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Abstract: In this paper, the fractal properties of stochastic processes and objects in different areas 
were specified and investigated. These included: measuring systems and sensors, navigation and 
motion controls, telecommunication systems and networks, and flaw detection technologies. Addi-
tional options that occur through the use of fractality were also indicated and exemplified for each 
application. Regarding the problems associated with navigation information processing, the follow-
ing fractal nature processes were identified: errors of inertial sensors based on the microelectrome-
chanical systems called MEMS, in particular gyroscopic drift and accelerometer bias, and; the tra-
jectory movement of mobile objects. With regard to navigation problems specifically, the estimation 
problem statement and its solution are given by way of the Bayesian approach for processing fractal 
processes. The modified index of self-similarity for telecommunication series was proposed, and the 
self-similarity of network traffic based on the R/S method and wavelet analysis was identified. In 
failure detection, fractality manifested as porosity, wrinkles, surface fractures, and ultrasonic echo 
signals measured using non-destructive sensors used for rivet compound testing. 

Keywords: fractality; mathematical model; sensors; navigation and motion control; telecommuni-
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1. Introduction 
Many processes in natural and artificial systems are known to have fractal structures 

[1,2]. Currently, the fractal properties of objects and processes continue to be studied in 
many areas [3]. With the development of higher-precision sensors and improved measur-
ing and diagnostic systems, a need to improve our understanding of fractal structures and 
system errors has arisen. One goal of contemporary research in this area is to improve the 
cybersecurity of modern systems. The use of fractality allows mathematical models of 
processes and objects to be refined, thereby helping to overcome problems of analysis and 
synthesis to achieve greater competence.  

This article examines the features of stochastic process models with fractal properties 
and their applications in some important areas. These areas include: sensors and measur-
ing systems [4,5], navigation and motion controls [6,7], telecommunication systems 
[3,8,9], and flaw detection technologies [10,11]. 

The structure of the paper is as follows: processes and objects of a fractal nature in 
key areas. The possibility of using fractal properties to improve the quality of problem 
solving is then by evaluated. Following this, the positive effects of fractality in these con-
texts is considered. 
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2. Fractal Process Model 
First-order Markov processes have been widely used in practice. However, there are 

others random processes with short- and long-term memory. 
One possible model by which to understand the higher-order Markov process as it 

applies to memory, is a model of fractional Brownian motion [12,13] (fractional Wiener 
process—FWP) containing the Hurst parameter. 

To identify the features of the fractional structure of the process, fractality indicators 
such as the Hurst parameter are used. Several methods are used to estimate the Hurst 
parameter, including: rescaled range analysis (the R/S method), variance change graph 
analysis, and wavelet analysis [13,14]. According to the R/S method, the Hurst parameter 
of a time series is calculated by the following formula: 
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where R is the range of the first n cumulative deviations from the mean, S is the standard 
deviation of observations, and n is the number of observations. 

The FWP is called a random process )(tx  with Hurst parameter H ( 10 <<H ) if 
)()( 0txtxx −=Δ  has a Gaussian distribution with zero mathematical expectation and var-

iance Htt 2
0

2 )( −⋅σ , where σ is a positive constant, namely its probability measure [1]. 
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at H = 0.5, the FWP is consistent with classical Brownian movement (the classical Wiener 
process—CWP). The increments  )()( 0txtxx −=Δ  of fractional Brownian motion are 
called fractional Gaussian noise, with variance obeying the ratio 

HtttxtxD 2
0

2
0 )-(σ)](-)([ ⋅= . 

At Hurst parameter H: (1) if 0.50 << H , then the process has anti-persistent proper-
ties, when an upward trend is replaced by a downward trend or vice versa; (2) if 5.0≈H
, then the process is consistent with the classical Brownian movement; (3) if 15.0 << H , 
then the process has persistent (i.e., trend-resistant) properties. 

3. Mathematical Model of Inertial Sensor Errors in Navigation Systems with Respect 
to the Chaotic Indicator 

Due to the development of high-performance navigation and motion control sys-
tems, the requirements for estimating the accuracy of true process parameters that deter-
mine the qualitative characteristics of these systems have increased. When processing 
navigation information parameters by way of an inertial navigation system, the require-
ments for precision features can be met by making system error descriptions precise [4,6].  

When processing navigation information, it is important to take into account the 
characteristics of errors in the output signals of navigation system sensors. The Wiener 
process is widely used to describe modeling errors of inertial sensors with stochastic fea-
tures [15]. In particular, such a model is used to describe the zero drift of a gyroscope. 

The Wiener process model [16] for an error )(tx  in continuous time is 

),()( twtx =  (3) 

where  

,0)]([ =twE  )()()]()([ τδτ −= ttqwtwE , (4) 

where )(tq  is the intensity of continuous white noise )(tw .  
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The discrete-time state equation with a sampling period 1−−= ii ttT . 

 iii wxx += −1 . (5) 

The covariance Q  for discrete noise iw  in case constqtq ==)(   

qTQ == 2σ . (6) 

The process iw  can be represented by a model using white noise in  with unit in-

tensity via ratio ii nqTw = . 
It should be noted that the process )(tx described by a stochastic differential Equa-

tion (3) is a Wiener process defined through the white noise )(tw . A sequence ix  (5) is a 
sequence with uncorrelated increments and is called a Wiener sequence. 

Based on the results of other authors’ experimental analyses, error behavior graphs 
of inertial sensor outputs suggest that error description processes have a fractal nature. 

This is indicated by the results of gyroscopic drift testing presented in [17]. Constant 
and variable components, correlation coefficients, variance within a drift variable, and 
white noise were taken into account in describing the gyroscopic drift model [17]. The 
paper [15] also proposes a mathematical model of sensor error based on Allan variation, 
which uses unknown parameters. The model characterizes the contribution of the error 
components of the sensor, corresponding to a linear trend, Wiener process, flicker noise, 
white noise and quantization noise. 

Recently, interest in the class of non-stationary processes that have a fractal nature 
has deepened [1–3,5–10,14,18,19]. 

Models of sensor errors based on fractal Wiener process 
Choosing a probability measure (2) for increments of a random process )()( twtx = , 

iii wxx += −1 , 10)()( −−=−=Δ ii xxtxtxx , we obtain a model with the FWP for an error. 
Sensor Error Measurement Model 
Based on the obtained results of analyzing gyroscope and accelerometer tests, a new 

mathematical model of inertial sensor error based on the fractal Wiener process is pro-
posed considering given the chaotic indicator 

iiii vxy ++=η , (7) 

where iη  is the trend component, ix  is the component expressing entropy of a process, 
modeled by the FWP in accordance with (2) and dependent on H—the Hurst parameter; 
iv  is the random white noise with variance iR . 

3.1. Experimental Confirmation of Fractal Properties of Gyroscope Zero Drift Process 
The digital gyroscope STMicroelectronics L3G4200D PmodGYRO (Figure 1a) was ex-

amined using a myRIO National Instruments (NI) device utilizing its onboard FPGA, a 
dual-core programmable controller, and LabVIEW software environment [20]. The 
L3G4200D is a low-power, three-axis, angular rate sensor able to provide unprecedented, 
zero bias stability (zero-rate level), and sensitivity stability over temperature and time 
[21].  
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(a) (b) 

Figure 1. Inertial sensors: (a) gyroscope L3G4200D; (b) accelerometer ADXL345. 

Measured range: one of the available value ranges, e.g., ±250 dps, or °/s (grad/s). The 
sensitivity value is 0.00875°/LSB (LSB—least significant bit). 

Figure 2a shows the gyroscope drift at the following parameters: data transfer rate is 
100 Hz; sampling time is 1 h with sample spacing 210−=T s—360,000 values at a sensitiv-
ity of 250 dps. The zero bias (digital zero-rate level) is more than 0.5 °/s. 

 
Figure 2. Gyroscope drift according to X coordinate (a) and the Hurst parameter with the gyro-
scope drift for 1 h (b). 

In our experiment (Figure 2a), a signal is shown at the output of the electronic part 
of the sensor where the noise component (bias instability) is caused by electronic compo-
nents that are part of an electrical circuit. 

The value of the Hurst parameter H was calculated by the method based on wavelet 
analysis. We used the standard MatLab wfbmesti function in accordance with previous 
approaches [22–24]. As can be seen from Figure 2b, the value of the H parameter varies by 
about 0.28, i.e., the process has anti-persistent properties. 

3.2. Modeling of Accelerometer Bias 
The digital accelerometer ADXL345 [25] (Figure 1b) is examined using the myRIO NI 

device and the LabVIEW software environment. The accelerometer was placed on a fixed 
insulated base. The output signals were registered along one of the sensitivity axes, or-
thogonal to the gravitational vector g. 

Figure 3a shows the accelerometer bias at the following parameters: 16 g resolution 
range; 0.0625 g/LSB scale; 100 Hz data transmission rate; 20 min sampling time with 

210−=T s—127,077 sample spacing values; and the temperature of 23 °C, 102/2gLSB = .  
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Figure 3. Accelerometer bias and drift by x coordinate (a), Hurst parameter (b). 

Figure 3a shows the signal at the output of the accelerometer, where the noise com-
ponent of bias instability is in the range of −1 to +1 LSB, which is caused by the electronic 
part of the sensor [25]. 

When examining the accelerometer bias for 20 min (Figure 3b), the Hurst parameter 
fluctuates by about 0.03. Therefore, the process has anti-persistent properties. 

In inertial sensors, changes in the Hurst parameter from small values to higher ones 
can serve as an indicator that errors of inertial systems accumulate due to the departure 
of the zero bias because of technical malfunctions, temperature influence, and vibration. 
For different types of inertial sensors (gyroscopes, accelerometers), the Hurst parameter 
will be different. 

4. Navigation and Motion Control 
The accuracy of parameter estimation in orientation tracking is mostly determined 

by the choice of mathematical, moving object, descriptions, and the choice of efficient al-
gorithms for nonlinear filtering. In both cases, when solving the problem of trajectory 
tracking, the mathematical models based on the classical Wiener process are widely ap-
plicable. At the same time, an aggregation in the form of the FWP is used to model sto-
chastic processes with fractal properties [1,18]. 

Mathematical Models of Object Movement for Trajectory Tracking Problems 
The object moves in a horizontal plane with coordinates x  and y  of Cartesian 

axes. Let us consider the motion model for one coordinate x ; the model for another co-
ordinate, y , is similar.  

Let us also consider the object movement models traditionally used to solve orienta-
tion tracking problems [16,18,26,27]. 

Model with Wiener process for acceleration 

)(twx = , (8) 

with white noise characteristics )(tw . 
Model with white noise for acceleration, or Wiener process for speed 

)()( twtx = . (9) 

A model with white noise for speed, or a Wiener process for a coordinate, is deter-
mined by Equations (3) and (4). 

It is essential that all presented models of motion, (3), (8), and (9), are defined through 
the Wiener process, and that their discrete representations with a period of discretization 

1−−= ii ttT  in the form of iiii wxФx += −1 , are defined through the Wiener sequence (5). 
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Here, iw  is an n -dimensional-centered Gaussian white noise sequence with the covari-
ance matrix iQ . iФ  is the known matrix of a respective dimension.  

With this in mind, we propose new models of object motion based on the use of the 
fractional Wiener process (2) [18,28]. 

Models of object movement based on the FWP 
By choosing the probability measure (2) for increments of a random process 

),()( twtx =  ,1 iii wxx += −  ,)()( 10 −−=−=Δ ii xxtxtxx  

we obtain a model with the FWP for the coordinate. Proceeding similarly for processes (8) 
and (9), we obtain a model with the FWP for acceleration and a model with the FWP for 
speed, respectively. 

Measurement model for trajectory tracking 
A range and azimuth tracking approach can be used to determine the location of an 

object. 
Measuring range ( iρ ) and bearing ( iα ) 

.
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To obtain a linear model of measurements, the primary measurements of the polar 
coordinates of an object, range ( iρ  ), and bearing ( iα ), can be converted into a rectangular 
coordinate system and are presented in the following form [18,26] 

i
x

iii xx
i

Δ+=  αρ cos* ; i
y

iii xy
i

Δ+=  αρ sin* , 
(10) 

where ixΔ  and iyΔ  are random errors of coordinate measurements with the following 
characteristics 

0)()( =Δ=Δ ii yExE ; 

iiiix iii
xE αρσασσ αρ

2222222 sincos)( ΔΔΔ +=Δ= ; 

iiiiy iii
yE αρσασσ αρ

2222222 cossin)( ΔΔΔ +=Δ= ; 

iiiyxii iiii
RyxE ααρσσ αρ cossin)()( 222

ΔΔΔΔ −==ΔΔ . 
Linear measurements will be used for the Kalman Filter (KF). Let us now consider an 

example of fractal process filtering. 

5. Fractal Process Filtering 
To clearly identify the features of filtration in the fractal process, we intentionally 

choose the simplest model to express the FWP. It is necessary to evaluate the coordinate 
of a fractal Wiener process 

iii wxx += −1   (11)

using linear measures of type iii vxy += , where ...,1,0=i  are the moments of time and

ii vw ,  are the zero-mean Gaussian white noises independent of each other and of ix , with 

variances 2
wQ σ=  and 2

vR σ= , respectively. Here, the values of the process 0x  at the 
initial represent the random zero-mean Gaussian variable with covariance at the 

2
00 xxP σ= . 

Modeling parameters: initial state 0
0

=xm , 20
0

=xσ ; 10=vσ , discretization pe-
riod sT 1= . The FWP (11) was modeled using the wfbm function in the MatLab mathe-
matical package, which is based on wavelet decomposition and simulates a fractal Wiener 
sequence with a given Hurst parameter. 
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Kalman filtering and a non-recurrent Bayesian algorithm (BA) of optimal linear fil-
tering were used to obtain the required estimate [28]. 

It is essential that if, for the classical Wiener process, increments iw  are independ-
ent, then the FWP does not have this property and is not a Markov process, except in cases 
where H=0.5 when the FWP is consistent with the CWP. In such cases, KF only gives the 
optimal solution for this value of H parameter and is not optimal with other H parameter 
values. 

In general, when 10 <<H , optimal estimations of non-recurrent BA and expected 
(analysis) covariance matrices for estimation error )(~

iiii yxxe −= , are determined by 
means of the following expressions [28,29]: 

( ) ][~ 1
iiii iiii
yyPPxx yyyx −+= − ,

iiiiiiiii xyyyyxxxe PPPPP 1−−= , (12)

where 
iibaP  are covariance matrices. 

The selective (valid) r.m.s. of the estimation errors are presented, calculated as 


=

≈
L

j

j
i

ηη
i e

L 1
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i

jη
i

j
i
η xxe −= y , KFBAη ,= , .3000=L   (13)

Modeling and estimation of the FWP process was carried out with different Hurst 
parameters: H: 0.1; 0.5; 0.9 (Figure 4). The number of measurements can be expressed as 

200.1=i . 

 
Figure 4. R.m.s. of estimation errors with different Hurst parameters (H). 

As Figure 4a–c show FK
iσ  is the expected r.m.s of estimation errors corresponding 

to the error variance of optimal estimation, which is the only element of the analysis ma-
trix of KF covariance errors. FK

iσ~  is the selective r.m.s of filtering errors when using KF; 
BA
iσ  is the expected r.m.s. of filtering errors when using non-recurrent BA; BA

iσ~  is the 
selective r.m.s. of filtering errors for BA, and iσ~  is the selective r.m.s. of measurement 
errors. 

The results show the coincidence of the expected BA
iσ  (12) and the valid BA

iσ~  (13) 
accuracy characteristics of the presented optimal linear algorithm for non-recurrent esti-
mation. When parameter H = 0.1, higher estimation accuracy can be achieved with the 
help of the optimal linear algorithm than with KF. When the parameter H = 0.5, both KF 
and the linear optimal algorithm estimate the random process with equal accuracy. When 
parameter H = 0.9, for KF, estimation error is increased in comparison to the optimal linear 
algorithm. A mismatch between the results of analysis and the actual (selective) charac-
teristic for KF is observed at H = 0.1 and H = 0.9, respectively. 

The study shows that a higher estimation accuracy can be achieved using non-recur-
rent algorithms, unlike KF. 
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In navigation and motion control, the values of the Hurst parameter for object motion 
models may change due to changes in the state of the environment (e.g., turbulence, 
weather conditions, natural phenomena, etc.). 

For Kalman-type algorithms to be efficient, it is necessary to solve the adaptive prob-
lem of estimation by introducing and evaluating an unknown parameter—the fractal pa-
rameter H. 

6. Information and Telecommunication System 
The development and research of mathematical models of network telecommunica-

tion traffic allow us to define the boundaries of network performance and optimize the 
network structure of the system to minimize queueing delays. Traditional network traffic 
models show pulsations on short time scales but very smooth traffic at larger scales. Re-
gardless, traffic shows variability over a wide range of time scales. When studying net-
work telecommunication traffic, one of the important tasks is to identify anomalies and 
respond to them early. 

Analyses of network telecommunication traffic result in time series (TS) analyses 
most widely used in traditional methods of statistically analyzing random variable func-
tions. Alongside with traditional methods the signal processing methods based on fractal 
and wavelet-transformations [5,7,9,10,14,18,19], have seen more widespread use in recent 
years. The first of these analyses is specifically concerned with the identification of fractal 
properties that allow time series’ to be attributed to predetermined models. One distinct 
benefit of these analyses is their ability to reveal features of local structures and the differ-
ent properties of complex signals that would otherwise be invisible using standard, real-
time representations. 

Telecommunication network traffic exhibits self-similar properties over a wide range 
of time scales that are very different to the properties of traditional models. Self-similar 
models are appropriate for telecommunication network traffic, as they have the capacity 
to estimate network performance/quality, allocate resources, and ensure quality of service 
[9]. 

Therefore, there is a need to develop new algorithms and modify those that exist for 
the purpose of analyzing the information systems (IS) of telecommunication series. 

In order to analyze the telecommunication system, the use of an algorithm consisting 
of the following steps was proposed: 
(1) Pre-processing of the traffic time series consisting of statistical data sampling with 

the purpose of generating the TS we are interested in; 
(2) Estimation of fractality indicators using different methods such as R/S methods and 

wavelet analyses; 
(3) Identification of the mathematical models of TS by approximation to known models, 

or through synthesizing the structures and parameters of mathematical TS models. 
To reduce the possibility of misinterpreting results of the parameter H evaluation, 

we propose to analyze not only the entire sample, but also the individual blocks of the 
sample. In this context, we propose to consider the blocks separately with a window offset 
and/or in a progressive way. Depending on the parameter H estimation method, we will 
make further calculations for each concerned block(s) separately to determine the ex-
pected value of the results found. This modified Hurst parameter, in the author's opinion, 
will more adequately reflect the real environmental issues associated with identifying the 
fractal properties of telecommunication time series. 

The result of the analyses proposed here will provide full objective information about 
the telecommunication time series of IS, with the determined characteristics allowing for 
the identification of a mathematical TS model. To solve some practical problems, for ex-
ample, the identification of anomalies in the network traffic that may impact IS data in-
tegrity, it is necessary to compare the TS with an identified model and compare the results. 
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In order to analyze telecommunication traffic, we will consider the time series of an 
organization’s incoming and outgoing internet traffic (Figure 5). The organization selected 
will have an average traffic volume of more than 160 Gbytes per day.  

 
Figure 5. Scheme of the organization’s telecommunication system with incoming and outgoing 
Internet traffic. 

Let us consider two time series of incoming and outgoing internet traffic for an or-
ganization with an average volume of more than 160 Gbyte a day. Let the first TS be col-
lected over a sampling period of 60 days with sample spacing equal to 1 h, and let the 
second TS be sampled over 7 days, with sample spacing equal to 1 min. The parameter H 
can be obtained by charting the dependence of ( )( )R(n)/S(n)Elg  on ( )nlg  and then using 
the obtained points to match a straight line with a slope of parameter H by the least 
squares method. Here, we will henceforth consider E the symbol of the expected value. 

Figure 6 shows the dependence of the standardized range logarithms on the loga-
rithms of range lengths, and the linear regression with a slope of parameter H according 
to the R/S-method. 

The time series were divided into blocks in a progressive way, with spacing of 100 
discrete points, i.e., the first block included 100 values, the second included 200, the third 
included 300, etc. Each block, in turn, was divided into intervals ranging in size from 10 
discrete points to a 20% block length increase in size between adjacent intervals. For each 
interval, the R/S ratio and the R/S mathematical expectation of the given block were cal-
culated. 

While investigating the information and telecommunication systems, the parameter 
H ≥ 0.8. Therefore, this process has persistent properties. Because of this, we propose to 
use fractality indicators for the time series model description, along with various traffic 
indicators (byte intensity per time unit, batches intensity per time unit, average batch size, 
throughput, loss rate, channel delay, loading, etc.). 

In addition to the network traffic model, the fractality indicators can also be used to 
determine threats to information resources by solving a network classification problem 
[19]. Thus, the paper [19] proposes the modeling and implementation of a threat protec-
tion system with an attack forecast model mode of adaptation and parameter setting based 
on intelligent technologies in addition to fractal and wavelet analyses. 

Thus, in telecommunication systems, the Hurst parameter can serve as an indicator 
when abnormal influences occur in the system (unauthorized access, computer attacks, 
etc.). 
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Figure 6. Characteristics of information and telecommunication systems: (a) and (c) show the anal-
ysis of 2-month, and weekly, series of intensity, respectively, in bytes; (b) and (d)—in packages. 

7. Defect Detection 
Today, developments relating to the transition to advanced digital intelligent manu-

facturing technologies, robotic systems, big data processing systems using artificial intel-
ligence, and machine learning continue to actively develop. In every industry, the use of 
non-destructive testing methods is able to investigate components’ properties on site or 
in the field. Non-destructive testing methods appeal because they are much cheaper and 
faster than traditional, destructive, tests and do not cause any damage to the construc-
tions’ components. 

Methods of image recognition using photo- and camcorder-sourced images are used 
to detect defects [30,31]. Another effective approach is an ultrasonic method of non-de-
structive testing [32,33], which can be operated using flaw detectors.  

Fractality manifests as porosity, wrinkles, and surface fractures, all of which can be 
detected during organoleptic testing and by ultrasonic echo signals by non-destructive 
control of rivet joints. 

The analysis of non-destructive testing signals was carried out to identify their fractal 
properties. 

Figure 7 represents the observed echo signals during non-destructive testing using 
an ultrasonic flaw detector (Olympus EPOCH LTC) with an accuracy of measuring rivet 
length up to 0.01 mm. The accuracy of measuring the echo signal amplitude is up to 0.25%. 
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Figure 7. Echo signals of ultrasonic flaw detector during non-destructive testing of rivet joints: (a) 
is a normal rivet; (b) defect in the middle of the rivet at the 80% undercut; (c) defect in the middle 
of the rivet at the 50% undercut; (d) defect at the rivet cap base at the 50% undercut. 

The red line is a strobe for detecting defects. Rivet defects differ in the type of echo 
signal in relation to this strobe. 

The Hurst parameter was calculated for 28 implementations of echo signals of an 
ultrasonic flaw detector for each of the normal groups, and for three groups with defective 
rivet types. For normal rivet joints, the parameter H was approximately 0.2, whereas for 
all the defective rivets it was about 0.35. This can serve as a reliable indicator of the pres-
ence or absence of a defect in binary classification. As we have shown in [34] in the case 
of binary classification, 100% accuracy can be achieved using both deep neural networks 
with an LSTM layer, and by estimating the Hurst parameter H for the same source data. 

8. Conclusions 
Following the specification and investigation of the fractal properties of processes 

and objects in different areas, the present study showed that when constructing models 
of processes and objects in various domains, proper allowances must be made for fractal-
ity. 

A stochastic modeling process based on the fractal Wiener process was proposed, 
with provision for the Hurst parameter. 

Relevant to the problems of navigation information processing, the following fractal 
nature processes were identified: errors of inertial sensors based on the microelectrome-
chanical systems called MEMS, in particular the gyroscopic drift and accelerometer biases, 
and the trajectory movement of mobile objects. 

New mathematical models of inertial sensor errors based on the fractal Wiener pro-
cess were presented. 

New models of object motion based on the use of the fractional Wiener process were 
also proposed. The specific nature of estimating fractal process parameters using Kalman-
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type and non-recurrent Bayesian algorithms were investigated. Our illustrative examples 
show that, when estimating the state of the studied processes, fractality must be accounted 
for. 

In addition, we revealed that the traffic in information systems has a fractal nature. 
A modified index of self-similarity for telecommunication series was proposed, and we 
identified network traffic self-similarity based on the R/S method and wavelet analysis. 
At the same time, we proposed to use the fractality indicator when identifying threats to 
information resource protection systems. 

In failure detection, fractality is manifested as porosity, wrinkles, surface fractures, 
and ultrasonic echo signals through the non-destructive testing of rivet compounds. We 
recommend using the Hurst parameter when seeking the reliable binary classification of 
defects in rivet joints. 
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