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Abstract: There are over four million miles of roads in the United States, and the prioritization of
locations to perform maintenance activities typically relies on human inspection or semi-automated
dedicated vehicles. Pavement markings are used to delineate the boundaries of the lane the vehicle
is driving within. These markings are also used by original equipment manufacturers (OEM) for
implementing advanced safety features such as lane keep assist (LKA) and eventually autonomous
operation. However, pavement markings deteriorate over time due to the fact of weather and
wear from tires and snowplow operations. Furthermore, their performance varies depending upon
lighting (day/night) as well as surface conditions (wet/dry). This paper presents a case study in
Indiana where over 5000 miles of interstate were driven and LKA was used to classify pavement
markings. Longitudinal comparisons between 2020 and 2021 showed that the percentage of lanes
with both lines detected increased from 80.2% to 92.3%. This information can be used for various
applications such as developing or updating standards for pavement marking materials (infrastruc-
ture), quantifying performance measures that can be used by automotive OEMs to warn drivers of
potential problems with identifying pavement markings, and prioritizing agency pavement marking
maintenance activities.

Keywords: pavement markings; lane detection; road maintenance; lane keep assist; LKA; advanced
driver assistance systems; ADAS; connected and autonomous vehicles

1. Motivation

Difficulty in detecting pavement markings can increase driver workload and cause
driver confusion, particularly during more challenging driving conditions such as night-
time and/or inclement weather. Vehicles with lane marking sensors and/or autonomous
driving encounter similar challenges. Determining locations where vehicles cannot de-
tect pavement markings is especially important in the new frontier of connected and
autonomous vehicles. According to a study conducted by the National Cooperative High-
way Research Program (NCHRP), approximately 30% of state agencies perform pavement
marking evaluations annually, and the remaining agencies collect pavement marking con-
ditions bi-annually or sporadically [1]. Due to the fact of these widely varying evaluation
practices and maintenance schedules, this paper proposes using on-board connected vehi-
cle sensors to provide scalable crowdsourced data that will allow agencies to systematically
evaluate their road markings and routinely program their maintenance activities.

2. Literature Review

A large proportion of crashes (approximately 94%) are caused by human error [2].
This has encouraged many automotive manufacturers to equip advanced driver assistance
systems (ADAS) to reduce human error crashes. Original equipment manufacturers (OEM)
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have equipped lane keep assist (LKA) technology in vehicles over the last decade. The
technology’s primary purpose is to enhance safety and comfort for customers, but this
technology also enables OEMs to develop algorithms that build up to higher levels of
automation [3,4]. Not only does LKA technology enhance user safety, but there is also
the potential to provide agencies and drivers feedback on pavement marking quality [5].
The use of LKA provides an efficient and economical opportunity to assess pavement
marking quality.

Pavement markings are used on roads to communicate lane delineations. Lane de-
lineations that are difficult to detect by a vehicle can often confuse drivers and ADAS.
Callout i on Figure 1 shows a location where the pavement marking is worn and may be
challenging for motorists and autonomous vehicles to delineate between the travel lane
and the shoulder.

Figure 1. Example of deteriorated pavement marking on roadways.

Identifying locations of low pavement marking quality is particularly important for
future connected and autonomous vehicles. Some ADAS technologies, like LKA and lane
departure warning (LDW), have not reached the expected market penetration and, even
when equipped, may not be utilized [6]. One of the reasons reported for this lack of penetra-
tion and use is poor consistency in detecting aged pavement markings [7]. The deterioration
of pavement markings is often caused by weather, tire wear, and snowplow wear.

Pavement marking visibility improvements have the potential to reduce crashes and
have been reported to reduce wet-road crashes [8]. Previous studies, conducted using a
before and after analysis, concluded that the improvement in pavement marking visibility
reduced the number of crash incidents, and with the aid of LDW systems, the number
of crashes was further reduced [9–11]. Another study found that pavement marking
retroreflectivity for white edge lines and yellow edge lines was significantly related to crash
frequency on four-lane roads [12].
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2.1. Existing Pavement Marking Metrics and Pavement Markings

Pavement marking evaluation frequency varies by agency, but most agencies use the
American Society for Testing and Materials (ASTM) Standard D7585 and ASTM Standard
E1710 depending on the instrument being used to evaluate the pavement marking [13,14].
The mobile unit enables agencies to evaluate more pavement markings efficiently, but the
unit only detects retroreflectivity on one pavement marking at a time. The unit needs to
make three passes to evaluate a two-lane undivided highway.

Figure 2 shows common types of pavement markings utilized by agencies. The authors
of Rumble Stripes and Pavement Marking Delineation further provide an in-depth analysis
of the quality and longevity of these pavement markings [15]. Preformed tape (Figure 2c)
typically has the highest retroreflectivity among the markings shown in Figure 2 [15]. These
unique markings show the complexity of environments LKA systems must accommodate
and does not account for distressed pavement or other types of pavements such as concrete,
brick, or cobblestone. To maximize LKA and LDW safety benefits, inventorying loca-
tions where ADAS technologies have detection issues could be used to provide proactive
feedback that informs agency maintenance decisions.

Figure 2. Unique pavement markings: (a) multi-component; (b) paint; (c) preformed tape; (d) thermoplastic; (e) dry
rumble strips; (f) wet rumble strips. Image Source: Zehr, S.; Hardin, B.; Lowther, H.; Plattner, D.; Wells, T.; Habib,
A.; Bullock, D.M. Rumble Stripes and Pavement Marking Delineation; Purdue University: West Lafayette, IN, USA, 2019;
doi:10.5703/1288284316937.

2.2. Importance of Pavement Markings for Autonomous Vehicles

Figure 3 (and video referenced in figure) shows a Level 2 autonomous vehicle losing
track of the faded pavement marking on the left side of the vehicle (callout i) and heading
towards a barricade (callout ii) on Interstate 94 in Chicago, Illinois [16]. As vehicle man-
ufacturers look to increase the level of autonomy over the next decade, it is increasingly
important that infrastructure is adapted and well maintained with these developments for
safe operations.
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Figure 3. Level 2 autonomous vehicle tracking on an interstate. Available online: https://youtu.be/
6QCF8tVqM3I (accessed on 1 October 2020).

3. Data Sets and Methods
3.1. Evaluation of LKA to Assess Pavement Markings on Indiana Interstates

The Indiana Department of Transportation (INDOT) has an interstate system of over
2500 miles and operates with 6 districts that manage and maintain sections of interstate
within their region. Figure 4 shows the interstate mile markers and the district boundaries.
This organizational structure was used when performing LKA pavement marking evalu-
ations. This study examined the use of onboard vehicle sensors for assessing pavement
markings across Indiana’s interstate system. The evaluation was a comparison of data
collection between summer 2020 and winter 2021. There was considerable variation in
marking visibility along the Interstate 70 (I-70) and I-65 study corridors, which is discussed
further in detail.

3.2. Vehicle Sensor Data Collection

To demonstrate a proof-of-concept, data were collected with two GoPro Hero 8 cam-
eras using a University Subaru fleet vehicle during summer 2020. Figure 5a shows the data
collection setup with one camera focused on the instrument cluster (callout i) of the vehicle
and the other capturing the roadway conditions (callout ii). Figure 5b shows an image
from the camera collecting images of the instrument cluster. The speed of the vehicle can
be seen in callout iii and the LKA status in callout iv. Images were taken at half-second
intervals with timestamps and GPS location information. The roadway condition images
were only used for data validation.

This method was used to capture images from over 2500 miles of interstate highway
in Indiana over three months from June to August 2020. Over 280,000 images were
taken across eight interstates and were separated into six unique categories based on the
observation from the instrument cluster [17]. The vehicle performs the assessment of
pavement marking detectability and provides a binary indicator (detected/not detected on
the instrument cluster). The instrument cluster binary state (detected/not detected) were
classified manually by a human, and the corresponding detected/not detected assessment
was used in the quantitative analysis. The six categories were defined as follows:

1. Both detected: both lane markings were detected by the vehicle (Figure 6a);
2. Both not detected: Both lane markings were not detected by the vehicle with no turn

signal on, and the vehicle speed was greater than 40 miles per hour (mph) (Figure 6b);
3. Right not detected: only the left lane marking was detected, but the right lane marking

was not detected by the vehicle (Figure 6c);

https://youtu.be/6QCF8tVqM3I
https://youtu.be/6QCF8tVqM3I
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4. Left not detected: Only the right lane marking was detected, but the left lane marking
was not detected by the vehicle (Figure 6d);

5. Excluded: The turn signal was on (Figure 6e);
6. No data: The vehicle speed was less than 40 mph; 40 mph was used because the test

vehicle lane-keeping feature was not active below this threshold (Figure 6f).

Figure 4. Indiana interstate system and districts.
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Figure 5. Summer 2020 data collection setup: (a) cab view of camera locations; (b) view of camera
collecting instrument cluster.

Subsequently, a Ford Lincoln MKZ was instrumented with a controller area network
(CAN) data interface for data collection of lane marking detections to assess the quality
of lane markings in February and March 2021. Discrepancies found in each data set were
independently validated to ensure the difference in vehicle types did not affect the data
set. The methodology was similar to the proof-of-concept completed in the summer of
2020, utilizing Go Pros to validate the observations, with the exception of no longer having
to classify lane visibility using instrument cluster images but receiving the LKA signal
directly from the vehicle through the CAN interface. This is particularly important to note,
because the CAN bus provides a path to scaling these data collection techniques to large
fleets of connected vehicles [18,19].
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Figure 6. Categories of lane markings: (a) both detected; (b) both not detected; (c) right not detected; (d) left not detected;
(e) excluded (lane change); (f) no data (speed less than 40 mph).

4. Results and Discussion

There were some noticeable differences between the two data collections, largely
attributed to construction activities. In the summer 2020 data set, construction zones and
temporary pavement markings were causing a large proportion of pavement markings to
be undetected by LKA. The construction zones were not present for the winter of 2021 data
collection, leading to better detection of pavement markings.
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4.1. Indiana Interstate 65 Comparison

In specific locations, there were noticeable differences between the summer 2020 and
winter 2021 data collections. Figure 7 shows an example of I-65 northbound from the
summer 2020 data collection and winter 2021 data collection. Figure 7a shows the road
view and instrument cluster in the northbound direction at mile marker 219.84. Figure 7b
shows the same location eight months later when the pavement markings were repainted.
Callout i is a reference sign that can be seen in both road view images. The categorizations
from the instrument cluster images and the CAN interface were aggregated to the nearest
tenth mile. The data were then aggregated to the nearest mile for legibility. Figure 7c shows
the lane marking detection across all of I-65 northbound. The plot shows the data spatially
by mile marker on the horizontal axis and the percentage of signals in each category on the
vertical axis. Callout ii indicates the location where the images were taken in Figure 7a,b.
During the summer of 2020, the pavement markings were not visible, while in the winter
2021 data collection, the pavement markings were repainted, making them visible to the
driver as well as easily detectable by the vehicle.
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Callout i in Figure 8 is the location of Figure 9 on I-70 eastbound at mile marker 63. During 
the February data collection (Figure 9c), the vehicle was unable to detect the pavement 
markings, which is indicated by the red both not detected arrows directing your attention 
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Figure 7. I-65 northbound 8-month lane marking comparison: (a) instrument and road view from I-65 northbound on
19 June 2020; (b) instrument and road view from I-65 northbound on 1 March 2021; (c) lane marking detection on I-65,
19 June 2020; (d) lane marking detection on I-65, 1 March 2021.

4.2. Indiana Interstate 70 Comparison

Noticeable performance differences in the detection of lane markings were observed
on I-70 due to the fact of seasonal variations as shown in Figure 8. Figure 8a shows the
quantitative lane detection performance across I-70 during the data collection run from
summer 2020, whereas Figure 8b,c show similar performances on the same interstate
during February and March, respectively, in winter 2021. Figure 9 shows example images
of the road and instrument cluster for each of the data collections and at two unique points.
Callout i in Figure 8 is the location of Figure 9 on I-70 eastbound at mile marker 63. During
the February data collection (Figure 9c), the vehicle was unable to detect the pavement
markings, which is indicated by the red both not detected arrows directing your attention
to the instrument cluster and pavement markings. When comparing Figure 8a–c, it appears
that Figure 8a July data show construction impact resulting in the poor lane marking
detection, with limited impact due to the construction in February and March. Figure 8b
has significantly more instances of both not detected that is likely due to the salt residue
on the road surface. Further observation shows that salt residue on the pavement caused
difficulty for the vehicle in detecting the pavement markings.

Case examples of lane marking detection with the camera image from the dash view
and instrument cluster view on the same interstate I-70 eastbound are shown in Figure 9
for qualitative assessment. Callout i in Figure 8 can be seen qualitatively in Figure 9a for
July 2020, Figure 9c for February 2021, and Figure 9e for March 2021. Callout i in Figure 9
references milepost 63.4, the same location as callout i in Figure 8. Similarly, lane marking
detection can be seen qualitatively for callout ii in Figure 8 in Figure 9b for July 2020,
Figure 9d for February 2021, and Figure 9f for the March 2021 collection. Callout ii in
Figure 9 shows the vehicle approaching milepost 125.
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4.3. Overall Interstate System Comparison

The results from this study can be utilized by agencies to obtain crucial information,
such as pavement marking detectability, that vehicle data can provide. Not only can
this information aid in preventative maintenance of the driving surface, but the data can
also provide insights into lane marking detection for connected and autonomous vehicles.
Figure 10 provides a summary of Indiana interstates that were detected by LKA during
summer 2020 and winter 2021.

Figure 10. Percentage of detectable pavement markings statewide by interstate in the summer of 2020 and winter of 2021.

During the summer of 2020, only 52.3% of lane markings were detected by LKA
on I-94 eastbound (EB). This was due to the poor lighting conditions at the time of data
collection. For the winter 2021 data collection, 92.6% of lane markings were detected by
LKA on I-94 EB. Case examples of lane marking detection with the camera image from the
dash view and instrument cluster view on the same interstate, I-94 eastbound, are shown
in Figure 11 for qualitative assessment. Figure 11a shows the August 2020 data collection
and qualitatively shows the impact the sun reflection has on the visibility of lane markings.
Figure 11b depicts the same location during the February 2021 data collection at a different
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time of day where the lane markings were detected by the vehicle. Callout i in Figure 11
shows a billboard landmark for reference. Figure 11c, d show lane marking detectability for
all of I-94 eastbound. Observed in Figure 11c is that a larger proportion of lane markings
were not detected on the right, left, and on both sides of the vehicle from miles 0–20. The
road view images suggest that the poor detection is due to the sun reflection. Figure 11d
shows the February 2021, lane marking detectability and the pavement markings were
detected likely because there was less impact from the sun reflection. Callout ii in Figure 11
shows the image location of Figure 11a,b.

Figure 11. I-94 eastbound lane marking qualitative comparisons due to the fact of sun reflection: (a) instrument and road
view from I-94 eastbound milepost 6.8 on 12 August 2020; (b) instrument and road view from I-94 eastbound milepost 6.8 on
26 February 2021; (c) lane marking detection on I-94, 12 August 2020; (d) lane marking detection on I-94, 26 February 2021.
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I-70 in both directions also had fewer detected pavement markings compared to other
interstates due to the lower vehicle speeds during data collection in summer 2020. The
lower speeds were caused by road construction, inclement weather, and crashes. Overall
LKA collected during the winter 2021 season yielded an LKA detection of 90.7% across the
state of Indiana compared to summer 2020 where only 81.9% of pavement markings were
both detected. The combination of construction activities, inclement weather, crashes, traffic
congestion, and variable lighting conditions caused many of the detectability differences
and demonstrates the importance of crowdsourcing LKA data.

Table 1 depicts the LKA lane marking detection for the Indiana interstates grouped
by district. For the summer 2020 data set, a general trend can be observed; the districts
with fewer miles of interstate to maintain (i.e., Crawfordsville, Fort Wayne, and Vincennes)
had higher percentages of pavement markings detected. Seymour and Greenfield, the
two districts with the most miles of the interstate had fewer pavement markings detected.
The exception to this trend was the La Porte District, but as seen in Figure 10, I-94 eastbound
had a larger proportion of pavement markings not detected due to the poor lighting and
heavy traffic congestion.

Table 1. Lane marking detection by district.

District Total Miles of
Interstate

2020 Percent Both
Detected

2021 Percent Both
Detected

Crawfordsville 426 84.9% 89.8%

Fort Wayne 342 88.1% 90.8%

Greenfield 550 75.9% 90.3%

La Porte 388 75.2% 92.6%

Seymour 554 73.7% 94.2%

Vincennes 392 88.4% 96.3%

All Districts 2652 80.2% 92.3%

Figure 12 shows LKA data specifically for Greenfield District. This plot shows the
interstate and direction on the x-axis and the miles of the detected interstate on the y-axis.
Greenfield manages 29 miles of I-65, 55 miles of I-69, 88 miles of I-70, 50 miles of I-74,
and 53 miles of I-465. The trends observed when looking across all interstates can also be
observed when looking at the sections of interstate that lie in Greenfield. Overall, fewer
pavement markings were detected in the summer 2020 data collection than the winter
2021 data collection. Significant differences in the number of miles with both detected
lane markings were observed for I-70 in Greenfield during the two data collection periods.
When considering both directions on all interstates, this comes to a total of 550 miles
of the interstate for the district to manage. The interstate with the largest difference in
detectability was I-70, where in summer 2020 less than 65% of pavement markings were
detected. This was due to the presence of three large construction projects on the interstate
over the summer of 2020 causing lower vehicle speeds and some of the pavement markings
to not be detected.
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Figure 12. Miles of interstate detected by LKA in the Greenfield District in summer 2020 and winter 2021.

5. Conclusions

Determining locations where both a human driver and autonomous vehicle cannot
detect pavement markings is and will continue to be important for transportation agencies
and original equipment manufacturers. This study explored the use of vehicle lane keep assist
(LKA) systems to detect and determine pavement marking conditions. Several use cases
were examined for validation purposes on I-65 and I-70. The results showed that LKA can be
utilized in identifying detectible pavement markings under various conditions and that it has
potential use by transportation agencies to efficiently gather pavement marking evaluation
over large road networks. Several factors that affect LKA detection must be accounted for
including sunlight, weather, and vehicle speeds. Information from the winter 2021 data set
can be used to prioritize maintenance activities for restriping the remaining 9.3% of pavement
markings not detected by the vehicle. Further development for implementation should be
considered to provide more frequent and accurate measurements.

Future Opportunities with Real-Time Lane Marking Quality Dashboards

On-board vehicle sensors provide a robust system for agencies to collect quantitative
data regarding pavement marking visibility. Although a single vehicle could be driven
by an agency around the state to replicate the standard practice with specialized vans, a
much more scalable approach would be to systematically collect this data from a sample or
an entire fleet of vehicles. Such an approach would allow an agency to have a dynamic,
crowdsourced view of their lane marking detection in a variety of conditions, such as
sunny, cloudy, wet pavement, heavy rain, light snow, and salt coverage, as well as to track
how these lane markings deteriorate over time.

The methodology for inventorying lane marking data for one vehicle can be scaled
using cellular network connectivity and cloud infrastructure. The data could be fed
through a CAN interface and buffered and aggregated over predetermined distance or
time intervals to keep the data size small. Only the pertinent properties, such as locations
with over-threshold or interesting markings, would be kept. The data can be batched in
either daily or minute batches before uploading over the cellular connection to a data
warehouse. A dashboard, reporting system, or user interface can then be built on top of an
analysis engine table to present the information to authorities or stakeholders. To ensure
an accurate data set, it would be important to obtain data from a diverse fleet due to the
varying performances of vehicle sensors.

Figure 13 shows an example of how such an interactive user interface would look. The
web application would connect to a cloud database system to retrieve dashboard imagery
of opted-in drivers or fleet vehicles at a specific location (callout i), a map of the route
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travelled by a vehicle (callout ii), and the current location of a vehicle (callout iii). The
database would also have knowledge of the total route to be travelled (callout iv). The
route is also linearized by mile in the bottom graphic (callout v). As the vehicle collects
data, the road conditions are categorized, and each bar would be populated according to
the distribution of this and other vehicles (callout vi). Any locations that this vehicle or
collection of vehicles have not yet travelled would be shown in grey (callout vii).

Figure 13. Pilot application demonstrating near-real-time data collection.
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