑖𝑖 − ⌊𝑀𝑀/2⌋, 𝑗𝑗 − ⌊𝑀𝑀/2⌋) , 𝐶𝐶2𝑇𝑇𝑇𝑇 = (𝑖𝑖 − ⌊𝑀𝑀/2⌋, 𝑗𝑗 − ⌊𝑀𝑀/4⌋) , 𝐶𝐶3𝑇𝑇𝑇𝑇 = (𝑖𝑖 − ⌊𝑀𝑀/2⌋, 𝑗𝑗 +
1) , 𝐶𝐶4𝑇𝑇𝑇𝑇 = (𝑖𝑖 − ⌊𝑀𝑀/4⌋, 𝑗𝑗 − ⌊𝑀𝑀/2⌋) , 𝐶𝐶5𝑇𝑇𝑇𝑇 = (𝑖𝑖 − ⌊𝑀𝑀/4⌋, 𝑗𝑗 − ⌊𝑀𝑀/4⌋) , 𝐶𝐶6𝑇𝑇𝑇𝑇 = (𝑖𝑖 − ⌊𝑀𝑀/4⌋, 𝑗𝑗 + 1) , 
𝐶𝐶7𝑇𝑇𝑇𝑇 = (𝑖𝑖 + 1, 𝑗𝑗 − ⌊𝑀𝑀/2⌋) , 𝐶𝐶8𝑇𝑇𝑇𝑇 = (𝑖𝑖 + 1, 𝑗𝑗 − ⌊𝑀𝑀/4⌋) , and 𝐶𝐶9𝑇𝑇𝑇𝑇 = (𝑖𝑖 + 1, 𝑗𝑗 + 1) . Second, the 
bottom-right (BR) corner set can be expressed by the following: 

{𝐶𝐶𝑛𝑛𝐵𝐵𝐵𝐵 ,𝑛𝑛 = 1,2, … ,9} . (13) 

where 𝐶𝐶1𝐵𝐵𝐵𝐵 = (𝑖𝑖 − 1, 𝑗𝑗 − 1), 𝐶𝐶2𝐵𝐵𝐵𝐵 = (𝑖𝑖 − 1, 𝑗𝑗 + ⌊𝑀𝑀/4⌋), 𝐶𝐶3𝐵𝐵𝐵𝐵 = (𝑖𝑖 − 1, 𝑗𝑗 + ⌊𝑀𝑀/2⌋), 𝐶𝐶4𝐵𝐵𝐵𝐵 = (𝑖𝑖 +
⌊𝑀𝑀/4⌋, 𝑗𝑗 − 1), 𝐶𝐶5𝐵𝐵𝐵𝐵 = (𝑖𝑖 + ⌊𝑀𝑀/4⌋, 𝑗𝑗 + ⌊𝑀𝑀/4⌋), 𝐶𝐶6𝐵𝐵𝐵𝐵 = (𝑖𝑖 + ⌊𝑀𝑀/4⌋, 𝑗𝑗 + ⌊𝑀𝑀/2⌋), 𝐶𝐶7𝐵𝐵𝐵𝐵 = (𝑖𝑖 + ⌊𝑀𝑀/
2⌋, 𝑗𝑗 − 1) , 𝐶𝐶8𝐵𝐵𝐵𝐵 = (𝑖𝑖 + ⌊𝑀𝑀/2⌋, 𝑗𝑗 + ⌊𝑀𝑀/4⌋) , and 𝐶𝐶9𝐵𝐵𝐵𝐵 = (𝑖𝑖 + ⌊𝑀𝑀/2⌋, 𝑗𝑗 + ⌊𝑀𝑀/2⌋) . Each pair of 
(𝐶𝐶𝑛𝑛𝑇𝑇𝑇𝑇,𝐶𝐶𝑛𝑛𝐵𝐵𝐵𝐵)  specifies the 𝑛𝑛 -th subblock. To generate mutually compatible features 
(compatible to the global features) similar to Equation (8), this subsection aims to simulate 
each local histogram ℎ𝐿𝐿(𝑥𝑥𝑘𝑘) as a set of nine Gaussian functions 𝑔𝑔(𝑥𝑥𝑘𝑘, 𝜇𝜇𝑛𝑛𝐿𝐿 ,𝜎𝜎𝑛𝑛𝐿𝐿) and to find 
the local feature set as the following: 

𝜃𝜃𝐿𝐿 = {𝛼𝛼𝑛𝑛𝐿𝐿 ,𝜇𝜇𝑛𝑛𝐿𝐿 ,𝜎𝜎𝑛𝑛𝐿𝐿|𝑛𝑛 = 1, … ,9} .   (14) 

Instead of using GMM, we adopt another statistical method called stratified 
sampling, in which the entire block is divided into homogeneous subblocks (defined as 
strata). The reason for partially overlapping is to avoid image artifacts such as the blocking 
effect and the halo effect. The distribution of each subblock is intentionally simulated as a 
Gaussian function, where the subblock mean and the subblock standard deviation are 



Sensors 2021, 21, 6038 9 of 22 
 

 

treated as the corresponding 𝜇𝜇𝑛𝑛𝐿𝐿  and 𝜎𝜎𝑛𝑛𝐿𝐿  in Equation (14), respectively. In addition, a 
spatial kernel (K) is used to weight the spatial correlation as follows: 

𝐊𝐊 = �
𝛼𝛼1𝐿𝐿 𝛼𝛼2𝐿𝐿 𝛼𝛼3𝐿𝐿

𝛼𝛼4𝐿𝐿 𝛼𝛼5𝐿𝐿 𝛼𝛼6𝐿𝐿

𝛼𝛼7𝐿𝐿 𝛼𝛼8𝐿𝐿 𝛼𝛼9𝐿𝐿
� =

1
51

�
5 6 5
6 7 6
5 6 5

� . 
(15) 

Inspired by [22], we adopted a summed-area table approach [23] to reduce the 
computation complexity of local region analysis as follows. First, the summed-area table 
(𝑇𝑇𝑆𝑆𝑆𝑆) was generated by calculating the sum of all the pixels above and to the left of the 
current position as the following: 

𝑇𝑇𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) = � 𝐿𝐿log _𝑛𝑛(𝑖𝑖′, 𝑗𝑗′)
𝑖𝑖′≤𝑖𝑖,𝑗𝑗′≤𝑗𝑗

, (16) 

Similar to Equation (16), the square summed-area table (𝑇𝑇𝑆𝑆𝑆𝑆2 ) was generated by 
calculating the sum of all pixel squares as the following: 

𝑇𝑇𝑆𝑆𝑆𝑆2 (𝑖𝑖, 𝑗𝑗) = � 𝐿𝐿log _𝑛𝑛
2

𝑖𝑖′≤𝑖𝑖,𝑗𝑗′≤𝑗𝑗

(𝑖𝑖′, 𝑗𝑗′) (17) 

Notably, both 𝑇𝑇𝑆𝑆𝑆𝑆  and 𝑇𝑇𝑆𝑆𝑆𝑆2  could be efficiently computed through a one-pass 
procedure over the image by the following: 

𝑇𝑇𝑆𝑆𝑆𝑆
𝑝𝑝 (𝑖𝑖, 𝑗𝑗) = 𝐿𝐿log _𝑛𝑛

𝑝𝑝 (𝑖𝑖, 𝑗𝑗) + 𝑇𝑇𝑆𝑆𝑆𝑆
𝑝𝑝 (𝑖𝑖, 𝑗𝑗 − 1) 

                                           +𝑇𝑇𝑆𝑆𝑆𝑆
𝑝𝑝 (𝑖𝑖 − 1, 𝑗𝑗) − 𝑇𝑇𝑆𝑆𝑆𝑆

𝑝𝑝 (𝑖𝑖 − 1, 𝑗𝑗 − 1), 
(18) 

where 𝑝𝑝 = 1 and 2. 
Once the two summed-area tables were generated, the mean and standard deviation 

of each subblock could be quickly obtained by looking up 𝑇𝑇𝑆𝑆𝑆𝑆 and 𝑇𝑇𝑆𝑆𝑆𝑆2  because of the 
following closed-form solutions: 

(Mean) 𝜇𝜇 = 1
𝑁𝑁

[𝑇𝑇𝑆𝑆𝑆𝑆(𝑖𝑖1, 𝑗𝑗1) + 𝑇𝑇𝑆𝑆𝑆𝑆(𝑖𝑖0 − 1, 𝑗𝑗0 − 1)  

                                   −𝑇𝑇𝑆𝑆𝑆𝑆(𝑖𝑖0 − 1, 𝑗𝑗1) − 𝑇𝑇𝑆𝑆𝑆𝑆(𝑖𝑖0, 𝑗𝑗1 − 1)], 

(19) 

(Standard Deviation) 𝜎𝜎 = �
1
𝑁𝑁
�𝑆𝑆 −

𝜇𝜇2

𝑁𝑁
� , 

(20) 

where N is the number of pixels in the subblock, and 𝑆𝑆 = 𝑇𝑇𝑆𝑆𝑆𝑆2 (𝑖𝑖1, 𝑗𝑗1) + 𝑇𝑇𝑆𝑆𝑆𝑆2 (𝑖𝑖0 − 1, 𝑗𝑗0 − 1) −
𝑇𝑇𝑆𝑆𝑆𝑆2 (𝑖𝑖0 − 1, 𝑗𝑗1) − 𝑇𝑇𝑆𝑆𝑆𝑆2 (𝑖𝑖0, 𝑗𝑗1 − 1) . The four positions (𝑖𝑖0, 𝑗𝑗0), (𝑖𝑖0, 𝑗𝑗1), (𝑖𝑖1, 𝑗𝑗0),  and (𝑖𝑖1, 𝑗𝑗1) 
indicate the top-left, the top-right, the bottom-left, and the bottom-left corners of the 
subblock, respectively. 

3.4. Virtual Combined Histogram Construction Based on Feature Fusion 
Histogram equalization (HE) is a well-known method that by analyzing the 

histogram, pixel intensities can be arranged for enhancing the global contrast while 
maintaining image details by pursuing maximum entropy. As shown in the bottom row 
of Figure 4, both the global histogram and the highlight/shadow local histogram can be 
approximated (or characterized) as Gaussian mixtures. In this study, we propose a virtual 
combined histogram construction scheme based on nominally fusing the local/global 
Gaussian mixtures as follows. 

First, considering that there is minor detail loss in the normal-luminance regions and 
more detail loss in the under-luminance (or over-luminance) regions during the 
reproduction process, the highlight/shadow detection result of Equation (4) is adopted to 
generate a binary map, where the highlight/shadow pixels are recorded as “1”, and the 
midtone pixels are recorded as “0”. A weight map function ( 𝜏𝜏𝑖𝑖,𝑗𝑗 ) is generated by 
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convolving the binary map with a Gaussian low-pass filter (the Matlab inbuilt imgaussfilt 
function) to smooth the weighting difference. By doing so, we aim to make greater use of 
the local features (i.e., increase the weight map value in bright/dark regions) because the 
details of such regions are generally vulnerable to loss. The weight map function varies in 
different pixel positions because the weighting of local features should be region 
independent. Therefore, a virtual combined histogram is constructed by fusing global and 
local features through the following: 

ℎ𝑖𝑖,𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑘𝑘) = �𝜔𝜔1 − 𝜏𝜏𝑖𝑖,𝑗𝑗� ∙ ℎ𝐺𝐺(𝑥𝑥𝑘𝑘) + �𝜔𝜔2 + 𝜏𝜏𝑖𝑖,𝑗𝑗� ∙ ℎ𝑖𝑖,𝑗𝑗𝐿𝐿 (𝑥𝑥𝑘𝑘), (21) 

where the subscript (𝑖𝑖, 𝑗𝑗) indicate the pixel position, 𝜔𝜔1  and 𝜔𝜔2  represent the initial 
fusion weights (we set 𝜔𝜔1 = 0.4  and 𝜔𝜔2 = 0.6  empirically), and ℎ𝐺𝐺(𝑥𝑥𝑘𝑘) and ℎ𝑖𝑖,𝑗𝑗𝐿𝐿 (𝑥𝑥𝑘𝑘) 
indicate the global and the local Gaussian mixtures, respectively. Moreover, we set an 
upper bound to constrain the maximum 𝜏𝜏𝑖𝑖,𝑗𝑗 value as 0.2. That is, the minimum weight to 
the global Gaussian mixtures in Equation (21) is guaranteed to be 0.2 to preserve the 
overall naturalness. 

3.5. Luminance Modification and Color Recovery 
Through the virtual combined histogram, a look-up table is generated in the 

traditional HE manner with linear interpolation. That is, the output luminance plane was 
modified by the following: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗) = min(𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜) + �max(𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜) − min(𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜)� ∙ CDF𝑖𝑖,𝑗𝑗(𝑥𝑥𝑘𝑘), (22) 

where 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜  is the adjusted luminance and CDF𝑖𝑖,𝑗𝑗(𝑥𝑥𝑘𝑘)  is the Cumulative Distribution 
Function (CDF), which corresponds to the virtual combined histogram in Equation (21). 

Overall, the pixel-wise modification function was controlled by manipulating both 
the global and local features through the virtual combined histogram. As each combined 
histogram was a summation of weighted Gaussian functions, the property of the Gauss 
error function was used to simplify the calculation by using the following: 

Φ(𝑥𝑥𝑘𝑘 | 𝜇𝜇,𝜎𝜎) = 1
2

+ 1
2
𝐸𝐸𝐸𝐸𝐸𝐸 �𝑥𝑥−𝜇𝜇

√2𝜎𝜎
�,  (23) 

where Φ(𝑥𝑥𝑘𝑘 | 𝜇𝜇,𝜎𝜎)  is the Gaussian CDF with parameters (𝜇𝜇,𝜎𝜎) . The beauty of the 
proposed virtual combined histogram scheme is that during the luminance modification 
process, only the global (and local) feature sets are used. Actually, the construction of an 
entire histogram is not needed. 

Moreover, the Gauss error function 𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) can be approximated from [24] as the 
following:  

tanh �
77𝑥𝑥
75

+ �
116
25

� tanh �
147𝑥𝑥

73
− �

76
7
� tanh �

51𝑥𝑥
278

��� , (24) 

where tanh is the hyperbolic tangent function. Finally, the output reproduced LDR image 
was obtained from restoring the color information by the following: 

𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅,𝐺𝐺,𝐵𝐵(𝑖𝑖, 𝑗𝑗) = �
𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅,𝐺𝐺,𝐵𝐵(𝑖𝑖, 𝑗𝑗)

𝐿𝐿𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗)
�
𝑠𝑠

∙ 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗), 
(25) 

where 𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅,𝐺𝐺,𝐵𝐵 represents the three channel values of the original HDR image, 𝐿𝐿𝑖𝑖𝑖𝑖 and 
𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜  represent the luminance before and after the proposed method, and 𝑠𝑠  is the 
saturation factor (set as 0.6 in this study). 

4. Experimental Results 
In this section, we subjectively and objectively compare the effectiveness of the 

proposed method with those of the other photographic reproduction methods to confirm 
whether it affords more advantages than these methods. We selected seven classical and 
state-of-the-art methods for our experiments, including the following global-based 
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reproduction method: Reinhard et al. [4] (published in 2005); the following three local-
based reproduction methods: Ahn et al. [9] (published in 2013), Li et al. [13] (published in 
2018), and Gao et al. [25] (published in 2020); and the following three decomposition-
based reproduction methods: Gu et al. [14] (published in 2013), Liang et al. [17] (published 
in 2018), and Miao et al. [18] (published in 2019). For a comparison of the computational 
complexity, taking the image memorial (with size of 768 × 512) as an example, the 
processing time needed to generate a reproduced image is 0.252 s (in [4]), 0.533 s (in [9]), 
5.301 s (in [13]), 0.627 s (in [25]), 0.788 s (in [14]), 2.189 s (in [17]), 0.733 s (in [18]), and 2.201 
s (in the proposed method). All the methods are adjusted with the default parameters 
based on the suggestion of the original papers. In addition, the software and CPU are 
MATLAB R2016a and Intel Core i7, respectively. 

4.1. Subjective Analysis 
In subjective analysis, the performance of different methods can be judged through 

side-by-side visual comparison, such as according to the amount of regional detail 
information, the naturalness, etc. The simple baseline LDR images shown in Figure 6 
indicate that a large luminance difference exists between the highlight and shadow areas 
of these test images; thus, many details are lost. 

  

(a) (b) 

 
(c) 

Figure 6. Baseline LDR images (processed using a simple linear compression), which illustrate the 
difficulty of photographic reproduction and can be compared with the results shown in Figures 7–
9. (a) Synagoguei. (b) Cadik_Desk02. (c) C33_Store. 

Figure 7 shows the reproduced results obtained using the Synagoguei test image. In 
Figure 7a, although the global brightness is balanced, the appearance of details is 
restricted by the global-based model. In Figure 7b, the regional scene performances in 
both the red and blue rectangles are poor and indistinct for the human eyes. In Figure 7c, 
the details of the shadow areas are preserved, whereas those of the bright area (such as 
the white dome) are almost imperceptible, and the tone of the entire image is monotonous 
and flat. In Figure 7d, the details of the red and blue rectangles are visible; however, the 
color of sky is oversaturated, resulting in a poor visual experience. In Figure 7e,f, although 
the details of the red and blue rectangles can be clearly seen, the naturalness is inevitably 
lost. As such methods are based on detail and base layer decomposition, image 
information tends to be overemphasized during decomposition and merging procedures. 
In Figure 7g, the details of the shadow areas (red and blue rectangles) are clear. However, 
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the global contrast is unnatural: the highlight sky region is darkened, whereas the shadow 
areas are brightened, thus degrading the overall visual quality. In Figure 7h, our method 
shows advantages in preserving the details of the highlight and shadow areas because the 
proposed virtual combined histogram increases the pixel weights of local features for the 
highlight and shadow areas. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) (h) 

Figure 7. Visual comparison using the test image Synagoguei. (a) Result of [4]. (b) Result of [9]. (c) 
Result of [13]. (d) Result of [25]. (e) Result of [14]. (f)Result of [17]. (g) Result of [18]. (h) Result of 
the proposed method. 

Figure 8 shows the reproduced results obtained using the Cadik_Desk02 test image. 
It is an indoor scene in which the lamp causes an extreme luminance difference in the 
captured image. In Figure 8a, the text on the book is barely perceptible because of the 
strong lighting. In Figure 8b,c, the detailed texture of the book is maintained; however, 
the global contrast in both figures is unbalanced, and the color tone is flat. In Figure 8d, 
the details are slightly preserved; however, some color shading occurs. In Figure 8e, the 
details are well retained; however, the overall appearance is over-sharpened (e.g., 
lampshade in red rectangle). This is because in the method of [14], the detail layer and 
base layer are processed separately, thereby overamplifying the detail information. In 
Figure 8f, the details are not evident (blue rectangle), and the global contrast is insufficient. 
In Figure 8g, although details are visible, the overall image appears unreal owing to the 
imbalance between the macro- and the micro-models. In Figure 8h, our method exhibits 
excellent naturalness of the image. Furthermore, because of the improved visibility of the 
highlight and shadow areas, more visual content is retained, and the overall color 
naturalness is satisfactory. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 8. Visual comparison using the test image Cadik_Desk02. (a) Result of [4]. (b) Result of [9]. 
(c) Result of [13]. (d) Result of [25]. (e) Result of [14]. (f) Result of [17]. (g) Result of [18]. (h) Result 
of the proposed method. 

Figure 9 shows the reproduced results obtained using the C33_Store test image. In 
Figure 9a, the detailed information of the red and blue rectangles is lost as a result of 
global-based processing. In Figure 9b, although the details on the right side are more 
visible than those in Figure 9a, the regional details of the red rectangle are lost as a result 
of insufficient brightness. In Figure 9c,e, detailed information is perceptible but the degree 
of naturalness is low and the visual effects are not rich enough. In Figure 9e, enhanced 
smoothing is performed without consideration of the spatial correlation of the detail layer, 
leading to sharper and less-natural images. In Figure 9d, the detailed information of the 
red rectangle is slightly visible; however, the color is not vivid enough and lacks global 
contrast. In Figure 9f, although the overall appearance is natural, the visibility and 
sharpness in the red and blue rectangles areas are insufficient. In Figure 9g, the global 
contrast is good and the details of the highlight (i.e., blue rectangle) and shadow (i.e., red 
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rectangle) areas are visible; nevertheless, the image is somewhat unnatural due to the lack 
of global contrast. In Figure 9h, our method demonstrates favorable visual richness 
because both the global and local characteristics are simultaneously considered through 
the construction of a virtual combined histogram. Consequently, the details in the 
highlight and shadow areas are clearly presented and the contrast and color naturalness 
of the entire image are improved. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. Visual comparison using the test image C33_Store. (a) Result of [4]. (b) Result of [9]. (c) 
Result of [13]. (d) Result of [25]. (e) Result of [14]. (f)Result of [17]. (g) Result of [18]. (h) Result of 
the proposed method. 
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4.2. Objective Analysis 
In addition to the described subjective analysis, several objective quality indices were 

also applied to evaluate whether our method outperforms the other algorithms. The first 
quality index is called the tone-mapped image quality index (TMQI) [26]. The TMQI 
evaluates the quality of the reproduced images in terms of the following three aspects: 
structural similarity (TMQI-S), naturalness (TMQI-N), and overall quality (TMQI-Q) as 
follows. The TMQI-S value can be expressed by the following: 

𝑆𝑆 =
2𝜎𝜎𝑥𝑥 ∙ 𝜎𝜎𝑦𝑦 + 𝐶𝐶1
𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝐶𝐶1

∙
𝜎𝜎𝑥𝑥𝑥𝑥 + 𝐶𝐶2

𝜎𝜎𝑥𝑥 ∙ 𝜎𝜎𝑦𝑦 + 𝐶𝐶2
 , (26) 

where 𝜎𝜎𝑥𝑥 , 𝜎𝜎𝑦𝑦 , and 𝜎𝜎𝑥𝑥𝑥𝑥  are the local standard deviations and the cross-correlation 
between the corresponding HDR and LDR patches; and 𝐶𝐶1  and 𝐶𝐶2  are the positive 
stabilizing constants. As suggested in [26], the local window size is set as 11 × 11. The 
TMQI-N value can be expressed by the following: 

𝑁𝑁 = 𝑃𝑃𝑚𝑚𝑃𝑃𝑑𝑑/𝜌𝜌, (27) 

where 𝜌𝜌  is a normalization factor, and 𝑃𝑃𝑚𝑚  and 𝑃𝑃𝑑𝑑  are the Gaussian and the Beta 
probability density functions, respectively. The TMQI-Q value can be expressed by the 
following: 

𝑄𝑄 =  𝑎𝑎 ∙ 𝑆𝑆𝛼𝛼 + (1 − 𝑎𝑎) ∙ 𝑁𝑁𝛽𝛽 , (28) 

where 𝑎𝑎 is a weighting used to adjust the relative importance of the two terms (𝑎𝑎 is set 
as 0.8011, as suggested in [26]); 𝑆𝑆  and 𝑁𝑁  indicate TMQI-S and TMQI-N values, 
respectively; and 𝛼𝛼  and 𝛽𝛽  indicate their sensitivities (𝛼𝛼 = 0.3046 and 𝛽𝛽 = 0.7088, as 
suggested in [26]). 

As shown in Equation (26), the TMQI-S is calculated using the standard deviations 
and cross-correlation between the HDR images and the reproduced results. As shown in 
Equation (27), the TMQI-N is calculated using Gaussian and Beta probability density 
functions that model the histograms of the means and standard deviations in the statistics 
conducted on massive natural images. As shown in Equation (28), the TMQI-Q is obtained 
from the weighted indices of structural similarity (𝑆𝑆 value) and naturalness (𝑁𝑁 value) by 
using a power function to adjust these two indicators. For the TMQI-S, the TMQI-N, and 
the TMQI-Q, a larger index value indicates a better quality of the reproduced result. Table 
1 lists the results of comparisons using Figures 7–9; apparently, the proposed method not 
only generates more visually pleasing reproduced results (as shown in Figures 7–9), but 
also outperforms the other seven algorithms in terms of the average TMQI-S, TMQI-N, 
and TMQI-Q. 

Table 1. Comparison of TMQI-S, TMQI-N, and TMQI-Q using the test images shown in Figures 7–9. 

TMQI-S (Structural Similarity) 
Method [4] [9] [13] [25] [14] [17] [18] Ours 

Synagoguei 0.8724 0.8414 0.8254 0.7177 0.8266 0.7906 0.8191 0.9241 
Cadik_Desk02 0.7338 0.7465 0.8116 0.7883 0.8516 0.7815 0.8037 0.9049 

C33_Store 0.9342 0.9326 0.8924 0.9235 0.8972 0.9255 0.9090 0.9072 
Average 0.8468 0.8402  0.8431  0.8098  0.8584  0.8326  0.8439  0.9121  

TMQI-N (Naturalness) 
Synagoguei 0.5045 0.5690 0.2826 0.8492 0.3186 0.5785 0.7930 0.9113 

Cadik_Desk02 0.1387 0.0615 0.8236 0.1790 0.8517 0.3349 0.7084 0.7269 
C33_Store 0.3809 0.6014 0.9239 0.8563 0.6999 0.9555 0.9104 0.9278 
Average 0.3414  0.4106  0.6767  0.6282  0.6234  0.6230  0.8039  0.8554  

TMQI-Q (Overall Quality) 
Synagoguei 0.8910 0.8934 0.8369 0.9013 0.8444 0.8808 0.9226 0.9683 

Cadik_Desk02 0.7781 0.7605 0.9251 0.8039 0.9403 0.8348 0.9251 0.9358 
C33_Store 0.8851 0.9230 0.9633 0.9601 0.9295 0.9750 0.9642 0.9663 
Average 0.8514 0.8590 0.9084 0.8884 0.9048 0.8969 0.9373 0.9568 
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To further evaluate whether the proposed method is more effective than the other 
methods, we selected twenty-two test images from the datasets online [27–30]. Figure 10 
shows some thumbnails of the test images, and Table 2 lists their names with the 
corresponding dynamic ranges. Moreover, four more objective quality metrics were 
added for conducting a thorough discussion. The first one was the feature similarity index 
for tone-mapped images (FSITM-TMQI) [31], an improved version of the TMQI that is 
based on a comparison of the phase-derived feature maps of the original HDR and the 
reproduced images. As in the case of the TMQI, a larger FSITM-TMQI value indicates a 
higher image quality. The second one was the dubbed blind/referenceless image spatial 
quality evaluator (BRISQUE) [32]. Unlike the TMQI and FSITM-TMQI, the BRISQUE is a 
no-reference quality assessment that evaluates the possible loss of naturalness in the 
spatial domain through scene statistics. The third one is the Blind TMQI (BTMQI) [33], 
another type of no-reference quality assessment that evaluates image quality by 
introducing features of statistical naturalness, structural preservation, and information 
entropy. For both the BRISQUE and BTMQI, lower values indicate less loss of overall 
naturalness, that is, better quality. The fourth one is the Integrated Local Natural Image 
Quality Evaluator (IL-NIQE) [34], which is a non-reference quality evaluation based on 
integrating multiple image statistics such as texture, color, and contrast. The IL-NIQE 
value reflects the global naturalness of the output image. The lower the IL-NIQE value is, 
the more natural it is. 

 
Figure 10. Thumbnails of partial test images with corresponding information provided in Table 2. First row from left to 
right: test images no. 1, no. 4, no. 6, and no. 5. Second row from left to right: test images no. 21, no. 17, and no. 3. Right 
side: test images no. 22. All the images are processed using the proposed method. 

Table 2. List of twenty-two test images and their dynamic ranges (D). 

No. Name D No. Name D 
1 Belgium 5.87 12 Cadik_Window 5.10 
2 Fop_map 4.12 13 C19_Casement 2.46 
3 Mt. Tam West 4.06 14 C21_Studio 2.88 
4 Napa_Valley 5.36 15 C22_Fort 2.79 
5 Rend01 5.84 16 C29_Buildings 3.52 
6 Still_Life 3.91 17 C31_Parasol 3.57 
7 Spheron_Siggraph 5.01 18 C33_Store 2.57 
8 Synagogue 2.58 19 C37_Sculptures 4.17 
9 Design Center 5.25 20 C38_Cross 3.65 

10 Cadik_Desk01 5.68 21 Spheron_PriceWestern 3.73 
11 Cadik_Desk02 4.26 22 Memorial 5.53 

The scatter plot in Figure 11 shows the detailed information of all twenty-two test 
images with each of the seven objective quality indices—TMQI-S, TMQI-N, TMQI-Q, 
FSITM-TMQI, BRISQUE, BTMQI, and IL-NIQE. This figure shows that the performance 
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of the proposed method was among the top three for most evaluation indicators. Table 3 
lists the average scores of the twenty-two test images obtained using different methods. 
With regard to the full-reference quality assessments (TMQI-S, TMQI-N, TMQI-Q, and 
FSITM-TMQI), our method obtained the best scores for these four assessments. The 
proposed method achieved the highest scores for the average TMQI-S, TMQI-N, and 
TMQI-Q, indicating that it achieved a strong balance between image structure and 
naturalness. In addition, our method also obtained the highest score for the average 
FSITM-TMQI, indicating that it generated more visually pleasing images based on the 
evaluation using phase-derived feature maps. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) 

Figure 11. Comparison of scatter plots using the twenty-two test images, where the horizontal axis 
indicates the image order, and the vertical axis indicates the objective quality index. (a) Result of 
TMQI-S. (b) Result of TMQI-N. (c) Result of TMQI-Q. (d) Result of FSITM-TMQI. (e) Result of 
BRISQUE. (f) Result of BTMQI. (g) Result of IL-NIQE. 

With regard to the no-reference quality assessments (BRISQUE, BTMQI, and IL-
NIQE), our methods all obtained the best scores of the average BRISQUE, BTMQI, and IL-
NIQE. By considering both global and local features to generate a virtual combined 
histogram, this method maintains the naturalness of an image and produces an output 
reproduced image with high image quality. Compared with global- and local-based 
reproduction methods that consider only global features (or only local features), our 
method can simultaneously take advantage of global and local features. Compared with 
the decomposition-based methods, our method does not need to process the base and 
detail layers separately, thus avoiding unnaturalness when blending different image 
layers. Overall, in Table 3, our method achieved the highest score in all seven assessments, 
indicating its excellent performance with natural-looking and rich information. 

For the subjective analysis and evaluation, we invited 20 participants (10 males and 
10 females) to take a subjective visual quality test. The participants were asked to rate the 
visual subjectiveness of all the images without knowing the applied method on the output 
images of twenty-two scenes using the eight comparative algorithms. The score ranges 
from 1 to 10 points, where 1 point means “unsatisfied” and 10 points means “excellent”. 
The mean and standard deviation of the mean opinion scores (MOS) of the subjective 
users are shown in Figure 12, where the proposed method is significantly better than the 
other methods. 

In addition, the abovementioned FSITM-TMQI is actually obtained by averaging the 
scores of RGB channels, i.e., the FSITM-R, FSITM-G, and FSITM-B, respectively. The 
FSITM quality evaluation index is based on using the local phase similarity to construct a 
noise-independent feature map in the R, G, and B planes. In view of this, we further 
compare the average FSITM-R, FSITM-G, and FSITM-B using the twenty-two test images. 
As shown in Figure 13, our improved method performs better than the other seven 
reproduction methods in all the RGB channels of the FSITM, indicating that our method 
is not only really close to the real-world scene but also has an attractive visually pleasing 
character and natural color appearance. 
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Table 3. Overall comparison of average TMQI, FSITM-TMQI, BRISQUE, BTMQI, and IL-NIQE using the twenty-two test 
images. 

Method [4] [9] [13] [25] [14] [17] [18] Ours 
TMQI-S 0.8144 0.7946 0.8085 0.7737 0.8197 0.8066 0.8199 0.8606 
TMQI-N 0.3631 0.2765 0.6334 0.6143 0.5898 0.5689 0.7258 0.7805 
TMQI-Q 0.8464 0.8185 0.8906 0.8734 0.8838 0.8776 0.9046 0.9308 

FSITM-TMQI 0.8314 0.8265 0.8462 0.8340 0.8475 0.8487 0.8571 0.8784 
BRISQUE 28.9897 23.6616 28.2828 23.6827 22.9164 26.2905 18.9477 18.9413 

BTMQI 4.5153 4.0962 3.4366 4.3851 3.5776 3.6170 3.1737 2.7792 
IL-NIQE 27.0699 24.0626 25.6440 25.1176 22.0920 22.9561 22.8037 21.6186 

 
Figure 12. Mean and standard deviation of subjective rankings of the eight comparative algorithms. 

 
Figure 13. Comparison of the average FSITM-R, FSITM-G, and FSITM-B using the twenty-two test 
images. 

5. Conclusions 
Although HDR cameras are popularized in the digital photography industry, the 

current price of an HDR display is unaffordable to common people. Therefore, 
photographic reproduction techniques have great commercial potential due to the limited 
availability of HDR displays. This paper presented a new reproduction method, which 
considers global/local features simultaneously to achieve both global contrast-
maintenance and local detail-preservation. Instead of performing the global-based and 
local-based processes separately, we combined two statistical approaches to extract the 
mutually compatible features to form a virtual combined histogram. In the feature fusion 
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stage, a weight map is used to modify the importance between the global and local 
features. Moreover, with the integration of Gauss error function and global/local feature 
sets, the construction of an entire histogram is not actually needed in the luminance 
modification stage. From the experimental results, the proposed method outperforms 
other state-of-the-art methods in terms of various visual comparisons (Figures 7–9) and 
objective evaluations (Tables 1 and 3, Figures 11 and 13). In the future, we plan to conduct 
the Wilcoxon test and the Friedman test to check whether the experimental results are 
statistically significant. 
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