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Abstract: This paper deals with analysis of behavioural patterns in human–computer interaction. In
the study, keystroke dynamics were analysed while participants were writing positive and negative
opinions. A semi-experiment with 50 participants was performed. The participants were asked to
recall the most negative and positive learning experiences (subject and teacher) and write an opinion
about it. Keystroke dynamics were captured and over 50 diverse features were calculated and
checked against the ability to differentiate positive and negative opinions. Moreover, classification
of opinions was performed providing accuracy slightly above the random guess level. The second
classification approach used self-report labels of pleasure and arousal and showed more accurate
results. The study confirmed that it was possible to recognize positive and negative opinions from
the keystroke patterns with accuracy above the random guess; however, combination with other
modalities might produce more accurate results.

Keywords: opinion mining; emotion recognition; behavioural patterns; keystroke dynamics;
affect analysis

1. Introduction

This paper deals with analysis of behavioural patterns in human–computer interaction
(HCI). Behavioural biometric features are used in security systems or identification applica-
tions along with physiological characteristics such as face, palm, fingerprint, or iris images.
Among behavioural patterns in HCI an interesting field of study concerns keystroke dy-
namics and mouse movements as a source of information about a person. As biometric
features are stable over time, behavioural patterns may vary depending on disposition of
the day or even moment of the day. Among the aspects that influence momentary human
behaviour are emotional states. Analyzing behavioural patterns from the perspective of
human identification, the point of interest is to find stable patterns and eventually devi-
ations from them. An alternative approach is to analyze variability of the patterns from
the perspective of finding indicators of human state. In this paper, we focus on the latter
approach and we analyse specifically keystroke dynamics patterns. The advantage of the
keystroke dynamics or mouse movements is that they are natural in HCI and do not require
any special hardware. Moreover, they are not as intrusive as some other methods [1]. It is
possible to record the keyboard and mouse parameters during the usual computer usage.

This paper describes a study in which we analyse keystroke dynamics patterns while
writing opinions. The participants were asked to write opinions on their worst and best
learning experience, while we captured keystrokes. The research question of the study
might be given as follows: Is there any difference in keystroke dynamics patterns while
writing positive and negative opinions? We have not found any previous study addressing
this aspect. Keystroke dynamics have often been analyzed in order to authenticate users,
recognize emotions, or monitor mood. Although emotion recognition seems to be close
to our application, it is not the case. The type of opinion does not have to elicit a given
emotional state.
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The paper is organized as follows: after introduction, related work is summarized
in Section 2. Section 3 provides information on the design of the experimental study
and methods used for analysing keystroke dynamics, including the definition of metrics
characterizing those. Section 4 provides experiment results that is followed by a discussion
in Section 5. The main implications of the study and future works are outlined in Section 6.

2. Related Work

The research that most relates to the presented study includes works on the quan-
tification of keystroke dynamics and their usage in the analysis of a human state. It falls
into the category of behavioural biometrics, relying on the way humans perform some
actions, which vary due to different skills, styles, preferences, knowledge or strategy [2].
Behavioural biometrics taken via standard input devices, for example, keystroke dynamics,
mouse movements and touch screen gestures, have some advantages. They do not require
any special hardware and are unobtrusive for users, so may be recorded during users’
everyday activities without disturbing them. On the other hand, it should be noted that
they are not stable over time, which results in a lower accuracy of recognition systems
based on these measurements than it is in the case of physiological parameters.

Biometric methods based on keystroke dynamics may be applied in several areas,
such as user authentication [3–6], emotion recognition [1,7–12], monitoring mood dis-
orders [13,14] and so forth. The proposed solutions are usually based on hand-crafted
features extracted on the basis of keystroke timing or frequency characteristics, for example,
dwell time, flight time, typing speed, frequency of using selected keys and so forth.

One of the studies on recognizing emotions has been presented in [9], where some
emotional states, that is, confidence, hesitance, nervousness, relaxation, sadness and tired-
ness, have been recognised with accuracy rates between 77.4% and 87.8% by applying
decision trees. In this case, data were gathered during users’ typical activities, such as
for example writing messages or using a word processor, but users were also asked to
retype a fixed text. Another real-life experiment was described in [10], where only free
texts were recorded. In this case a set of timing features were calculated for the most
frequent 20 digraphs and 20 trigraphs constituting whole words in Polish. These words
were selected on the basis of a frequency dictionary for the Polish language. The obtained
accuracies varied from 73% to 87% depending on the participant and emotional state.
The study also confirmed the idea that personalised models trained for a selected user
to detect one emotional state on the basis of her data give higher results than universal
classifiers for all users or multiclass classifiers able to recognise several emotions.

Depending on the application one may try to recognize predefined emotional states but
it is also possible to reduce the problem to the recognition of positive vs. negative states as,
for example, in [8]. In the mentioned study, it was possible to achieve an accuracy of 89.02%
for negative and 88.88% for positive states. It was also shown that typing speed decreased
in the case of negative emotions. Other interesting observations on the correlation between
emotions and the way of typing have been shown in [15]. The presented study revealed
that pleasure correlated with more careful writing, which was demonstrated, for example
by using punctuation marks, capitalization and deletion in contrast to fast and careless
writing shown in the case of confusion or frustration.

The effectiveness of emotion recognition based on the analysis of keystroke dynamics
may be improved if other input modalities are also taken into account. In [16], data
collected via both keyboard and mouse are used to infer the boredom and frustrations of
a tutoring system users achieving accuracies over 70%. Another example of combining
keyboard and mouse data to predict the level of valence and arousal data was presented
in [17].

The keystroke dynamics approach may also be implemented on mobile phones, which,
besides the virtual keyboard, offer the possibility of incorporating various other sensors
to read data at the moment of typing, for example, touch screen or accelerometer [18,19].
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A combination of keystroke parameters and physical characteristics, such as heartbeat,
motion, energy and sleep, gathered via a smartwatch, was used to predict users’ moods [20].

An interesting approach was presented in [21], where keystroke based stress analysis
was combined with a sentiment analysis module and was applied to detect negative
messages in social media while they are being written. The combination improved the
effectiveness of a system warning about the possibility of propagating high stress or
negative replies in network.

3. Research Methods

The thesis of this paper might be given as follows: it is possible to recognize pleasure
of opinion based on keystroke dynamics patterns. Based on the presented related work,
there has been no other similar study. This section provides a description of the methods
that were applied in the study design, execution, and the post-processing of the data.

3.1. Experiment Design

To verify the research hypothesis, a semi-experiment was designed and conducted
with human participants. The study was performed in a laboratory setting at our university.
Full randomization of subject selection was not possible in a laboratory setting located
in one place only, therefore a group of convenience was used (students of the university).
The consequences of such a choice are discussed in Section 5. The students were volunteers
recruited from one academic year. A single group within-subject design was used as we
wanted to identify the difference between the two conditions of the same person (and not
the individual differences).

The outline of the single participation scenario was as follows. First, the keystroke cap-
turing software was launched. The subject was asked to fill in a multi-page questionnaire,
including metric data, opinion on the best learning subject he/she participated in, opinion
on the worst learning subject, opinion on the best teacher, opinion on the worst teacher.
In between writing opinions students additionally filled in emotion-related questionnaires
and noted down local computer time. Then the keystroke capturing software was turned
off and the raw keystroke data were saved as a file. Writing down the local computer
time was required as the keystroke software used timestamps based on that. In further
analysis we were able to cut the keystroke time series to the parts assigned to each of the
four opinions.

The questionnaire used for capturing the emotional state of participants before and
between writing opinions was Self-Assessment Manikin (SAM) [22], using a 9-point scale
along with the visual representation. The screenshot of the adapted SAM questionnaire
used is provided in Figure 1.

We have decided to use the SAM scale as it was connected to the purpose of this
study. As the main goal was to capture differences between positive and negative opinions,
the pleasure of emotional state was of the primary interest. Therefore, we have decided
to capture emotions with the three-dimensional PAD (pleasure-arousal-dominance) scale
and the SAM questionnaire is the one supporting it. The SAM scale might also cause some
confusion, when left undescribed. The dominance dimension is problematic for some to
understand. In order to overcome this obstacle, we have used SAM visual representation
accompanied with some adjectives describing extreme values of the scale.

3.2. Experiment Execution

The experiment was conducted in the laboratory setting at the university premises.
The computer stands were standardized—the same computer type, keyboard and mouse
were used. The participants were recruited from students of the computer science course;
the students were not paid for their participation, but they were offered an extra exam date
to select apart from the standard one available to every student during the examination
session. There were 50 students who took part in the study (40 males, 10 females, age
mean 21 ± 1 years). We wanted the sample to be as homogenous as possible, as we



Sensors 2021, 21, 5963 4 of 21

did not want to analyze the influence of age on keystroke patterns, considering it as a
confounding variable. Differences in keystroke dynamics among various age groups have
been investigated in a number of research studies focusing on recognizing age on the
basis of keystroke dynamics [23–25]. The data were anonymized. One student’s data
were excluded from further analysis, so for the analysis we took data from 49 participants.
The reason for the exclusion was that the student entered random letters instead of the
opinions he was asked for. While students were writing opinions, the keystroke data
were captured using an original program. The program was turned on before the student
started writing the opinion, and was turned off after the sequence of opinions was finished.
A single opinion writing session was planned for 15 min (duration time mean: 13′22, min:
6′09, max: 21′11). The raw keystrokes’ time series were then processed as described in
Section 3.3.

Figure 1. Emotional state self-assessment scale—a screenshot with adjective translations.

At the beginning of the experiment, and after writing each of four opinions, a par-
ticipant filled a self-report as described in Section 3.1. Figure 2 presents mean values of
pleasure, arousal and dominance calculated on the basis of five reports from all partici-
pants. It shows how the values change over time. In the case of pleasure and arousal, some
variations may be observed. Dominance seems to be the most stable over time. A part of
this study is the analysis of a possible relationship between these changes of PAD values
depending on the type of opinion (positive/negative).



Sensors 2021, 21, 5963 5 of 21

Figure 2. Average values of pleasure, arousal and dominance reported at different stages of the
experiment session.

Figure 3 presents the distribution of pleasure, arousal and dominance values calculated
on the basis of the four reports from each user sent after writing the four opinions. It can
be seen that pleasure values are moved toward positive values. In the case of arousal the
extreme value of nine, indicating the lowest level of arousal was never reported.

Figure 4 presents analogous histograms but generated separately on the basis of
reports sent after positive and negative opinions. Some differences in the distributions
may be observed in the case of pleasure and arousal. Pleasure values reported for positive
opinions are moved toward lower values (indicating positive affect) more than in the case
of negative opinions. The two distributions for dominance almost overlap, which may
suggest that dominance values do not differ between reports after positive and negative
opinions. To actually compare these distributions, a statistical test was used. Due to the
fact that the values originate from the ordinal 9-point Likert scale, the non-parametric
Mann–Whitney test was applied. The results are presented in Table 1. It can be seen that
the distributions of labels connected with positive and negative opinions are significantly
different (p-value < 0.05) in the case of pleasure and arousal.

Figure 5 presents analogous histograms created separately on the basis of reports
sent after opinions on teachers and subjects. In this case, there is also some discrepancy
between the two distributions for pleasure, where opinions on teachers are assigned more
negative values than on subjects. The results obtained by applying the Mann–Whitney test
are presented in Table 2. The distributions of teacher and subject labels are significantly
different (p-value < 0.05) in the case of pleasure.

Figure 3. Distribution of (a) pleasure, (b) arousal and (c) dominance values.
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Figure 4. Distribution of (a) pleasure, (b) arousal and (c) dominance values, separately for positive
and negative opinions.

Figure 5. Distribution of (a) pleasure, (b) arousal and (c) dominance values, separately for teachers
and subjects.

Table 1. Comparing the distribution of PAD values for positive and negative opinions—mean values
and results of Mann–Whitney test.

Pleasure Arousal Dominance

positive sample mean 3.24 4.97 5.67
negative sample mean 4.14 4.36 5.63

test statistic 3290.0 3831.5 4796.0
p-value 0.0001 0.0065 0.4944

Table 2. Comparing the distribution of PAD values for teacher and subject opinions—mean values
and results of Mann–Whitney test.

Pleasure Arousal Dominance

teacher sample mean 3.43 4.74 5.74
subject sample mean 3.96 4.58 5.56

test statistic 4038.5 4546.5 4605.0
p-value 0.0254 0.2570 0.3067

3.3. Keystroke Dynamics Feature Extraction

The process of feature extraction performed in this study was performed on the basis
of a procedure from our earlier study presented in [11] with some slight modifications.
The first stage of data processing was segmentation. Due to the fact that no user types
continually, the whole sequence of keystrokes was split into a series of shorter sequences
depending on the presence of pauses. To identify the limits of typing sequences an idle
threshold was introduced. If the time between depressing a key and pressing the next one
exceeded the idle threshold, then the split was made. The greater the value of the threshold,
the longer keystroke sequences were extracted. All timing characteristics described later in
this section were calculated regarding the extracted partial sequences. The extraction was
performed for the threshold value of 3 s.
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After segmenting the data, a feature extraction procedure was performed. A number
of parameters were calculated on the basis of raw data. They may be divided into the
following groups: digraph features, trigraph features, special digraph features, frequency
features and typing speed. The total number of parameters was 51. The detailed list of all
features is presented in Table 3.

Digraph and trigraph features are timing characteristics for two-key and three-key
sequences. They are all based on parameters commonly used in keystroke dynamics
analysis, that is, the time a key is pressed, the time between releasing a key and pressing the
next one, the duration of key sequences (the time between pressing the first and depressing
the last key in a sequence), and the times between subsequent key presses. Moreover,
the number of events for a digraph or trigraph was also calculated. These are the numbers
of all key down and key up events in a sequence, so it is usually four for a digraph and
six for a trigraph. Sometimes, especially when a user types quickly, it happens that a
user presses the next key before depressing one. In such cases, additional events may
appear between those coming from a graph and then the values for these attributes may
differ from four or six. A data sample from a user contains many digraphs and trigraphs.
The parameters were calculated for all of them and then their mean values and standard
deviations were saved as feature values in a feature vector representing the sample.

Some digraphs have been treated as special sequences in the case of this application.
These are digraphs containing either the left or right shift key as the first one. Therefore
some digraph parameters were calculated for digraphs starting from the left and the
right shift.

Another group of features are frequency parameters. In contrast to digraphs and
trigraphs, they do not describe keystroke rhythm. Some of the parameters may indicate
the way users make corrections (the use of backspace, delete keys), move across the text
(pgup, pgdn, home, end, up, down, left, right) or take care of punctuation. The frequency
was calculated as the number of a selected symbol to the total number of keystrokes. One
of the frequency features was calculated in a different way, that is, the number of capital
letters to the total number of letters.

Table 3. Features extracted from raw data. Most features are mean and standard deviation denoted
as [0] and [1] respectively.

Feature Description

Digraph features

di_1D2D[0], di_1D2D[1] duration between the 1st and the 2nd down keys
of a digraph

di_1Dur[0], di_1Dur[1] duration of the 1st key of a digraph
di_1KeyLat[0], di_1KeyLat[1] duration between the 1st key up and the next key

down of a digraph
di_2Dur[0], di_2Dur[1] duration of the 2nd key of a digraph
di_Dur[0], di_Dur[1] duration of the whole digraph from the 1st key

down to the last key up
di_NumEvents[0], di_NumEvents[1] number of key events for a digraph

Trigraph features

tri_1D2D[0], tri_1D2D[1] duration between the 1st and the 2nd down key of
a trigraph

tri_1Dur[0], tri_1Dur[1] duration of the 1st key of a trigraph
tri_1KeyLat[0], tri_1KeyLat[1] duration between the 1st key up and the next key

down of a trigraph
tri_2D3D[0], tri_2D3D[1] duration between the 2nd and the 3rd down key of

a trigraph
tri_2Dur[0], tri_2Dur[1] duration of the 2nd key of a trigraph
tri_2KeyLat[0], tri_2KeyLat[1] duration between the 2nd key up and the next key

down of a trigraph
tri_3Dur[0], tri_3Dur[1] duration of the third key of a trigraph
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Table 3. Cont.

Feature Description

tri_Dur[0], tri_Dur[1] duration of the whole trigraph from the 1st key
down to the last key up

tri_NumEvents[0], tri_NumEvents[1] number of key events for a trigraph

Shift digraph features

L_di_1D2D[0], L_di_1D2D[1] time between pressing the 1st and the 2nd key in a
digraph starting from the left shift

L_di_Dur[0], L_di_Dur[1] duration of a digraph starting from the left shift
(time between pressing the 1st and releasing the
2nd key)

L_first_shift_up percentage of time when the left shift starting a
digraph is released before releasing the 2nd key

R_di_1D2D[0], R_di_1D2D[1] time between pressing the 1st and the 2nd key in a
digraph starting from the right shift

R_di_Dur[0], R_di_Dur[1] duration of a digraph starting from the right shift
(time between pressing the 1st and releasing the
2nd key)

R_first_shift_up percentage of time when the right shift starting a
digraph is released before releasing the 2nd key

Frequency features

SPACE frequency of using spacebar
BACKSPACE frequency of using backspace key
DEL frequency of using delete key
UP frequency of using up arrow
DOWN frequency of using down arrow
LEFT frequency of using left arrow
RIGHT frequency of using right arrow
SHIFT_L frequency of using left shift
SHIFT_R frequency of using right shift
CAPS frequency of using caps lock

Typing speed

SPEED average number of keystrokes per second

Finally, the typing speed, which indicates the number of keystrokes per second,
was calculated.

3.4. Data Preprocessing

The classification experiments were performed both for original feature values and the
values obtained after some normalisation. Several normalisation procedures were applied
to the extracted features. For each user, five feature vectors were extracted. The first one
was a baseline vector. This vector contained features obtained on the basis of the whole text
typed by a user, that is, the whole session was not divided into positive and negative parts
but treated as a single typing phase. The other four vectors were extracted on the basis of
two positive and two negative pieces of text, respectively. Then two types of training sets
were created:

• absolute data set containing the original four vectors form each user;
• relative data set containing for each user the four vectors after subtracting the user’s

baseline vector from them.

Moreover, both sets were normalized by standardising them to have zero mean and
the standard deviation of 1.
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3.5. Analysis Methods

Data analysis was conducted in two main stages. The aim of the first stage was to
evaluate the proposed features from the point of view of their discriminative power. First of
all it was verified whether the values of the keystroke patterns differ significantly between
positive and negative opinions. Moreover, a mutual information criterion was used to
evaluate the dependency between features and classes for different classification tasks,
that is, positive vs. negative opinions, high vs. low level of pleasure, high vs. low level of
arousal. Mutual information is often used in feature selection as a measure of the degree of
relatedness between datasets has been applied [26].

The aim of the second stage was to train and test classifiers for these three classification
problems. Several classifiers were trained and tested. In the case of recognising the level
of pleasure or arousal three different labeling procedures were applied depending on a
threshold value. The detailed description of the performed analysis and the obtained
results are presented in the next section.

4. Experiment Results
4.1. Feature Evaluation

The proposed set of hand-crafted features contains 51 parameters. Most of them have
been already incorporated in other research studies [9–11]. Obviously, not all of them
may be equally effective in this task. Therefore it is worth analyzing the importance of
individual parameters.

4.1.1. Identifying Features That Differ Significantly between Positive and
Negative Opinions

The aim of the first test was to verify which features show significantly different values
between positive and negative opinions. Dependent t-test for paired samples was used to
perform this task [27]. It is defined as follows:

t =
d
sd

√
n− 1 (1)

where d is the mean difference between the values obtained for positive and negative
opinions respectively; sd is the standard deviation of the differences; n is the number of
degrees of freedom, that is, the number of pairs of samples, for which the difference is
calculated. In our case a two-tailed test was applied, because no assumption was made on
the direction of the observed changes, that is, feature values may either increase or decrease.

The second column of Table 4 presents the test results for all features. The t-statistic
exceeded critical value for the significance level p = 0.05 for 12 features, which are marked
bold. Most of them are timing characteristics describing digraphs and trigraphs. One
of the features belongs to the frequency parameters and it describes the frequency of
using spacebar. Eventually, typing speed turned out to have significantly different values
between the positive and negative opinions.

The other two columns of Table 4 present the results of the same test calculated on
the basis of opinions on teachers or subjects, respectively. The values are obviously higher,
due to a lower number of samples. In each case there are three features for which the test
exceeded critical value for the significance level of 0.05. The results are also presented on a
bar plot where features are sorted according to increasing p-values obtained for the dataset
containing all samples (Figure 6).
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Table 4. Evaluation of keyboard patterns features—paired t-test results for positive/negative opinions,
p-values below 0.05 are marked bold.

Feature p-Value (Rank)

All Samples Teacher Samples Subject Samples
n = 196 n = 98 n = 98

di_1D2D[0] 0.0110 (5) 0.0862 (5) 0.0636 (5)
di_1D2D[1] 0.0272 (7) 0.3060 (22) 0.0406 (2)
di_1Dur[0] 0.9922 (51) 0.3446 (25) 0.3407 (25)
di_1Dur[1] 0.6492 (40) 0.9741 (51) 0.5640 (35)
di_1KeyLat[0] 0.0092 (4) 0.0365 (3) 0.1042 (10)
di_1KeyLat[1] 0.0306 (8) 0.0964 (7) 0.1604 (16)
di_2Dur[0] 0.2982 (26) 0.2786 (21) 0.6908 (39)
di_2Dur[1] 0.8872 (47) 0.7062 (36) 0.5439 (34)
di_Dur[0] 0.0456 (12) 0.2275 (14) 0.1146 (12)
di_Dur[1] 0.2168 (20) 0.3095 (23) 0.4593 (31)
di_NumEvents[0] 0.4972 (33) 0.2652 (20) 0.9736 (48)
di_NumEvents[1] 0.9639 (48) 0.7703 (40) 0.8601 (44)
tri_1D2D[0] 0.0404 (9) 0.2257 (13) 0.1012 (9)
tri_1D2D[1] 0.0815 (16) 0.5219 (29) 0.0743 (6)
tri_1Dur[0] 0.8501 (46) 0.3832 (27) 0.2019 (20)
tri_1Dur[1] 0.4885 (31) 0.9490 (48) 0.3434 (26)
tri_1KeyLat[0] 0.0425 (10) 0.1224 (8) 0.1821 (18)
tri_1KeyLat[1] 0.0679 (15) 0.2338 (16) 0.1717 (17)
tri_2D3D[0] 0.0245 (6) 0.0953 (6) 0.1279 (14)
tri_2D3D[1] 0.0647 (14) 0.3188 (24) 0.1157 (13)
tri_2Dur[0] 0.2479 (22) 0.1326 (10) 0.8699 (45)
tri_2Dur[1] 0.3596 (28) 0.7236 (39) 0.3640 (27)
tri_2KeyLat[0] 0.0085 (3) 0.0297 (2) 0.1092 (11)
tri_2KeyLat[1] 0.0448 (11) 0.1235 (9) 0.1894 (19)
tri_3Dur[0] 0.2469 (21) 0.2553 (19) 0.6115 (37)
tri_3Dur[1] 0.8431 (45) 0.6929 (35) 0.4735 (32)
tri_Dur[0] 0.0580 (13) 0.2302 (15) 0.1472 (15)
tri_Dur[1] 0.6020 (37) 0.8435 (43) 0.6057 (36)
tri_NumEvents[0] 0.5771 (35) 0.2485 (18) 0.8446 (43)
tri_NumEvents[1] 0.9901 (50) 0.6742 (34) 0.7637 (41)
SPACE 0.0007 (1) 0.0052 (1) 0.0556 (4)
BCKSPACE 0.1130 (18) 0.1398 (11) 0.4749 (33)
DEL 0.1119 (17) 0.1755 (12) 0.3223 (24)
UP 0.6051 (38) 0.5610 (32) 0.9763 (49)
DOWN 0.2587 (23) 0.2395 (17) 0.9767 (50)
LEFT 0.8165 (44) 0.7099 (38) 0.7818 (42)
RIGHT 0.3073 (27) 0.7091 (37) 0.0382 (1)
SHIFT_L 0.9650 (49) 0.9601 (50) 0.8860 (46)
SHIFT_R 0.2980 (25) 0.5586 (31) 0.3935 (28)
L_di_1D2D[0] 0.2593 (24) 0.7766 (41) 0.0879 (7)
L_di_1D2D[1] 0.5596 (34) 0.6200 (33) 0.2197 (21)
L_di_Dur[0] 0.1976 (19) 0.8832 (45) 0.0949 (8)
L_di_Dur[1] 0.4886 (32) 0.9213 (47) 0.2769 (23)
L_first_shift_up 0.5827 (36) 0.5179 (28) 0.9156 (47)
R_di_1D2D[0] 0.4292 (30) 0.7910 (42) 0.4325 (29)
R_di_1D2D[1] 0.4109 (29) 0.8736 (44) 0.2713 (22)
R_di_Dur[0] 0.7049 (41) 0.9507 (49) 0.6509 (38)
R_di_Dur[1] 0.7665 (43) 0.9148 (46) 0.4554 (30)
R_first_shift_up 0.6406 (39) 0.5234 (30) 0.9910 (51)
CAPS 0.7135 (42) 0.3767 (26) 0.7256 (40)
SPEED 0.0068 (2) 0.0738 (4) 0.0439 (3)
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Figure 6. p-values obtained after applying paired t-test for positive/negative opinions on the basis of
three sets of samples. Features are sorted according to the results obtained on the basis of a dataset
containing all samples.
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Testing the set of n features is the multiple testing problem, which means that on
average αn features are falsely recognized as significant, where α is the significance level.
To prevent inflation of a type-I error it is possible to apply a procedure which adjusts
the p-values. One of these methods is the Benjamini–Hochberg (BH) procedure, which
allows control of the false-discovery rate (FDR) defined as the expected proportion of
type-I errors among the rejected hypotheses [28]. It requires sorting the p-values, then
finding the largest p-value lower than qr/n, where r is the rank of a p-value in the sorted
list, q is the level at which the FDR is controlled. According to the procedure, the null
hypotheses for the p-values up to the identified one and including this one are rejected.
Figure 7 presents 12 lowest p-values and cutoff lines set according to the BH procedure for
different values of q, which controls the level of FDR. It can be seen that if we set the level
to 0.05 (blue line) only one feature will be selected as a parameter with values significantly
different between positive and negative opinions. This is the SPACE feature. For the level
equal to 0.12 (orange line), five features are identified. To identify the 12 features, which
were selected without applying the BH procedure, one would have to set the level q to
0.2 (green line), which means that the expected values of features falsely identified as
significant would be 0.2. Applying the BH procedure for the other two sets of samples, that
is, for opinions only on teachers or only on subjects, did not reveal features with values
that were significantly different between positive and negative opinions for the mentioned
levels of controlling FDR.

Figure 7. Top 12 p-values obtained after applying paired t-test for positive/negative opinions on the
basis of all samples and the cutoff lines set according to the Benjamini–Hochberg procedure.

4.1.2. Estimating Mutual Information

The aim of this test was to measure the dependency between feature values and the
labels. Depending on various criteria, several label assignments of data samples were taken
into account in this experiment:

• type of opinion, either positive or negative, assigned according to the opinions the
participants were asked to write;

• low (greater than 5) or high (lower than 5) pleasure depending on values from the
self-report, samples with pleasure values equal to 5 were removed from the dataset;

• low (greater than 5) or high (lower than 5) arousal depending on values from the
self-report, samples with arousal equal to 5 were removed from the dataset.

Table 5 presents the calculated values of mutual information. Higher values indicate
greater dependency. The first three columns contain values indicating features’ ability to
predict the type of opinion (positive/negative) calculated separately for the whole data set
(column 1), subset of samples from opinions on teachers (column 2) and subset of samples
from opinions on subjects (column 3). It has been also presented on bar plots (Figure 8).
In each case a set of the best predictors may be indicated. Most of them are digraph and
trigraph parameters as it was in the case of previously described paired t-test. Most features
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selected in this way have been also selected using the previous test. However, there are
several parameters showing some predictive power from the point of view of one criterion,
but not from the other. From the set of frequency features only the frequency of using
spacebar seems to be worth taking into account. Both criteria indicate typing speed as a
potentially valuable predictor.

The last two columns of Table 5 present the effectiveness of the features in discrimi-
nating between high and low pleasure and arousal respectively. It has been also presented
using bar plots (Figure 9). It can be seen that typing speed is especially worth taking into
account as a predictor of arousal.

Figure 8. Mutual information values indicating the dependency between features and labels in
the task of discriminating between positive and negative opinions, calculated for (a) all samples,
(b) teacher samples, (c) subject samples.
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Table 5. Evaluation of keyboard patterns features—mutual information measure.

Feature Mutual Information

Positive/Negative High/Low
All Teacher Subject Pleasure Arousal

Samples Samples Samples

di_1D2D[0] 0.0714 0.0908 0.0236 0.0148 0.0528
di_1D2D[1] 0.0459 0.0000 0.0738 0.0228 0.0000
di_1Dur[0] 0.0842 0.0000 0.0316 0.0694 0.0000
di_1Dur[1] 0.0000 0.0923 0.0000 0.0592 0.0000
di_1KeyLat[0] 0.0869 0.1108 0.0181 0.0120 0.0186
di_1KeyLat[1] 0.0104 0.0044 0.1525 0.0000 0.0207
di_2Dur[0] 0.0000 0.0000 0.0119 0.0003 0.0116
di_2Dur[1] 0.0000 0.0500 0.0264 0.0000 0.0000
di_Dur[0] 0.0455 0.0035 0.0634 0.0071 0.0150
di_Dur[1] 0.0077 0.0000 0.0014 0.0000 0.0000
di_NumEvents[0] 0.0000 0.0737 0.0000 0.0100 0.0000
di_NumEvents[1] 0.0196 0.0543 0.0000 0.0466 0.0139
tri_1D2D[0] 0.0747 0.0000 0.1038 0.0437 0.0000
tri_1D2D[1] 0.0000 0.0000 0.0229 0.0000 0.0580
tri_1Dur[0] 0.0539 0.0000 0.0769 0.0363 0.0000
tri_1Dur[1] 0.0000 0.0731 0.0000 0.0323 0.0000
tri_1KeyLat[0] 0.0103 0.0000 0.0014 0.0000 0.0000
tri_1KeyLat[1] 0.0516 0.0547 0.0556 0.0000 0.0382
tri_2D3D[0] 0.0356 0.0000 0.0425 0.0202 0.0609
tri_2D3D[1] 0.0000 0.0045 0.0461 0.0000 0.0162
tri_2Dur[0] 0.0000 0.0128 0.0000 0.0000 0.0000
tri_2Dur[1] 0.0000 0.0429 0.0247 0.0000 0.0140
tri_2KeyLat[0] 0.0270 0.0677 0.0246 0.0000 0.0285
tri_2KeyLat[1] 0.0421 0.0000 0.1420 0.0000 0.0329
tri_3Dur[0] 0.0000 0.0000 0.0000 0.0000 0.0000
tri_3Dur[1] 0.0000 0.0408 0.0346 0.0094 0.0305
tri_Dur[0] 0.0494 0.0000 0.0286 0.0661 0.0000
tri_Dur[1] 0.0000 0.0000 0.0150 0.0456 0.0317
tri_NumEvents[0] 0.0000 0.0000 0.0000 0.0351 0.0575
tri_NumEvents[1] 0.0000 0.0562 0.0000 0.0136 0.0000
SPACE 0.0451 0.0773 0.0115 0.0137 0.0000
BCKSPACE 0.0000 0.0000 0.0548 0.0153 0.0004
DEL 0.0000 0.0000 0.0000 0.0516 0.0182
UP 0.0208 0.0000 0.0000 0.0018 0.0000
DOWN 0.0000 0.0000 0.0000 0.0578 0.0000
LEFT 0.0121 0.0206 0.0000 0.0315 0.0522
RIGHT 0.0000 0.0000 0.0000 0.0119 0.0506
SHIFT_L 0.0000 0.0000 0.0000 0.0535 0.0000
SHIFT_R 0.0195 0.0000 0.0000 0.0201 0.0521
L_di_1D2D[0] 0.0000 0.0000 0.0000 0.0018 0.0000
L_di_1D2D[1] 0.0126 0.1018 0.0705 0.0000 0.0000
L_di_Dur[0] 0.0513 0.0315 0.0413 0.0000 0.0324
L_di_Dur[1] 0.0000 0.0218 0.0000 0.0000 0.0226
L_first_shift_up 0.0103 0.0000 0.0000 0.0001 0.0000
R_di_1D2D[0] 0.0000 0.0000 0.0000 0.0000 0.0610
R_di_1D2D[1] 0.0000 0.0000 0.0000 0.0262 0.0001
R_di_Dur[0] 0.0000 0.0000 0.0329 0.0139 0.0102
R_di_Dur[1] 0.0000 0.0000 0.0000 0.0354 0.0000
R_first_shift_up 0.0000 0.0000 0.0000 0.0000 0.0000
CAPS 0.0264 0.0089 0.1154 0.0215 0.0000
SPEED 0.0504 0.1168 0.0000 0.0000 0.1211
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4.2. Estimating the Significance of Differences between PAD Labels for Positive and
Negative Opinions

The aim of this test was to verify whether the label values of pleasure, arousal and
dominance reported by the participants after the positive and negative opinions were
significantly different. Although it has been already shown in Table 1 that the distributions
of pleasure and arousal labels differ significantly between positive and negative opinions,
it is also possible to look at these two data samples as dependent ones. The opinions may
paired, that is, each positive opinion on a topic may be accompanied by a negative opinion
on the same topic written by the same person. From this point of view, it is worth verifying
whether the reported labels change significantly after changing the type of opinion. In order
to verify this, the Wilcoxon signed-rank test was applied. It is a non-parametric equivalent
of the t-test for paired samples.

Table 6 presents the p-values obtained after applying the two-sided Wilcoxon test
for each of the three PAD dimensions. It shows that in the case of pleasure and arousal
the differences between positive and negative labels are significant (p-value < 0.05). No
significant differences between positive and negative labels were observed for dominance.

Figure 9. Mutual information values indicating the dependency between features and labels in the
task of discriminating between high and low level of (a) pleasure, (b) arousal.
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Table 6. Testing the differences of PAD labels between the paired positive and negative opinions—results
of two-sided Wilcoxon test.

Pleasure Arousal Dominance

difference mean −0.898 0.612 0.041
test statistic 230.5 709.5 658.0

p-value 0.0000 0.0009 0.9616

4.3. Classification

Three classification problems were taken into account during the tests. The first one
was to recognize whether an opinion is positive or negative. The other two problems
were training classifiers for pleasure and arousal, respectively. Several classifiers, that is,
SVM, random forest, naive Bayes and k nearest neigbours, have been applied and tested.
The results obtained using the SVM classifier outperformed other ones. Therefore the
following subsections present results obtained using SVM. Because of the high number
of features when compared to the number of samples, the dimension has been reduced
by removing features with very low variance and then by removing highly correlated
attributes. In each case classifiers were trained for various sets of data, that is, either
absolute or relative as it was described in Section 3.4, either scaled or not, either after
reducing the number of features or not. The experiments do not show high impact of
scaling and reducing the number of parameters. All tables in the following subsections
present the results obtained for unscaled feature values, reduced number of features, both
for absolute and relative datasets.

4.3.1. Recognizing Positive vs. Negative Opinions

The aim of the first classification experiments was to verify whether it was possible
to recognize if an opinion was positive or negative on the basis of keystroke dynamics.
To train this classifier a training set containing 196 samples was created. The labels were
assigned according to the opinions the participants were asked to write. There were
98 samples for each of the two classes. Forty nine opinions on the best teacher and 49 on
the best subject were labeled as positive. Negative labels were assigned to the opinions
on the worst teacher and the worst subject. The PAD labels for SAM questionnaire were
not taken into account in this case. Table 7 presents the results obtained by applying an
SVM classifier trained and tested in a 10-fold cross validation procedure. The parameters
of the SVM model were adjusted in a grid search procedure. It turned out that the results
obtained for relative feature values were better than for the absolute ones. The average
values of precision, recall and F1 measurements were around 0.62.

Table 7. Summary of classification accuracy for positive and negative opinions.

Data Set Confusion Matrix Precision Recall F1-Score
Class Positive Negative

Absolute
Positive 49 49 0.5632 0.5000 0.5297

Negative 38 60 0.5505 0.6122 0.5797
Average 0.5568 0.5561 0.5547

Relative
Positive 57 41 0.6404 0.5816 0.6096

Negative 32 66 0.6168 0.6735 0.6439
Average 0.6286 0.6276 0.6268

4.3.2. Pleasure and Arousal Recognition

The aim of these experiments was to recognize the level of pleasure or arousal. Due
to the small number of samples and the fact that some levels from the 9-point scales
were scarce in the collected date, the problem was reduced to a binary task. The levels
were merged to form two classes representing High or Low level. The different merging
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procedure were implemented, depending on the setting of the threshold value on the
9-point scale.

• L1: samples labeled with values greater than 5 were assigned Low level, samples
labeled with values lower than 5 were assigned High level, samples labeled with 5
were removed from the data set;

• L2: samples labeled with values greater or equal to 5 were assigned Low level, samples
labeled with values lower than 5 were assigned High level;

• L3: samples labeled with values greater than 5 were assigned Low level, samples
labeled with values lower or equal to 5 were assigned High level.

The presented merging procedures resulted in different training sets with different
class distributions as shown in Table 8. In some cases, the obtained datasets were highly
imbalanced, which may have a disadvantageous influence on classifiers’ efficiency.

Table 8. Labels (class) distribution for different merging procedures.

Number of Samples (High/Low)
Labeling Procedure Pleasure Arousal

L1 163 (135/28) 146 (86/60)
L2 196 (135/61) 196 (86/110)
L3 196 (168/28) 196 (136/60)

Tables 9 and 10 present classification results obtained after training the SVM classifier
to recognize the level of pleasure and arousal, respectively. In each case the models were
trained and tested in a 10-fold cross validation procedure. The parameters of the SVM
model were adjusted in a grid search procedure. As it was in the case of recognizing
positive/negative opinions, the results obtained for the relative data set are usually better
than for the absolute one, but they differ much between the data sets created using different
labeling approaches. High class imbalance made the results for the minority class, that is,
the class of Low levels of pleasure or arousal, lower in each case. In the case of pleasure
the best average results were obtained for L3 labeling, where the weighted average of
F1-score was 0.76. However, it should be noted that the results for Low class, both precision
and recall, are unacceptably low in this case. In the case of arousal L1 and L3 labeling
procedures lead to F1-score of around 0.65. The training data set created using the L2
labeling did not let train an arousal classifier assigning all samples to one class. Therefore
the results for this labeling method were not presented in Table 10.
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Table 9. Summary of classification results for the level of of pleasure. The values marked bold are
weighted averages of precision, recall and F1-score.

Data Set Labeling Confusion Matrix Precision Recall F1-Score
Class High Low

Absolute

L1
High 97 38 0.8435 0.7185 0.7760
Low 18 10 0.2083 0.3571 0.2632

Average 0.7344 0.6564 0.6873

L2
High 83 52 0.6803 0.6148 0.6459
Low 39 22 0.2973 0.3607 0.3259

Average 0.5611 0.5357 0.5463

L3
High 136 32 0.8718 0.8095 0.8395
Low 20 8 0.2000 0.2857 0.2353

Average 0.7758 0.7347 0.7532

Relative

L1
High 102 33 0.8361 0.7556 0.7938
Low 20 8 0.1951 0.2857 0.2319

Average 0.7260 0.6748 0.6973

L2
High 101 34 0.7319 0.7481 0.7399
Low 37 24 0.4138 0.3934 0.4034

Average 0.6329 0.6378 0.6352

L3
High 143 25 0.8667 0.8512 0.8589
Low 22 6 0.1935 0.2143 0.2034

Average 0.7705 0.7602 0.7652

Table 10. Summary of classification results for the level of arousal. The values marked bold are
weighted averages of precision, recall and F1-score.

Data Set Labeling Confusion Matrix Precision Recall F1-Score
Class High Low

Absolute

L1
High 53 33 0.6235 0.6163 0.6199
Low 32 28 0.4590 0.4667 0.4628

Average 0.5559 0.5548 0.5553

L3
High 93 43 0.6992 0.6838 0.6914
Low 40 20 0.3175 0.3333 0.3252

Average 0.5824 0.5765 0.5793

Relative

L1
High 64 22 0.6957 0.7442 0.7191
Low 28 32 0.5926 0.5333 0.5614

Average 0.6533 0.6575 0.6543

L3
High 98 38 0.7538 0.7206 0.7368
Low 32 28 0.4242 0.4667 0.4444

Average 0.6529 0.6429 0.6473

5. Summary of Results and Discussion

In this study we captured keystroke dynamics patterns while writing positive and
negative opinions. The patterns were quantified as 51 features and then classification
was performed with labels of positive/negative opinions as well as labels of self-reported
pleasure and arousal.

The results of the study in terms of comparison between the different keystroke
patterns (features) might be summarized as follows:

• based on t-Student test (with 0.05 p-value threshold) 12 out of 51 features show
significant differences between positive and negative opinions, including five digraph
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features, five trigraph features, frequency of using spacebar and typing speed, but only
one feature after applying the Benjamini–Hochberg correction with control of false
discovery rate at the level of 0.05;

• based on mutual information measure top eight features (mutual information > 0.05)
might be indicated in distinguishing between positive and negative opinions, that is,
three digraph features, three trigraph features, one shift feature and typing speed;

• based on mutual information measure (mutual information > 0.1), one might find
the top three features in distinguishing between positive and negative opinions on
teachers and the top four features in distinguishing between positive and negative
opinions on subjects; however, the features are different for both sets.

To summarize, none of the feature groups (digraph, trigraph, shift, frequency-based)
has a dominant representation in the significant features; however, one might find the
frequency of using spacebar and typing speed as the two mostly connected with labels.
There are alternative features that might be calculated for keystroke dynamics, including
for example the timing characteristics calculated for the most common sequences or the
most common words in a given language [10]. Apart from mean values and standard
deviations of some parameters, one may also take into account other statistics, for example,
selected quantiles. Subjective selection of the feature set is among the drawbacks of the
study; however, we have covered the most used ones.

The results of the study in terms of classification results might be summarized as follows:

• relative data sets containing vectors normalised by subtracting a baseline vector for
each user lead to better results;

• classification of positive and negative opinions was above random guess (with total
F1 score exceeding 0.62), but the result is not impressive;

• classification of two pleasure levels was dependent on label merging procedure,
with average F1-score of around 0.76 at the best case, but the results for two classes
are highly unbalanced showing unacceptable result for the minority class;

• classification of two arousal levels was dependent on label merging procedure, with 2 out
of 3 cases showing accuracy above random guess (with average F1-score of around 0.65);

• classification of dominance labels was not performed as no significant differences
were found for high and low dominance.

To summarize, it is possible to recognize positive and negative opinions from the
keystroke patterns with an accuracy above random guess; however, one must take into
account that during the study not all participants writing positive and negative opinions
actually felt the emotions connected with them—they were asked to revive the memory of
the best/worst learning experience; however, the disposition of the day and temporary
mood connected with the experimental setup could also influence the keystroke patterns.

As has been described in Section 4.3.2, the levels of pleasure and arousal were merged
and thus the problem was reduced to a binary one. It is well known that people may have
various predispositions to selected emotional states, also to certain levels of arousal or plea-
sure. Therefore, setting the same threshold value for all users to distinguish between low
and high levels of pleasure or arousal may not be the right approach. Some personalisation
implemented at this stage might lead to better labeling and in turn better performance of
the trained classifiers. This idea has been applied in [29] for example, where personalised
z-score normalisation was used while transforming from a 5-point scale to binary in the
task of boredom detection. Unfortunately, it was not possible in our case because there
were only four labeled samples from each user. In this study we tested three different
methods of merging labels into two classes, however one might propose a different one.

Please note that all of the reported results are for the SVM classifier. We have tested
alternative ones, including random forests, naive Bayes, k nearest neigbours, but none of
them produced better results. As only a limited number of classifiers was used, one might
propose using different ones.

Among the other validation threats to the study one may point out homogenous
participant group. Although the group consisted of 50 people, it was homogenous—only
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students, aged 20–22 took part in the study. We are aware of the fact that this might lead to
limited generalisability of the findings.

6. Conclusions

The study provided some preliminary results that indicate that keystroke dynamics
patterns might contribute to opinion mining research. However, as the differences in
patterns for positive and negative opinions were only slightly different, one might combine
the patterns with other modalities. Interesting future studies might include combination of
keystroke patterns with mouse patterns or with physiological signals. Sentiment analysis
of the opinions of participants might also be performed, which will be one of our future
studies. Among the key challenges that are faced by such a study, we would like to
emphasize the labeling issue. We used labeling by a predefined task (stimuli) and by
self-report; however, both are susceptible to different confounding factors and might not
reflect the “ground truth” (i.e., the actual emotional state). Eventually, a future study
would also require a larger and less homogenous group of participants to incorporate other
variables, such as age, gender, technical skills, typing experience, fatigue and so forth.

The study has several practical implications. Keystroke dynamics patterns might be
an interesting modality to include in multi-channel emotion recognition, as they are easy to
collect and are an unobtrusive method of monitoring in the human–computer interaction
context. There is an issue of privacy in the tracking keystrokes studies, that is, one might
input logins and passwords or private messages. The issue must be addressed for ethical
reasons in such research and one of the methods, used in this study, does not trace specific
letters and digits keys, and registers only general information on pressing a letter key. This
study might be interesting for both researchers and practitioners who track human activity
on computers in order to recognize human emotional states.
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