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Abstract: Recent advances in Internet of Things (IoT) technologies and the reduction in the cost
of sensors have encouraged the development of smart environments, such as smart homes. Smart
homes can offer home assistance services to improve the quality of life, autonomy, and health of
their residents, especially for the elderly and dependent. To provide such services, a smart home
must be able to understand the daily activities of its residents. Techniques for recognizing human
activity in smart homes are advancing daily. However, new challenges are emerging every day. In
this paper, we present recent algorithms, works, challenges, and taxonomy of the field of human
activity recognition in a smart home through ambient sensors. Moreover, since activity recognition in
smart homes is a young field, we raise specific problems, as well as missing and needed contributions.
However, we also propose directions, research opportunities, and solutions to accelerate advances in
this field.

Keywords: survey; human activity recognition; deep learning; smart home; ambient assisting living;
taxonomies; challenges; opportunities

1. Introduction

With an aging population, providing automated services to enable people to live as
independently and healthily as possible in their own homes has opened up a new field of
economics [1]. Thanks to advances in the Internet of Things (IoT), the smart home is the
solution being explored today to provide home services, such as health care monitoring, as-
sistance in daily tasks, energy management, or security. A smart home is a house equipped
with many sensors and actuators that can detect the opening of doors, the luminosity of
the rooms, their temperature and humidity, etc. However, also to control some equipment
of our daily life, such as heating, shutters, lights, or our household appliances. More and
more of these devices are now connected and controllable at a distance. It is now possible
to find in the houses, televisions, refrigerators, and washing machines known as intelligent,
which contain sensors and are controllable remotely. All these devices, sensors, actuators,
and objects can be interconnected through communication protocols.

In order to provide all of these services, a smart home must understand and recognize
the activities of residents. To do so, the researchers are developing the techniques of Human
Activity Recognition (HAR), which consists of monitoring and analyzing the behavior of
one or more people to deduce the activity that is carried out. The various systems for
HAR [2] can be divided into two categories [3]: video-based systems and sensor-based
systems (see Figure 1).
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Figure 1. Human Activity Recognition approaches.

1.1. Vision-Based

The vision-based HAR uses cameras to track human behavior and changes in the
environment. This approach uses computer vision techniques, e.g., marker extraction,
structure model, motion segmentation, action extraction, and motion tracking. Researchers
use a wide variety of cameras, from simple RGB cameras to more complex systems by
fusion of several cameras for stereo vision or depth cameras able to detect the depth of a
scene with infrared lights. Several survey papers about vision-based activity recognition
have been published [3,4]. Beddiar et al. [4] aims to provide an up-to-date analysis of
vision-based HAR-related literature and recent progress.

However, these systems pose the question of acceptability. A recent study [5] shows
that the acceptability of these systems depends on users’ perception of the benefits that
such a smart home can provide. It also conditions their concerns about the monitoring and
sharing the data collected. This study shows that older adults (ages 36 to 70) are more open
to tracking and sharing data, especially if it is useful to their doctors and caregivers, while
younger adults (up to age 35) are rather reluctant to share information. This observation
argues for less intrusive systems, such as smart homes based on IoT sensors.

1.2. Sensor-Based

HAR from sensors consists of using a network of sensors and connected devices,
to track a person’s activity. They produce data in the form of a time series of state changes
or parameter values. The wide range of sensors—contact detectors, RFID, accelerometers,
motion sensors, noise sensors, radar, etc.—can be placed directly on a person, on objects or
in the environment. Thus, the sensor-based solutions can be divided into three categories,
respectively: Wearable [6], Sensor on Objects [7], and Ambient Sensor [8].

Considering the privacy issues of installing cameras in our personal space, to be less
intrusive and more accepted, sensor-based systems have dominated the applications of
monitoring our daily activities [2,9]. Owing to the development of smart devices and
Internet of Things, and the reduction of their prices, ambient sensor-based smart homes
have become a viable technical solution which now needs to find human activity algorithms
to uncover their potential.

1.3. Key Contributions

While existing surveys [2,10–13] report past works in sensor-based HAR in general, we
will focus in this survey on algorithms for human activity recognition in smart homes and
its particular taxonomies and challenges for the ambient sensors, which we will develop in
the next sections. Indeed, HAR in smart homes is a challenging problem because the human
activity is something complex and variable from a resident to another. Every resident
has different lifestyles, habits, or abilities. The wide range of daily activities, as well as
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the variability and the flexibility in how they can be performed, requires an approach that
is scalable and must be adaptive.

Many methods have been used for the recognition of human activity. However, this
field still faces many technical challenges. Some of these challenges are common to other
areas of pattern recognition (Section 2) and, more recently, on automatic features extraction
algorithms (Section 3), such as computer vision and natural language processing, while
some are specific to sensor-based activity recognition, and some are even more specific
to the smart home domain. This field requires specific methods for real-life applications.
The data have a specific temporal structure (Section 4) that needs to be tackled, as well
as poses challenges in terms of data variability (Section 5) and availability of datasets
(Section 6) but also specific evaluation methods (Section 7). The challenges are summarized
in Figure 2.

To carry out our review of the state of the art, we searched the literature for the
latest advances in the field. We took the time to reproduce some works to confirm the
results of works proposing high classification scores. In this study, we were able to
study and reproduce the work of References [14–16], which allowed us to obtain a better
understanding of the difficulties, challenges, and opportunities in the field of HAR in
smart homes.

Compared with existing surveys, the key contributions of this work can be summa-
rized as follows:

• We conduct a comprehensive survey of recent methods and approaches for human
activity recognition in smart homes.

• We propose a new taxonomy of human activity recognition in smart homes in the
view of challenges.

• We summarize recent works that apply deep learning techniques for human activity
recognition in smart homes.

• We discuss some open issues in this field and point out potential future research
directions.

Figure 2. Challenges for Human Activity Recognition in smart homes.
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2. Pattern Classification

Algorithms for Human Activity Recognition (HAR) in smart homes are first pattern
recognition algorithms. The methods found in the literature can be divided into two broad
categories: Data-Driven Approaches (DDA) and Knowledge-Driven Approaches (KDA).
These two approaches are opposite. DDA uses user-generated data to model and recognize
the activity. They are based on data mining and machine learning techniques. KDA uses
expert knowledge and rule design. They use prior knowledge of the domain, its modeling,
and logical reasoning.

2.1. Knowledge-Driven Approaches (KDA)

In KDA methods, an activity model is built through the incorporation of rich prior
knowledge gleaned from the application domain, using knowledge engineering and knowl-
edge management techniques.

KDA are motivated by real-world observations that involve activities of daily living
and lists of objects required for performing such activities. In real life situations, even
if the activity is performed in different ways, the number and objects type involved do
not vary significantly. For example, the activity “brush teeth” contain actions involving
a toothbrush, toothpaste, water tap, cup, and towel. On the other hand, as humans have
different lifestyles, habits, and abilities, they can perform various activities in different
ways. For instance, the activity “make coffee” could be very different form one person
to another.

KDA are founded upon the observations that most activities, specifically, routine activi-
ties of daily living and working, take place in a relatively circumstance of time, location, and
space. For example, brushing teeth is normally undertaken twice a day in a bathroom in the
morning and before going to bed and involves the use of toothpaste and toothbrush. Thin
implicit relationships between activities, related temporal and spatial context and the entities
involved, provide a diversity of hints and heuristics for inferring activities.

The knowledge structure is modeled and represented through forms, such as schemas,
rules, or networks. KDA modeling and recognition intends to make use of rich do-
main knowledge and heuristics for activity modeling and pattern recognition. Three
sub-approaches exist to use KDA: mining-based approach [17], logic-based approach [18],
and ontology-based approach.

Ontology-based approaches are the most commonly used, as ontological activity
models do not depend on algorithmic choices. They have been utilized to construct reliable
activity models. Chen et al., in Reference [19], proposed an overview. Yamada et al. [20]
use ontologies to represent objects in an activity space. Their work exploits the semantic
relationship between objects and activities. A teapot is used in an activity of tea preparation,
for example. This approach can automatically detect possible activities related to an object.
It can also link an object to several representations or variability of an activity.

Chen et al. [21–23] constructed context and activity ontologies for explicit domain modeling.
KDA have the advantages to formalize activities and propose semantic and logical

approaches. Moreover, these representations try to be the most complete as possible to
overcome the activity diversity. However, the limitations of these approaches are the
complete domain knowledge requirements to build activities models and the weakness in
handling uncertainty and adaptability to changes and new settings. They need domain
experts to design knowledge and rules. New rules can break or bypass the previous rules.
These limitations are partially solved in the DDA approaches.

2.2. Data-Driven Approaches (DDA)

The DDA for HAR include both supervised and unsupervised learning methods,
which primarily use probabilistic and statistical reasoning. Supervised learning requires
labeled data on which an algorithm is trained. After training, the algorithm is then able to
classify the unknown data.
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The DDA strength is the probabilistic modeling capacity. These models are capable of
handling noisy, uncertain, and incomplete sensor data. They can capture domain heuristics,
e.g., some activities are more likely than others. They do not require a predefined domain
knowledge. However, DDA require much data and, in the case of supervised learning,
clean and correctly labeled data.

We observe that decision trees [24], conditional random fields [25], or support vector
machines [26] have been used for HAR. Probabilistic classifiers, such as the Naive Bayes
classifier [27–29], also showed good performance in learning and classifying offline activities
when a large amount of training data is available. Sedkly et al. [30] evaluated several classi-
fication algorithms, such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees,
Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron, and
Support Vector Machines (SVM). They reported superior performance of DT, LSTM, SVM
and stochastic gradient descent of linear SVM, logistic regression, or regression functions.

2.3. Outlines

To summarize, KDA propose to model activities following expert engineering knowl-
edge, which is time consuming and difficult to maintain in case of evolution. DDA seems
to yield good recognition levels and promises to be more adaptive to evolution and new
situations. However, the DDA only yield good performance when given well-designed
features as inputs. DDA needs more data and computation time than KDA, but the increas-
ing number of datasets and the increasing computation power minimizes these difficulties
and allows, today, even more complex models to be trained, such as Deep Learning(DL)
models, which can overcome the dependency on input features.

3. Features Extraction

While the most promising algorithms for Human Activity Recognition in smart homes
seem to be machine learning techniques, we describe how their performance depends on
the features used as input. We describe how more recent machine learning has tackled this
issue to generate automatically these features, as well as to propose end-to-end learning.
We then highlight an opportunity to generate these features, while taking advantage of the
semantic of human activity.

3.1. Handcrafted Features

In order to recognize the activities of daily life in smart homes, researchers first used
manual methods. These handcrafted features are made after segmentation of the dataset
into explicit activity sequences or windows. In order to provide efficient activity recognition
systems, researchers have studied different features [31].

Initially, Krishann et al. [32] and Yala et al. [33] proposed several feature vector
extraction methods described below: baseline, time dependency, sensor dependency, and
sensor dependency extension. These features are then used by classification algorithms,
such as SVM or Random Forest, to perform the final classification.

Inspired by previous work, more recently, Aminikhanghahi et al. [34] evaluate dif-
ferent types of sensor flow segmentations. However, they also listed different handmade
features. Temporal features, such as day of the week, time of day, number of seconds since
midnight, or time between sensor transitions, have been studied. Spatial features were also
evaluated, such as location. However, metrics, such as the number of events in the window
or the identifier of the sensor, also appear most frequently in the previous segments.

3.1.1. The Baseline Method

This consists of extracting a feature vector from each window. It contains the time of
the first and last sensor events in the window, the duration of the window, and a simple
count of the different sensor events within the window. The size of the feature vector
depends on the number of sensors in the datasets. For instance, if the dataset contains
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34 sensors, the vector size will be 34 + 3. From this baseline, researchers upgrade the
method to overcome different problems or challenges.

3.1.2. The Time Dependence Method

This tries to overcome the problem of the sampling rate of sensor events. In most
dataset, sensor events are not sampled regularly, and the temporal distance of an event
from the last event in the segment has to be taken into account. To do this, the sensors
are weighted according to their temporal distance. The more distant the sensor is in time,
the less important it is.

3.1.3. The Sensor Dependency Method

This has been proposed to address the problem of the relationship between the events
in the segment. The idea is to weight the sensor events in relation to the last sensor event
in the segment. The weights are based on a matrix of mutual information between sensors,
calculated offline. If the sensor appears in pair with the last sensor of the segment in other
parts of the sensor flow, then the weight is high, and respectably low otherwise.

3.1.4. The Sensor Dependency Extension Method

This proposes to add the frequency of the sensor pair in the mutual information
matrix. The more frequently a pair of sensors appears together in the dataset, the greater
their weight.

3.1.5. The Past Contextual Information Method

This is an extension of the previous approaches to take into account information
from past sessions. The classifier does not know the activity of the previous segment.
For example, the activity “enter home” can only appear after the activity “leave home”.
Naively the previous activity cannot be added to the feature vector. The algorithm might
not be able to generalize enough. Therefore, Krishnan et al. [32] propose a two-part learning
process. First, the model is trained without knowing the previous activity. Then, each
prediction of activity in the previous segment is given to the classifier when classifying the
current segment.

3.1.6. The Latent Knowledge Method

This was recently proposed by Surong et al. [16]. They improved these features by
adding probability features. These additional features are learned from explicit activity
sequences, in an unsupervised manner by a HMM and a Bayesian network. In their work,
Surong et al. compared these new features with features extracted by deep learning algo-
rithms, such as LSTM and CNN. The results obtained with these unsupervised augmented
features are comparable to deep learning algorithms. They conclude that unsupervised
learning significantly improves the performance of handcrafted features.

3.2. Automatic Features

In the aforementioned works, machine learning methods for the recognition of human
activity make use of handcrafted features. However, these extracted features are carefully
designed and heuristic. There is no universal or systematic approach for feature extraction
to effectively capture the distinctive features of human activities.

Cook et al. [32] introduced, few years ago, an unsupervised method of discovering
activities from sensor data based on a traditional machine learning algorithm. The algo-
rithm searches for a sequence pattern that best compresses the input dataset. After many
iterations, it reports the best patterns. These patterns are then clustered and given to a
classifier to perform the final classification.

In recent years, deep learning has flourished remarkably by modeling high-level
abstractions from complex data [35] in many fields, such as computer vision, natural
language processing, and speech processing [6]. Deep learning models have the end-
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to-end learning capability to automatically learn high-level features from raw signals
without the guidance of human experts, which facilitates their wide applications. Thus,
researchers used Multi-layer Perceptron (MLP) in order to carry out the classification of
the activities [36,37]. However, the key point of deep learning algorithms is their ability
to learn features directly from the raw data in a hierarchical manner, eliminating the
problem of crafty approximations of features. They can also perform the classification task
directly from their own features. Wang et al. [12] presented a large study on deep learning
techniques applied to HAR with the sensor-based approach. Here, only the methods
applied to smart homes are discussed.

3.2.1. Convolutional Neural Networks (CNN)

Works using Convolutional Neural Networks (CNN) have been carried out by the
researchers. The CNN have demonstrated their strong capacity to extract characteristics
in the field of image processing and time series. The CNN have two advantages for the
HAR. First, they can capture local dependency, i.e., the importance of nearby observations
correlated with the current event. In addition, they are scale invariant in terms of step
difference or event frequency. Moreover, they are able to learn a hierarchical representation
of the data. There are two types of CNN: 2D CNN for image processing and 1D CNN for
sequence processing.

Gochoo et al. [15] have transformed activity sequences into binary images in order
to use 2D CNN-based structures. Their work showed that this type of structure could
be applied to the HAR. In an extension, Gochoo et al. [38] propose to use colored pixels
in the image to encode new sensor information about the activity in the image. Their
extension proposes a method to encode sensors, such as temperature sensors, which are
not binary, as well as the link between the different segments. Mohmed et al. [39] adopt
the same strategy but convert activities into grayscale images. The gray value is correlated
to the duration of sensor activation. The AlexNet structure [40] is then used for the feature
extraction part of the images. Then, these features are used with classifiers to recognize the
final activity.

Singh et al. [41] use a CNN 1D-based structure on raw data sequences for their
high feature extraction capability. Their experiments show that the CNN 1D architecture
achieves similar height results.

3.2.2. Autoencoder Method

Autoencoder is an unsupervised artificial neural network that learns how to efficiently
compress and encode data then learns how to reconstruct the data back from the reduced
encoded representation to a representation that is as close to the original input as possible.
Autoencoder, by design, reduces data dimensions by learning how to ignore the noise
in the data. Researchers have explored this possibility because of the strong capacity of
Autoencoders to generate the most discriminating features. The reduced encoded represen-
tation created by the Autoencoder contains the features that allow for discrimination of
the activities.

Wang et al., in Reference [42], apply a two-layer Stacked Denoising Autoencoder
(SDAE) to automatically extract unsupervised meaningfully features. The input of the
SDAE are feature vectors extracted from 6-s time windows without overlap. The feature
vector size is the number of sensors in the dataset. They compared two features forms:
binary representation and numerical representation. The numerical representation method
records the number of firing of a sensor during the time window, while the binary represen-
tation method sets to one the sensor value if this one fired in the time window. Wang et al.
then use a dense layer on top of the SDAE to fine-tune this layer with the labeled data to
perform the classification. Their method outperforms machine learning algorithms on the
Van Kasteren Dataset [43] with the two features representations.

Ghods et al. [44] proposed a method, Activity2Vec to learn an activity Embedding from
sensor data. They used a Sequence-to-Sequence model (Seq2Seq) [45] to encode and extract
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automatic features from sensors. The model trained as an Autoencoder, to reconstruct
the initial input sequence in output. Ghods et al. validate the method with two datasets
from HAR domain; one was composed of accelerometer and gyroscope signals from a
smartphone, and the other one contained smart sensor events. Their experiment shows that
the Activity2Vec method generates good automatic features. They measured the intra-class
similarities with handcrafted and Activity2Vec features. It appears that, for the first dataset
(smartphone HAR), intra-class similarities are smallest with the Activity2Vec encoding.
Conversely, for the second dataset (smart sensors events), the intra-class similarities are
smallest with handcrafted features.

3.3. Semantics

Previous work has shown that deep learning algorithms, such as Autoencoder or
CNN, are capable of extracting features but also of performing classification. Thus, they
allow the creation of so-called end-to-end models. However, these models do not translate
semantics representing the relationship between activities, as ontologies could represent
these relationships [20]. However, in recent years, researchers in the field of Natural Lan-
guage Processing (NLP) have developed techniques of word embedding and the language
model for deep learning algorithms to understand not only the meaning of words but also
the structure of phases and texts. A first attempt to add NLP word embedding to deep
learning has shown a better performance in daily activity recognition in smart homes [46].
Moreover, the use of the semantics of the HAR domain may allow the development of new
learning techniques for quick adaptation, such as zero-shot learning, which is developed in
Section 5.

3.4. Outlines

All handcrafted methods for extracting features have produced remarkable results in
many HAR applications. These approaches assume that each dataset has a set of features
that are representative, allowing a learning model to achieve the best performance. How-
ever, handcrafted features require extensive pre-processing. This is time consuming and
inefficient because the dataset is manually selected and validated by experts. This reduces
adaptability to various environments. This is why HAR algorithms must automatically
extract the relevant representations.

Methods based on deep learning allow better and higher quality features to be ob-
tained from raw data. Moreover, these features can be learned for any dataset. They can
be processed in a supervised or unsupervised manner, for example, windows labeled or
not with the name of the activity. In addition, deep learning methods can be end-to-end,
i.e., they extract features and perform classification. Thanks to deep learning, great ad-
vances have been made in the field of NLP. It allows for representing words, sentences,
or texts, thanks to models, structures, and learning methods. These models are able to
interpret the semantics of words, to contextualize them, to make prior or posterior correla-
tions between words, and, thus, to increase their performance in terms of sentence or text
classification. Moreover, these models are able to automatically extract the right features to
accomplish their task. The NLP and HAR domains in smart homes both process data in
the form of sequences. In smart homes, sensors generate a stream of events. This stream of
events is sequential and ordered, such as words in a text. Some events are correlated to
earlier or later events in the stream. This stream of events can be segmented into sequences
of activities. These sequences can be similar to sequences of words or sentences. Moreover,
semantic links between sensors or types of sensors or activities may exist [20]. We suggest
that some of these learning methods or models can be transposed to deal with sequences
of sensor events. We think particularly of methods using attention or embedding models.

However, these methods developed for pattern recognition might not be sufficient to
analyze these data which are, in fact, temporal series.
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4. Temporal Data

In a smart home, sensors record the actions and interactions with the residents’ envi-
ronment over time. These recordings are the logs of events that capture the actions and
activities of daily life. Most sensors only send their status when there is a change in status,
to save battery power and also to not overload wireless communications. In addition,
sensors may have different triggering times. This results in scattered sampling of the time
series and irregular sampling. Therefore, recognizing human activity in a smart home is
a pattern recognition problem in time series with irregular sampling, unlike recognizing
human activity in videos or wearables.

In this section, we describe literature methods for segmentation of the sensor data
stream in a smart home. These segmentation methods provide a representation of sensor
data for human activity recognition algorithms. We highlight the challenges of dealing
with the temporal complexity of human activity data in real use cases.

4.1. Data Segmentation

As in many fields of activity recognition, a common approach consists of segmenting
the data flow. Then, using algorithms to identify the activity in each of these segments.
Some methods are more suitable for real-time activity recognition than others. Real time is
a necessity to propose reactive systems. In some situations, it is not suitable to recognize
activities several minutes or hours after they occur, for example, in case of emergencies,
such as fall detection. Quigley et al. [47] have studied and compared different window-
ing approaches.

4.1.1. Explicit Windowing (EW)

This consists of parsing the data flow per activity [32,33]. Each of these segments
corresponds to one window that contain a succession of sensor events belonging to the
same activity. This window segmentation depends on the labeling of the data. In the case
of absence of labels, it is necessary to find the points of change of activities. The algorithms
will then classify these windows by assigning the right activity label. This approach has
some drawbacks. First of all, it is necessary to find the segments corresponding to each
activity in case of unlabeled data. In addition, the algorithm must use the whole segment
to predict the activity. It is, therefore, not possible to use this method in real time.

4.1.2. Time Windows (TW)

The use of TW consists of dividing the data stream into time segments with a regular
time interval. This approach is intuitive but rather favorable to the time series of sensors
with regular or continuous sampling over time. This is a common technique with wearable
sensors, such as accelerometers and gyroscopes. One of the problems is the selection of
the optimal duration of the time interval. If the window is too small, it may not contain
any relevant information. If it is too large, then the information may be related to several
activities, and the dominant activity in the window will have a greater influence on the
choice of the label. Van Kasteren et al. [48] determined that a window of 60 s is a time step
that allows a good classification rate. This value is used as a references in many recent
works [49–52]. Quigley et al. [47] show that TW achieves a high accuracy but does not
allow for finding all classes.

4.1.3. Sensor Event Windows (SEW)

A SEW divides the stream via a sliding window into segments containing an equal
number of sensor events. Each window is labeled with the label of the last event in the
window. The sensor events that precede the last event in the window define the context
of the last event. This method is simple but has some drawbacks. This type of window
varies in terms of duration. It is, therefore, impossible to interpret the time between events.
However, the relevance of the sensor events in the window can be different, depending on
the time interval between the events [53]. Furthermore, because it is a sliding window, it is
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possible to find events that belong to the current and previous activity at the same time.
In addition, The size of the window in number of events, as for any type of window, is also
a difficult parameter to determine. This parameter defines the size of the context of the last
event. If the context is too small, there will be a lack of information to characterize the last
event. However, if it is too large, it will be difficult to interpret. A window of 20–30 events
is usually selected in the literature [34].

4.1.4. Dynamic Windows (DW)

DW uses a non-fixed window size unlike the previous methods. It is a two-stage
approach that uses an offline phase and an online phase [54]. In the offline phase, the data
stream is split into EW. From the EW, the “best-fit sensor group” is extracted based on rules
and thresholds. Then, for the online phase, the dataset is streamed to the classification
algorithm. When it identifies the “best-fit sensor group” in the stream, the classifier
associates the corresponding label with the given input segment. Problems can arise if
the source dataset is not properly annotated. Quigley et al. [47] have shown that this
approach is inefficient for modeling complex activities. Furthermore, rules and thresholds
are designed by experts, manually, which is time consuming.

4.1.5. Fuzzy Time Windows (FTW)

FTW were introduced in the work of Medina et al. [49]. This type of window was
created to encode multi-varied binary sensor sequences, i.e., one series per sensor. The ob-
jective is to generate features for each sensor series according to its short, medium, and
long term evolution for a given time interval. As for the TW, the FTW segments the signal
temporarily. However, unlike other types of window segmentation, FTW use a trapezoidal
shape to segment the signal of each sensor. The values defining the trapezoidal shape
follow the Fibonacci sequence, which resulted in good performance during classification.
The construction of a FTW is done in two steps. First, the sensor stream is resampled by the
minute, forming a binary matrix. Each column of this matrix represents a sensor, and each
row contains the activation value of the sensor during the minute, i.e., 1 if the sensor is
activated in the minute, or 0 otherwise. For each sensor and each minute, a number of FTW
is defined and calculated. Thus, each sensor for each minute is represented by a vector
translating its activation in the current minute but also its past evolution. The size of this
vector is related to the number of FTW. This approach allowed to obtain excellent results
for binary sensors. Hamand et al. [50] proposed an extension of FTW by adding FTW using
the future data of the sensor in addition to the past information. The purpose of this com-
plement is to introduce a delay in the decision-making of the classifier. The intuition is that
relying only on the past is not enough to predict the right label of activity and that, in some
cases, delaying the recognition time allows for making a better decision. To illustrate with
an example, if a binary sensor deployed on the front door generates an opening activation,
the chosen activity could be “the inhabitant has left the house”. However, it may happen
that the inhabitant opens the front door only to talk to another person at the entrance of the
house and comes back home without leaving. Therefore, the accuracy could be improved
by using the activation of the following sensors. It is, therefore, useful to introduce a time
delay in decision-making. The longer the delay, the greater the accuracy. However, a
problem can appear if this delay is too long, and, indeed, the delay prevents real time.
While a long delay may be acceptable for some types of activity, others require a really
short decision time in case of an emergency, e.g., the fall of a resident. Furthermore, FTW
are only applicable to binary sensors data and do not allow the use of non-binary sensors.
However, in a smart home, the sensors are not necessarily binary, e.g., humidity sensors.

4.1.6. Outlines

The Table 1 below summarizes and categorizes the different segmentation techniques
detailed above.
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Table 1. Summary and comparison of segmentation methods.

Segmentation Type Usable for Require Resamplig Time Representation Usable on Capture Long Capture Dependence # Steps
Real Time Raw Data Term Dependencies between Sensors

EW No No No Yes only inside the sequence Yes 1
SEW Yes No No Yes depends of the size Yes 1
TW Yes Yes Yes Yes depends of the size No 1
DW Yes No No Yes only inside the pre-segmented sequence Yes 2
FTW Yes Yes Yes Yes Yes No 2

4.2. Time Series Classification

The recognition of human activity in a smart home is a problem of pattern recognition
in time series with irregular sampling. Therefore, more specific machine learning for
sequential data analysis has also proven efficient for HAR in smart homes.

Indeed, statistical Markov models, such as Hidden Markov Models [29,55] and their
generalization, Probabilistic graphical models, such as Dynamic Bayesian Networks [56],
can model spatiotemporal information. In the deep learning framework, they have been
implemented as Recurrent Neural Networks (RNN). RNN show, today, a stronger capacity
to learn features and represent time series or sequential multi-dimensional data.

RNN are designed to take a series of inputs with no predetermined limit on size.
RNN remembers the past, and its decisions are influenced by what it has learnt from
the past. RNN can take one or more input vectors and produce one or more output
vectors, and the output(s) are influenced not just by weights applied on inputs, such
as a regular neural network, but also by a hidden state vector representing the context
based on prior input(s)/output(s). So, the same input could produce a different output,
depending on previous inputs in the series. However, RNN suffers from the long-term
dependency problem [57]. To avoid this problem, two RNN variations have been proposed,
the Long Short Term Memory (LSTM) [58] and Gated Recurrent Unit (GRU) [59], which is
a simplification of the LSTM.

Liciotti et al., in Reference [14], studied different LSTM structures on activity recogni-
tion. They showed that the LSTM approach outperforms traditional HAR approaches in
terms of classification score without using handcrafted features, as LSTM can generate fea-
tures that encode the temporal pattern. The higher performance of LSTM was also reported
in Reference [60] in comparison traditional machine learning techniques (Naive Bayes,
HMM, HSMM, and Conditional Random Fields). Likewise, Sedkly et al. [30] reported that
LSTM perform better than AdaBoost, Cortical Learning Algorithm (CLA), Hidden Markov
Model, or Multi-layer Perceptron or Structured Perceptron. Nevertheless, the LSTM still
have limitations, and their performance is not significantly higher than decision Trees, SVM
and stochastic gradient descent of linear SVM, logistic regression, or regression functions.
Indeed, LSTM still have difficulties in finding the suitable time scale to balance between
long-term temporal dependencies and short term temporal dependencies. A few works
have attempted to tackle this issue. Park et al. [61] used a structure using multiple LSTM
layers with residual connections and an attention module. Residual connections reduce the
gradient vanishing problem, while the attention module marks important events in the
time series. To deal with variable time scales, Medina-Quero et al. [49] combined the LSTM
with a fuzzy window to process the HAR in real time, as fuzzy windows can automatically
adapt the length of its time scale. With accuracies lower than 96%, these refinements still
need to be consolidated and improved.

4.3. Complex Human Activity Recognition

Besides, these sequential data analysis algorithms can only process simple, primitive
activities, and they cannot yet deal with complex activities. A simple activity is an activity
that consists of a single action or movement, such as walking, running, turning on the
light, or opening a drawer. A complex activity is an activity that involves a sequence
of actions, potentially involving different interactions with objects, equipment, or other
people, for example, cooking.
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4.3.1. Sequences of Sub-Activities

Indeed, activities of daily living are not micro actions, such as gestures that are carried
out the same way by all individuals. Activities of daily living that our smart homes want
to recognize can be on the contrary seen as sequences of micro actions, which we can call
compound actions. These sequences of micro actions generally follow a certain pattern,
but there are no strict constraints on their compositions or the order of micro actions. This
idea of compositionality was implemented by an ontology hierarchy of context-aware
activities: a tree hierarchy of activities link each activity to its sub-activities [62]. Another
work proposed a method to learn this hierarchy: as the Hidden Markov Model approach
is not well suited to process long sequences, an extension of HMM called Hierarchical
Hidden Markov Model was proposed in Reference [63] to encode multi-level dependencies
in terms of time and follow a hierarchical structure in their context. To our knowledge, there
have been no extensions of such hierarchical systems using deep learning, but hierarchical
LTSM using two-layers of LSTM to tackle the varying composition of actions for HAR
based on videos proposing [64] or using tow hidden layers in the LSTM for HAR using
wearables [65] can constitute inspirations for HAR in smart home applications. Other works
in video-based HAR proposed to automatically learn a stochastic grammar describing
the hierarchical structure of complex activities from annotations acquired from multiple
annotators [66].

The idea of these HAR algorithms is to use the context of a sensor activation, either by
introducing multi-timescale representation to take into account longer term dependencies
or by introducing context-sensitive information to channel the attention in the stream of
sensor activations.

The latter idea can be developed much further by taking advantage of the methods
developed by the field of natural language processing, where texts also have a multi-
level hierarchical structure, where the order of words can vary and where the context of
a word is very important. Embedding techniques, such as ELMo [67], based on LSTM,
or, more recently, BERT [68], based on Transformers [69], have been developed to han-
dle sequential data while handling long-range dependencies through context-sensitive
embeddings. These methods model the context of words to help the processing of long
sequences. Applied to HAR, they could model the context of the sensors and their order of
appearance. Taking inspiration from References [46,66], we can draw a parallel between
NLP and HAR: a word is apparent to a sensor event, a micro activity composed of sensor
events is apparent to a sentence, and a compound activity composed of sub-activities is
a paragraph. The parallel between word and sensor events has led to the combination of
word encodings with deep learning to improve the performance of HAR in smart homes in
Reference [46].

4.3.2. Interleave and Concurrent Activities

Human activities are often carried out in a complex manner. Activities can be carried
out in an interleave or concurrent manner. An individual may alternately cook and wash
dishes, or cook and listen to music simultaneously, but could just as easily cook and wash
dishes, alternately, while listening to music. The possibilities are infinite in terms of activity
scheduling. However, some activities seem impossible to see appearing in the dataset and
could be anomalous, such as cooking while the individual sleeps in his room.

Researchers are working on this issue. Modeling this type of activity is becoming
complex. However, it could be modeled as a multi-label classification problem. Safyan
et al. [70] have explored this problem using ontology. Their approach uses a semantic
segmentation of sensors and activities. This allows the model to relate the possibility that
certain activities may or may not occur at the same time for the same resident. Li et al. [71]
exploit a CNN-LSTM structure to recognize concurrent activity with multi-modal sensors.
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4.3.3. Multi-User Activities

Moreover, monitoring the activities of daily living performed by a single resident
is already a complex task. The complexity increases with several residents. The same
activities become more difficult to recognize. On the one hand, in a group, a resident
may interact to perform common activities. In this case, the activation of the sensors
reflects the same activity for each resident in the group. On the other hand, everyone can
perform different activities simultaneously. This produces a simultaneous activation of
the sensors for different activities. These activations are then merged and mixed in the
activity sequences. An activity performed by one resident is a noise for the activities of
another resident.

Some researchers are interested in this problem. As with the problem of recogniz-
ing competing activities, the multi-resident activity recognition problem is a multi-label
classification problem [72]. Tran et al. [73] tackled the problem using a multi-label RNN.
Natani et al. [74] studied different neural network architectures, such as MLP, CNN, LSTM,
GRU, or hybrid structures, to evaluate which structure is the most efficient. The hybrid
structure that combines a CNN 1D and a LSTM is the best performing one.

4.4. Outlines

A number of algorithms have been studied for HAR in smart homes. Table 2 show a
summary and comparison of recent HAR methods in smart homes.

Table 2. Summary and comparison of activity recognition methods in smart homes.

Ref Segmentation Data Representation Encoding Feature Type Classifier Dataset Real-Time

[14] EW Sequence
Integer sequence (one integer

Automatic
Uni LSTM, Bi LSTM, Cascade CASAS [75]:

Nofor each possible LSTM, Ensemble LSTM, Milan, Cairo, Kyoto2,
sensors activations) Cascade Ensemble LSTM Kyoto3, Kyoto4

[60] TW Multi-channel Binary matrix Automatic Uni LSTM Kasteren [43] Yes

[61] EW Sequence Integer sequence (one Automatic Residual LSTM, MIT [76] Nointeger for each sensor Id) Residual GRU

[49] FTW Multi-channel Real values matrix (computed Manual LSTM Ordonez [77], CASAS A & Yesvalues inside each FTW) CASAS B [75]

[15] EW + SEW Multi-channel Binary picture Automatic 2D CNN CASAS [75]: Aruba No

[51] FTW Multi-channel Real values matrix (computed Manual Joint LSTM + 1D CNN Ordonez [77], Yesvalues inside each FTW) Kasteren [43]

[41] TW Multi-channel Binary matrix Automatic 1D CNN Kasteren [43] Yes

[78] TW Multi-channel/Sequence Binary matrix, Binary vector, Automatic/Manual Autoencoder, 1D CNN, Ordonez [77] YesNumerical vector, Probability vector Automatic/Manual 2D CNN, LSTM, DBN

[34] SEW Sequence Categorical values Manual Random Forest CASAS [75]: HH101-HH125 Yes

LSTM shows excellent performance on the classification of irregular time series in the
context of a single resident and simple activities. However, human activity is more complex
than this. In addition, challenges related to the recognition of concurrent, interleaved or idle
activities offer more difficulties. Previous cited works did not take into account these type
of activities. Moreover, people rarely live alone in a house. This is why even more complex
challenges are introduced, including the recognition of activity in homes with multiple
residents. These challenges are multi-class classification problems and still unsolved.

In order to address these challenges, activity recognition algorithms should be able to
segment the stream for each resident. Techniques in the field of image processing based
on Fully Convolutional Networks [79], such as U-Net [80], allow for segmentation of the
images. These same approaches can be adapted to time series [81] and can constitute
inspirations for HAR in smart home applications.

5. Data Variability

Not only are real human activities complex, the application of human activity recog-
nition in smart homes for real-use cases also faces issues causing a discrepancy between
training and test data. The next subsections detail the issues inherent to smart homes: the
temporal drift of the data and the variability of settings.



Sensors 2021, 21, 6037 14 of 28

5.1. Temporal Drift

Smart homes through their sensors and interactions with residents collect data on
the behavior of residents. Initial training data is the portrait of the activities performed
at the time of registration. A model is generated and trained using this data. Over time,
the behavior and habits of the residents may change. The data that is now captured is
no longer the same as the training data. It corresponds to a time drift as introduced in
Reference [82]. This concept means that the statistical properties of the target variable,
which the model is trying to predict, evolve over time in an unexpected way. A shift in the
distribution between the training data and the test data.

To accommodate this drift, algorithms for HAR in smart homes should incorporate
life-long learning to continuously learn and adapt to changes in human activities from new
data as proposed in Reference [83]. Recent works in life-long learning incorporating deep
learning as reviewed in Reference [84] could help tackle this issue of temporal drift. In par-
ticular, one can imagine that an interactive system can from time to time request labeled
data to users to continue to learn and adapt. Such algorithms have been developed under
the names of interactive reinforcement learning or active imitation learning in robotics.
In Reference [85], they allowed the system to learn micro and compound actions, while
minimizing the number of requests for labeled data by choosing when, what information
to ask, and to whom to ask for help. Such principles could inspire a smart home system
to continue to adapt its model, while minimizing user intervention and optimizing his
intervention, by pointing out the missing key information.

5.2. Variability of Settings

Besides these long-term evolutions, the data from one house to another are also very
different, and the model learned in one house is hardly applicable in another because of
the change in house configuration, sensors equipment, and families’ compositions and
habits. Indeed, the location, the number and the sensors type of smart homes can influence
activity recognition systems performances. Each smart homes can be equipped in different
ways and have different architecture in terms of sensors, room configuration, appliance,
etc. Some can have a lot of sensors, multiple bathrooms, or bedrooms and contain multiple
appliances, while others can be smaller, such as a single apartment, where sensors can
be fewer and have more overlaps and noisy sequences. Due to this difference in house
configurations, a model that optimized in the first smart homes could perform poorly in
another. This issue could be solved by collecting a new dataset for each new household to
train the models anew; however, this is costly, as explained in Section 6.

Another solution is to adapt the models learned in a household to another. Transfer
learning methods have recently been developed to allow pre-trained deep learning models
to be used with different data distributions, as reviewed in Reference [86]. Transfer learning
using deep learning has been successfully applied to time series classification, as reviewed
in Reference [87]. For activity recognition, Cook et al. [88] reviewed the different types of
knowledge that could be transferred in traditional machine learning. These methods can be
updated with deep learning algorithms and by benefiting from recent advances in transfer
learning for deep learning. Furthermore, adaptation to new settings have recently been
improved by the development of meta-learning algorithms. Their goal is to train a model
on a variety of learning tasks, so it can solve new learning tasks using only a small number
of training samples. This field has seen recent breakthroughs, as reviewed in Reference [89],
which has never been applied yet to HAR. Yet, the peculiar variability of data of HAR in
smart homes can only benefit from such algorithms.

6. Datasets

Datasets are key to train, test, and validate activity recognition systems. Datasets
were first generated in laboratories. However, these records do not allow enough variety
and complexity of activities and were not real enough. To overcome these issues, public
datasets were created from recordings in real homes with volunteer residents. In parallel
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to being able to compare in the same condition and on the same data, some competitions
were created, such as Evaluating AAL Systems Through Competitive Benchmarking-AR
(EvAAL-AR) [90] or UCAmI Cup [91].

However, the production of datasets is a tedious task and recording campaigns are
difficult to manage. They require volunteer actors and apartments or houses equipped
with sensors. In addition, data annotation and post-processing take a lot of time. Intelligent
home simulators have been developed as a solution to generate datasets.

This section presents and analyzes some real and synthetic datasets in order to under-
stand the advantages and disadvantages of these two approaches.

6.1. Real Smart Home Dataset

A variety of public real homes datasets exist [43,75,76,92,93]. De-la-Hoz et al. [94]
provides an overview of sensor-based datasets used in HAR for smart homes. They
compiled documentation and analysis of a wide range of datasets with a list of results and
applied algorithms. However, such dataset production implies some problems as: sensors
type and placement, variability in terms of user profile or typology of dwelling, and the
annotation strategy.

6.1.1. Sensor Type and Positioning Problem

When acquiring data in a house, it is difficult to choose the sensors and their numbers
and locations. It is important to select sensors that are as minimally invasive as possible in
order to respect the privacy of the volunteers [92]. No cameras nor video recordings were
used. The majority of sensor-oriented smart home datasets use so-called low-level sensors.
These include infrared motion sensors (PIR), magnetic sensors for openings and closures,
pressure sensors placed in sofas or beds, sensors for temperature, brightness, monitoring
of electricity or water consumption, etc.

The location of these sensors is critical to properly capture activity. Strategic position-
ing allows for accurate capture of certain activities, e.g., a water level sensor in the toilet
to capture toilet usage or a pressure sensor under a mattress to know if a person is in bed.
There is no precise method or strategy for positioning and installing sensors in homes.
CASAS [75] researchers have proposed and recommended a number of strategic positions.
However, some of these strategic placements can be problematic in terms of evolution. It
is possible to imagine that, during the life of a house, the organization or use of its rooms
changes, e.g., if a motion sensor is placed above the bed to capture its use. However, if
the bed is moved to a different place in the room, then the sensor will no longer be able to
capture this information. In the context of a dataset and the use of the dataset to validate
the algorithms, this constraint is not important. However, it becomes important in the
context of real applications to evaluate the resilience of algorithms, which must continue to
function in case of loss of information.

In addition to positioning, it is important to choose enough sensors to cover a maxi-
mum of possible activities. The number of sensors can be very different from one dataset
to another. For example, the MIT dataset [76] uses 77 and 84 sensors for each of these
apartments. The Kasteren dataset [43] uses between 14 and 21 sensors. ARAS [92] has
apartments with 20 sensors. Orange4Home [93] is based on an apartment equipped with
236 sensors. This difference can be explained by the different types of dwellings but also
by the number and granularity of the activities that we want to recognize. Moreover, some
dataset are voluntarily over-equipped. There is still no method nor strategy to define the
number of sensors installed according to an activity list.

6.1.2. Profile and Typology Problem

It is important to take into account that there are different typologies of houses:
apartment, house, with garden, with floors, without floor, one or more bathrooms, one or
more bedrooms, etc. These different types and variabilities of houses lead to difficulties,
such as: the possibility that the same activity takes place in different rooms, that the



Sensors 2021, 21, 6037 16 of 28

investment in terms of number of sensors can be more or less important, or that the
network coverage of the sensors can be problematic. For example, Alerndar et al. [92] faced
a problem of data synchronization. One of their houses required two sensor networks to
cover the whole house. They must synchronize the data for dataset needs. It is, therefore,
necessary that the datasets can propose different house configurations in order to evaluate the
algorithms in multiple configurations. Several datasets with several houses exist [43,43,76,92].
CASAS [75] is one of them, with about 30 several houses configurations. These datasets are
very often used in the literature [94]. However, the volunteers are mainly elderly people,
and coverage of several age groups is important. A young resident does not have the
same behavior as an older one. The Orange4Home dataset [93] covers the activity of a
young resident. The number of residents is also important. The activity recognition is more
complex in the case of multiple residents. This is why several datasets also cover this field of
research [43,75,92].

6.1.3. Annotation Problem

Dataset annotation is something essential for supervised algorithm training. When
creating, these datasets, it is necessary to deploy strategies to enable this annotation, such as
journal [43], smartphone applications [93], personal digital assistant (PDA) [76], Graphical
User Interface (GUI) [92], or voice records, to annotate the dataset [43].

As these recordings are made directly by volunteers, they are asked to annotate their
own activities. For the MIT dataset [76], residents used a PDA to annotate their activities.
Every 15 min, the PDA beeped to prompt residents to answer a series of questions to
annotate their activities; however, several problems were encountered with this method of
user self-annotation. However, several problems were encountered with this method of
self-annotation by the user, such as some short activities not being entered, errors in label
selection, or omissions. A post-annotation based on the study of a posteriori activations was
necessary to overcome these problems, thus potentially introducing new errors. In addition,
this annotation strategy is cumbersome and stressful because of the frequency of inquiries.
It requires great rigor from the volunteer and, at the same time, interrupts activity execution
by pausing it when the information is given. These interruptions reduce the fluidity and
natural flow of activities.

Van Kasteren et al. [43] proposed another way of annotating their data. The annotation
was also done by the volunteers themselves, although using voice through a Bluetooth
headset and a journal. This strategy allowed the volunteers to be free to move around
and not need to create breaks in the activities. This allowed for more fluid and natural
sequences of activities. The Diary allowed the volunteers to complete some additional
information when wearing a helmet was not possible. However, wearing a helmet all day
long remains a constraint.

The volunteers of the ARAS dataset [92] used a simple Graphical User Interface
(GUI) to annotate their activities. Several instances were placed in homes to minimize
interruptions in activities and avoid wearing an object, such as a helmet, all day long.
Volunteers were asked to indicate only the beginning of each activity. It is assumed that
residents will perform the same activity until the next start of the activity. This assumption
reflects a bias that sees human activity as a continuous stream of known activity.

6.2. Synthetic Smart Home Dataset

The cost to build real smart homes and the collection of datasets for such scenarios is
expensive and sometimes infeasible for many projects. Measurements campaigns should
include a wide variety of activities and actors. It should be done with sufficient rigor
to obtain qualitative data. Moreover, finding the optimal placement of the sensors [95],
finding appropriate participants [96,97], and the lack of flexibility [98,99] makes the dataset
collection difficult. For these reasons, researchers imagined smart homes simulation
tools [100].
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These simulation tools can be categorized into two main approaches, model-based [101]
and interactive [102], according to Synnott et al. [103]. The model-based approach uses
predefined models of activities to generate synthetic data. In contrast, the interactive ap-
proach relies on having an avatar that can be controlled by a researcher, human participant,
or simulated participant. Some hybrid simulators, such as OpenSH [100], can combine
advantages from both interactive and model-based approaches. In addition, a smart homes
simulation tool can focus on the dataset generation or data visualization. Some simulation
tools provide multi-resident or fast forwarding to accelerate the time during execution.

These tools allow you to quickly generate data and visualize it. However, the capture
of activities can be unnatural and not noisy. Some uncertainty may be missing.

6.3. Outlines

All these public datasets, synthetic or real, are useful and allow evaluating processes.
Both, show advantages and drawbacks. Table 3 details some datasets from the literature,
resulting from the hard work of the community.

Table 3. Example of real datasets of the literature.

Ref Multi-Resident Resident Type Duration Sensor Type # of Sensors # of Activity # of Houses Year

[43] No Elderly 12–22 days Binary 14–21 8 3 2011
[92] Yes Young 2 months Binary 20 27 3 2013
[93] No Young 2 weeks Binary, Scalar 236 20 1 2017
[75] Yes Elderly 2–8 months Binary, Scalar 14–30 10–15 >30 2012
[77] No Elderly 14–21 days Binary 12 11 2 2013
[76] No Elderly 2 weeks Binary, Scalar 77–84 9–13 2 2004

Real datasets, such as Orange4Home [93], provide a large sensor set. That can help
to determine which sensors can be useful for which activity. CASAS [75] proposes many
houses or apartment configurations and topologies with elderly people, which allows
evaluating the adaptability to house topologies. ARAS [92] proposes younger people and
multi-residents’ living environments, which is useful to validate the noisy resilience and
segmentation ability of the activity recognition system. The strength of real datasets is
their variability, as well as their representativeness in number and execution of activities.
However, sensors can be placed too strategically and wisely chosen to cover some specific
kinds of activities. In some datasets, PIR sensors are used as a grid or installed as a
checkpoint to track residents trajectory. Strategic placement, a large number of sensors, or
the choice of a particular sensor is great to help algorithms to infer knowledge, but they
are not the real ground truth.

Synthetic datasets allow for quick evaluation of different configuration sensors and
topologies. In addition, they can produce large amounts of data without real setup or
volunteer subjects. The annotation is more precise compared to real dataset methods (diary,
smartphone apps, voice records).

However, activities provided by synthetic datasets are less realistic in terms of exe-
cution rhythm and variability. Every individual has its own rhythm in terms of action
duration, interval or order. The design of the virtual smart homes can be a tedious task for
a non-expert designer. Moreover, no synthetic datasets are publicly available. Only some
dataset generation tools, such as OpenSH [100], are available.

Today, even if smart sensors become cheaper and cheaper, real houses are not equipped
with a wide range of sensors as can be found in datasets. It is not realistic to find an
opening sensor on a kitchen cabinet. Real homes contains PIR to monitor wide areas with
the security system. Temperature sensors to control the heat. More and more air qualitative
or luminosity sensors can be found. Some houses are now equipped with smart lights
or smart plugs. Magnetic sensors can be found on external openings. In addition, now,
some houses provide general electrical and water consumption. These datasets are not
representative of the actual home sensor equipment.
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Another issue, as shown above, is the annotation. Supervised algorithms needs quali-
tative labels to learn correct features and classify activities. Residents’ self-annotation can
produce errors and lack of precision. Post-processing to add annotations adds uncertainty,
as they are always based on hypothesis, such as every activity being performed sequentially.
However, the human activity flow is not always sequential. Very few datasets provide
concurrent or interleaved activities. Moreover, every dataset proposes its own taxonomy
for annotations, even if synthetic datasets try to overcome annotation issues.

This section demonstrates the difficulty of providing a correct evaluation system or
dataset. In addition, the work already provided by all the scientific community is excellent.
Thanks to this amount of work, it is possible to, in certain conditions, evaluate activity
recognition systems.

However, there are several areas of research that can be explored to help the field
progress more quickly. A first possible research axis for data generation is the generation
of data from video games. Video games constitute a multi-billion dollar industry, where
developers put great effort into build highly realistic worlds. Recent works in the field of
semantic video segmentation consider and use video games to generate datasets in order
to train algorithms [104,105]. Recently, Roitberg et al. [106] studied a first possibility using
a commercial game by Electronic Arts (EA), “ The Sims 4”, a daily life simulator game,
to reproduce the video Toyota Smarthome dataset [107]. The objective was to evaluate and
train HAR algorithms from video produced by a video game and compare them to the
original dataset. This work showed promising results. An extension of this work could be
envisaged in order to generate datasets of sensor activity traces. Moreover, every dataset
proposes its own taxonomy. Some are inspired by medical works, such as, Katz et al.’s
work [108], to define a list of basic and necessary activities. However, there is no proposal
for a hierarchical taxonomy, e.g., cook lunch and cook dinner are children activities of
cook, or taxonomy taking into account concurrent or parallel activities. The suggestion of a
common taxonomy for datasets is a research axis to be studied in order to homogenize and
compare algorithms more efficiently.

7. Evaluation Methods

In order to validate the performance of the algorithms, the researchers use datasets.
However, learning the parameters of a prediction function and testing it on the same data
is a methodological error: a model that simply repeats the labels of the samples it has
just seen would have a perfect score but could not predict anything useful on data that is
still invisible. This situation is called overfitting. To avoid it, it is common practice in a
supervised machine learning experiment to retain some of the available data as a dataset for
testing. Several methods exist in the field of machine learning and deep learning. For the
problem of HAR in smart houses, some of them have been used by researchers.

The evaluation of these algorithms is not only related to the use of these methods. It
depends on the methodology but also on the datasets on which the evaluation is based. It is not
uncommon that pre-processing is necessary. However, this pre-processing can influence the
final results. This section highlights some of the biases that can be induced by pre-processing
the datasets, as well as the application and choice of certain evaluation methods.

7.1. Datasets Pre-Processing
7.1.1. Unbalanced Datasets Problem

Unbalanced datasets pose a challenge because most of the machine learning algorithms
used for classification have been designed assuming an equal number of examples for each
class. This results in models with poor predictive performance, especially for the minority
class. This is a problem because, in general, the minority class is larger; therefore, the
problem is more sensitive to classification errors for the minority class than for the majority
class. To get around this problem, some researchers will rebalance the dataset by removing
classes that are too little represented and by randomly removing examples for the most
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represented classes [15]. These approaches allow for increasing the performance of the
algorithms but do not allow them to represent the reality.

Within the context of the activities of daily life, certain activities are performed more
or less often during the course of the days. A more realistic approach is to group activities
under a new, more general label; for example, “preparing breakfast”, “preparing lunch”,
“preparing dinner”, and “preparing a snack” can be grouped under the label “preparing a
meal”. Therefore, activities that are less represented but semantically close can be used as
parts of example. This can allow fairer comparisons between datasets if the label names
are shared. Liciotti et al. [14] adopted this approach to compare several datasets between
them. One of the drawbacks is the loss of granularity of activities.

7.1.2. The Other Class Issue

In the field of HAR in smart houses, it is very frequent that a part of the dataset is not
labeled. Usually, the label “Other” is assigned to these unlabeled events. The class “Other”
generally represents 50% of the dataset [14,16]. This makes it the most represented class
in the dataset and unbalances the dataset. Furthermore, the “Other” class may represent
several different activity classes or simply something meaningless. Some researchers
choose to suppress this class, as it is judged to be over-represented and containing too
many random sequences. Others prefer to remove it from the training phase and, therefore,
from the training set. However, they keep it in the test set in order to evaluate the system in
a more real-life environment [33]. Yala et al. [33] evaluated performance with and without
the “Other” class and showed that this choice has a strong impact on the final results.

However, being able to dissociate this class opens perspectives. Algorithms able to
isolate these sequences could propose to the user to annotate them in the future in order to
discover new activities.

7.1.3. Labeling Issue

As noted above, the datasets for the actual houses are labeled by the residents them-
selves, via a logbook or graphical user interface. They are then post-processed by the
responsible researchers. However, it is not impossible that some labels may be missing, as
in the CASAS Milan dataset [75]. Table 4 presents an extract from the Milan dataset where
labels are missing. However, events or days are duplicated, i.e., same timestamp, same
sensor, same value, and same activity label. A cleaning of the dataset must be considered
before the algorithms are formed. Obviously, depending on the quality of the labels and
data, the results will be different. Indeed, some occurrence of classes could be artificially
increased or decreased. Some events could be labeled “Other”, even though they actually
belong to a defined activity. In this case, the recognition algorithm could label this event
correctly, but it would appear to be confused with another class in the confusion matrix.

7.1.4. Evaluation Metrics

Since HAR is a multi-class classification problem, researchers use metrics [109], such
as Accuracy, Precision, Recall, and F-Score, to evaluate their algorithms [41,49,61]. These
metrics are defined by means of four features, such as true Positive, true Negative , false
Positive, and false Negative, of class Ci. The F-score, also called the F1-score, is a measure
of a model’s accuracy on a dataset. The F-score is a way of combining the Precision and
Recall of the model, and it is defined as the harmonic mean of the model’s Precision and
Recall. It should not be forgotten that real house datasets are mostly imbalanced in terms
of class. In other words, some activities have more examples than others and are in the
minority. In an imbalanced dataset, a minority class is harder to predict because there are
few examples of this class, by definition. This means it is more challenging for a model to
learn the characteristics of examples from this class, as well as to differentiate examples
from this class from the majority class. Therefore, it would be more appropriate to use
metrics weighted by the class support of the dataset, such as balanced Accuracy, weighted
Precision, weighted Recall, or weighted F-score [110,111].
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Table 4. CASAS [75] Milan dataset anomaly.

Date Time Sensor ID Value Label

2010-01-05 08:25:37.000026 M003 OFF
2010-01-05 08:25:45.000001 M004 ON Read begin
. . . . . . . . . . . . . . .
2010-01-05 08:35:09.000069 M004 ON
2010-01-05 08:35:12.000054 M027 ON
2010-01-05 08:35:13.000032 M004 OFF (Read should end)
2010-01-05 08:35:18.000020 M027 OFF
2010-01-05 08:35:18.000064 M027 ON
2010-01-05 08:35:24.000088 M003 ON
2010-01-05 08:35:26.000002 M012 ON (Kitchen Activity should begin)
2010-01-05 08:35:27.000020 M023 ON
. . . . . . . . . . . . . . .
2010-01-05 08:45:22.000014 M015 OFF
2010-01-05 08:45:24.000037 M012 ON Kitchen Activity end
2010-01-05 08:45:26.000056 M023 OFF

7.2. Evaluation Process
7.2.1. Train/Test

A first way to evaluate the algorithms is to divide the datasets into two distinct
parts: one for training and the other for testing. It is generally chosen to use 70% for
training and 30% for testing. Several researchers have chosen to adopt this method.
Surong et al. [16] adopted this evaluation method in the application of real time activation
recognition. In order to show the generalization of their approach, they chose to divide the
datasets temporally into two equal parts. Then, they chose to re-divide each of these parts
temporally into training and test datasets. Thus, they propose two sub-sets of training and
test. The advantage of this method is that it is usually preferable to the residual method
and takes no longer to compute. Moreover, it does not allow for taking into account the
drift [34] of the activities. In addition, it is always possible that the algorithm overfitted on
the test sets because the parameters were adapted to optimal values. This approach does
not guarantee a generalization of the algorithms.

7.2.2. K-Fold Cross Validation

This is a wide approach used for model evaluation. It consists of dividing the dataset
into K sub-dataset; the value of K is often between 3 and 10. K-1 dataset is selected for
training, and the remaining dataset for testing. The algorithm iterates until all the sub-
dataset is used for testing. The average of the training K scores is used to evaluate the
generalization of the algorithm. It is usually customary that the data is mixed before
being divided into K sub-datasets in order to increase the generalization capability of the
algorithms. However, it is possible that some classes are not represented in the training
or test sets. That is why some implementations propose that all classes are represented in
tests as not training.

In the context of HAR in smart homes, this method is a good approach for classification
of EW [14,61]. Indeed, EW can be considered as independent and not temporally correlated.
However, it seems not relevant for sliding windows, especially if they have a strong overlap,
and the windows are distributed equally according to their class between the test and
training set. The training and test sets would look too similar, which would increase the
performance of the algorithms and would not allow it to generalize enough.

7.2.3. Leave-One-Out Cross-Validation

This is a special case of cross-validation where the number of folds equals the number
of instances in the dataset. Thus, the learning algorithm is applied once for each instance,
using all other instances as a training set and using the selected instance as a single-item
test set.
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Singh et al. [60] and Medina-Quero et al. [49] used this validation method in a context
of real-time HAR. In their experiments, the dataset is divided into days. One day is used
for testing, while the other days are used for training. Each day becomes a test day, in turn.
This approach allows a large part of the dataset to be used for training, as well as allowing
the algorithms to train on a wide variety of data. However, the size of the test is not very
significant and does not allow for demonstrating the generalization of the algorithm in the
case of HAR in smart homes.

7.2.4. Multi-Day Segment

Aminikhanghahi et al. [34] propose a validation method called Multi-Day Segment.
This approach proposes to take into account the sequential nature of segmentation in
a context of real-time HAR. Indeed, in this real-time context, each segment or window
is temporally correlated. According to Aminikhanghahi et al., and as expressed above,
cross-validation would bias the results in this context. A possible solution would be to use
the 2/3 training and 1/3 test partitioning, as described above. However, this introduces the
concept of drift into the data. Drift in terms of change in resident behavior would induce a
big difference between the training and test set.

To overcome these problems, the proposed method consists of dividing the dataset
into 6 consecutive days. The first 4 days are used for training, and the last 2 days are used
for testing. This division into 6-day segments creates a rotation that allows for representing
every day of the week in the training and test set. In order to make several folds, the begin-
ning of the 6-day sequence is shifted 1 day forward at each fold. This approach allows for
maintaining the order of the data, while avoiding the drift of the dataset.

7.3. Outlines

Different validation methods for HAR in smart homes were reviewed in this section,
as shown in Table 5. Depending on the problem being addressed, not all methods can be
used to evaluate an algorithm.

Table 5. Summary of methods for evaluating activity recognition algorithms.

Ref Train/Test Spilt K-Fold Leave-One-Out Multi-Day Respect Time Sensitive to Data Real Time Offline Recognition Usable on
Cross-Validation Cross-Validation Segment Order of Activities Drift Problem Recognition Small Datasets

[16] ! Yes Yes Yes Yes No
[14,15,61] ! No No No Yes No

[41,49,51,60,78] ! Not necessarily No Yes Yes Yes
[34] ! Yes No Yes Yes No

In the case of offline HAR, i.e., with EW or pre-segmented activity sequences, the K-
fold cross-validation seems to be the most suitable, provided that the time dependency
between segments is not taken into account. Otherwise, it is preferable to use another
method. The Leave-One-Out Cross-Validation approach is an alternative. It allows for pro-
cessing of datasets containing little data. However, the days are considered as independent.
It is not possible to make a link between two different days, e.g., a weekday or a weekend
day. Aminikhanghahi et al. [34] proposed a method to preserve the temporal dependence
of the segments and avoid the problem of data drift induced by changes in the habits of
the resident(s) over time.

In addition, the pre-processing of dataset data, the rebalancing, the removal of the
“Other” class, and the annotation of events affect the algorithms’ performance. It is, there-
fore, important to take into account the evaluation method and the pre-processing per-
formed, in order to judge the performance of the algorithm. Moreover, classic metrics,
such as accuracy or F score, may not be sufficient. It may be more judicious to use met-
rics weighted by the number of representations if dataset classes, such as dataset, are
unbalanced. Balanced accuracy, or F1 weighted score, should be a better metric in this
case [110,111].
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A major problem in the area of HAR in smart homes is the lack of evaluation protocols.
Establishing a uniform protocol according to the type of problem to be solved (real-time,
offline) would speed up research in this field and allow a fairer comparison between the
proposed algorithms and approaches.

8. General Conclusion and Discussions

In this article, we have highlighted the challenges of Human Activity Recognition in
smart homes, some of which have particularities compared to other fields of HAR. We have
proposed a taxonomy of the main components of a human activity recognition algorithm
and reviewed the most promising solutions. To overcome the current issues, we point out
the opportunities provided by new advances from other fields.

8.1. Comparison with Other HAR

While human activity recognition algorithms have seen tremendous improvements for
vision-based data owing to the rapid development of deep learning for image processing,
human activity recognition using wearables and sensors on objects are also seeing signifi-
cant improvements. However, vision-based systems are seen by users as too intrusive as
these systems could unveil too much private information, whereas wearables and sensors
on objects require the daily instrumentation of the sensors on the body of subjects or their
personal objects, and ambient sensors could provide a solution to tackle this issue.

HAR in smart homes have seen recent advances owing to the development of recent
deep learning algorithms for end-to-end classification, such as convolutional neural net-
works. It also benefits from recent algorithms for sequence learning, such as long-short term
memory, but, as with video processing, sequence learning still needs to be improved to both
be able to deal with the vanishing gradient problem and to take into account the context
of the sensor readings. The temporal dimension is incidentally a particularity of ambient
sensor systems, as the data for a sparse and irregular time series. The irregular sampling
in time has also been tackled with adapted windowing methods for data segmentation.
In addition to the time windows used in other HAR fields, sensor event windows are
also commonly used. The sparsity of the data of ambient sensors does not allow machine
learning algorithms to take advantage of the redundancy of data over time, as in the case
of videos where successive video frames are mostly similar. Moreover, whereas HAR in
videos, the context of the human action can be seen in the images by the detection of his
environment or objects of attention, the sparsity of the HAR in ambient sensors results in a
high reliance in the past information to infer the context information.

While HAR in ambient sensors have to face the problems of complex activities, such
as sequences of activities, concurrent activities, or multi-occupant activities, or data drift,
it also has to tackle specific unsolved problems, such as the variability of data. Indeed,
the data collected by sensors are even more sensitive to the house configuration, the choice
of sensors, and their localization.

8.2. Taxonomy and Challenges

To face its specific challenges and the challenges common to other systems, in our
review, we introduced a taxonomy of the main components of a human activity recognition
algorithm for real-use. The three components we have pointed out are: classification,
automatic feature extraction, and time series analysis. It needs to carry out a pattern
recognition from raw data, thus requiring feature extraction. Moreover, the algorithm must
integrate a time series analysis.

While pattern recognition analysis and the feature extraction challenges seem to be
well tackled by deep learning algorithms, such as CNN, the sequence analysis parts have
improved recently with the application of LSTM. Both approaches based on CNN and LSTM
are reported to give equivalent performance levels, and state-of-the-art developments are
mostly based on either LSTM or convolutional deep learning. However, the sequence analysis
challenges still remain largely unsolved because of the impact of the sparsity and irregularity
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of the data on context understanding and long-term reasoning. In particular, it makes the
challenges of composite activities (sequences of activities), concurrent activities, multi-user
activities recognition, and data drift more difficult. The sparsity of the data also makes it more
difficult to cope with the variability of the smart home data in its various settings.

According to our analysis, the state-of-the-art options in HAR for ambient sensors are
still far from ready to be deployed in real-use cases. To achieve this, the field must address
the shortcomings of datasets, as well as needs to also standardize the evaluation metrics
so as to reflect the requirements for a real-use deployment and to enable fair comparison
between algorithms.

8.3. Opportunities

Moreover, we believe that recent advances in machine learning from other fields also
offer opportunities for significant advances in HAR in smart homes.

We advocate that the application of recent NLP techniques can bring advances in
solving some of these challenges. Indeed, NLP also deploys methods of sequence analysis
and has also seen tremendous advances in the recent years. For instance, sparsity of the
data can be alleviated by a better domain knowledge in the form of an emerging semantic.
Thus, taking inspiration from word encoding and language models, we can automatically
introduce semantic knowledge between activities, as shown in the preliminary study of
Reference [46]. Furthermore, a semantic encoding of the data will also help the system be
more robust to unknown data as in the challenges of data drift or adaptation to changes,
as it could be able to relate new data semantically to known data. Besides, the recent
techniques for analyzing long texts by inferring long-term context, but also analyzing the
sequences of words and sentences, can serve as an inspiration to analyze sequences of
activities or composite activities.

Lastly, we think that the unsolved problem of adaptation to changes of habits, users,
or sensor sets could soon find its solution in the current research on meta learning and
interactive learning.

8.4. Discussion

In this review, we have pointed out the key elements for an efficient algorithm of human
activity recognition in smart homes. We have also pointed out the most efficient methods, in
addition to the remaining challenges and present opportunities. However, the full deployment
of smart home services, beyond the HAR algorithms, depends also on the development of the
hardware systems and the acceptability and usability of these systems by final users.

For the hardware systems, the development of IoT devices with the improvement in
the accuracy and autonomy, along with the decrease in their cost, will make them accessible
to normal households. Despite cheaper sensors and actuators, it will not be realistic to
provide all homes with a large set of sensors as in the current datasets, but real homes are
not as lavishly equipped. Thus, a smart home system needs to optimize their hardware
under constraints of budget, house configuration, number of inhabitants, etc. Smart home
builder companies need to provide an adequate HAR hardware kit. To determine the
minimal set of sensors, recently, Bolleddula et al. [112] used PCA to determine the most
important sensors in a lavishly equipped smart home. This study is a first work to imagine
a minimal sensors setup.

Finally, while IoT devices seem to be better accepted by users than cameras, there are still
social barriers to the adoption of smart homes that need to be overcome [113]. These require a
trustworthy privacy-preserving data management, as well as reliable cyber-secure systems.
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