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Abstract: The present manuscript aims at raising awareness of the endless possibilities of fractional
calculus applied not only to system identification and control engineering, but also into sensing and
filtering domains. The creation of the fractance device has enabled the physical realization of a new
array of sensors capable of gathering more information. The same fractional-order electronic compo-
nent has led to the possibility of exploring analog filtering techniques from a practical perspective,
enlarging the horizon to a wider frequency range, with increased robustness to component variation,
stability and noise reduction. Furthermore, fractional-order digital filters have developed to provide
an alternative solution to higher-order integer-order filters, with increased design flexibility and better
performance. The present study is a comprehensive review of the latest advances in fractional-order
sensors and filters, with a focus on design methodologies and their real-life applicability reported
in the last decade. The potential enhancements brought by the use of fractional calculus have been
exploited as well in sensing and filtering techniques. Several extensions of the classical sensing and
filtering methods have been proposed to date. The basics of fractional-order filters are reviewed,
with a focus on the popular fractional-order Kalman filter, as well as those related to sensing. A
detailed presentation of fractional-order filters is included in applications such as data transmission
and networking, electrical and chemical engineering, biomedicine and various industrial fields.

Keywords: fractional calculus; fractional-order filters; fractional-order sensors; fractional-order
analog filters; fractional-order digital filters; fractional-order applications

1. Introduction

The number of fractional calculus applications has seen a rapid growth over the
last decade. Fractional calculus can be easily defined as a generalization of integer-order
calculus with the order of the differintegral operators as fractional. Its versatility in
modeling and control theory has received a lot of attention recently, although it is still a
concept insufficiently understood. This limits the wide acceptance of fractional calculus in
industrial use. Fractional calculus has been regarded as a much better way to cover the
dynamics of certain type of phenomena, such as anomalous diffusive characteristics [1],
viscoelasticity [2], epidemic spreading [3], etc. At the same time, fractional calculus in
controller design has increased their flexibility and robustness [4,5]. Review papers dealing
with the use of fractional calculus in control engineering have been published recently,
such as [3,6–9].

However, apart from fractional-order models and controllers, the theoretical aspects of
fractional calculus have been extended to cover adjacent areas of research, namely sensing
and filtering. This has somewhat evolved as a logical step, since actual processes are better
modeled using fractional-order systems [10]. At the same time, state estimation is crucial
in designing fractional-order controllers [11]. Thus, for a robust state estimation and an
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efficient noise elimination in fractional-order systems, extensions to a fractional-order of
the popular integer-order estimators have been proposed.

It has been widely proven that complex systems can be accurately described by power-
law series [12]. For the case of electronic devices, the behavior is given by the sum of
various independent actions of the charge carriers, exhibiting the normal distribution.
Unknown interactions in the electronic device leads to the second moment of distribution
that fails to converge. For the case of real-time sampling, the mean converges rapidly
towards infinity, while the standard deviation fluctuates. These systems are best described
by the Generalized Law of Large Numbers, resulting in power-law series behavior, with an
added α-stable component, proving the presence of fractional-order dynamics in any
complex system [13,14]. Hence, fractional-order sensors can provide a powerful tool in
acquiring more accurate data regarding the surrounding environment, as will be shown in
the present study.

Filters are one of the key elements in the signal processing field. Many filtering tech-
niques have been developed throughout the years for noise reduction, signal modulation,
demodulation, amplification, etc. Filters can be analog, consisting of electronic circuits
that process the analog signal, or digital, consisting of mathematical filters that process
the analog signal after its discretization. The popular field of fractional calculus has also
infiltrated into filter design, for both analog and digital cases. For the case of analog filters,
the creation of the fractance device, integrating fractional-order dynamics into electronic
components such as the fractional-order capacitor has been the starting point of fractional-
order analog filters. Fractional-order electronic components are used to create filters that
have a larger frequency range and a better response than integer-order filters [15]. However,
due to the limitations present in fractional-order physical hardware, there are only a few
studies covering the physical realization of fractional-order analog filters, which will be
described later in the manuscript.

Fractional-order digital filters are more abundant in the specialized literature since
it is much easier to implement a mathematical relationship on a suitable processor than
creating its hardware counterpart. Most fractional-order filters cover the extension of
the widely popular Kalman filter into the fractional calculus domain. For integer-order
linear systems, Kalman filters (KF) are a convenient way to handle state estimation and
Gaussian noise [16]. For the approach to work, complete prior knowledge of system models
and noise parameters is necessary. The major drawback here refers to the difficulty of
knowing noise parameters in advance [17]. To improve the performance of the standard
Kalman filter, several extensions and modifications have been proposed, including the
extended Kalman filters (EKF) [18,19]; the unscented Kalman filters (UKF) [20]; particle
filters (PF) [21] or cubature Kalman filters (CKF) [22] to name just a few. Apart from the
wide variety of Kalman-based filters, there are also the Butterworth-type fractional-order
digital filters and fractional-order delay filters that have seen an increased popularity in
the last decade.

The applicability of digital fractional-order filters spans on a manifold of domains from
data transmission and networking applications [23–25], electrical vehicle manufacturing
(through the determination of state of charge in lithium-ion batteries [26], aerial vehicle
orientation using fractional-order filtering of yaw, pitch and roll signals [27], air-quality
assessments through pollution and humidity factors [28], civil engineering targeting the
measurement and data processing of various characteristics of buildings such as stiffness
and damping [29], different biomedical processes, image processing and many more.
Most of the existing implementations of fractional-order filters are in the fields of data
transmission and battery estimation, as will be shown in a dedicated section that highlights
the benefits of fractional-order filters in real-life applications.

This paper covers a review of fractional-order sensing, as well as estimation methods
using fractional-order filters. The focus is on the most recent findings in this domain,
covering the past decade. The paper is structured as follows. The next section briefly
goes over the definitions of fractional-order operators to serve as a starting point for
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understanding the basis of fractional-order dynamics in both sensors and filters. Fractional-
order sensors are covered in the following section. Due to the limited research in this topic,
only a few papers and their main results are covered here. The main topic of this survey
paper is detailed in a subsequent section that deals with the most recent advances and
findings on fractional-order filters. The section is divided into two main parts covering
analog and digital filters including here, but not limited to, fractional-order Butterworth
filters, fractional-order delay filters and variations of the popular Kalman filter. The last
section details some recent publications on the applications of fractional-order filters.
The main application areas covered are data transmission and networking, battery state-of-
charge estimation, biomedical engineering, aerodynamics, vehicle tracking, environmental
issues, etc. Finally, a discussion section presents an overview of the findings related to
fractional-order sensing and filtering together with current trends and research directions.

2. An Insight into Fractional-Order Calculus

This section focuses on briefly presenting the mathematical tools on which fractional-
order sensing and filtering are based.

The fractional operator is denoted by aDα
t f (t), with t, a ∈ R, where (t > a) are the

upper and lower limits of the differintegral, representing a generalization of integral and
derivative operations to any arbitrary order, α ∈ R.

The most widely used definitions of aDα
t f (t) have been introduced by Riemann–

Liouville (RL), Grünwald–Letnikov (GL) and Caputo (C) [30].
Fractional-order control strategies are mainly developed based on the Riemann–

Liouville definition given as

RL
a Dα

t f (t) =
1

Γ(n− α)

dn

dtn

∫ t

a

f (τ)
(t− τ)α−n+1 dτ, (1)

where n− 1 < α < n, with n being the smallest integer greater than α and Γ(n− α) is the
Euler gamma function [31]. The upper and lower bounds, t and a, need to be established
in the case of the RL definition.

Another popular representation of the fractional differintegral operation is the Caputo
fractional derivative, introduced in 1967 by Michele Caputo [32]. The advantage of this
definition is that the fractional-order initial conditions do not have to be defined as in the
RL case.

C
a Dα

t f (t) =
1

Γ(n− α)

∫ t

a

f n(τ)

(t− τ)α−n+1 dτ, (2)

with n− 1 < α < n and α > 0.
Grünwald–Letnikov (GL) defines aDα

t f (t) as

GL
a Dα

t f (t) = lim
h→0

h−α
[ t−a

h ]

∑
m=0

(−1)m
(

α
m

)
f (t−mh), (3)

where α ∈ R and α > 0.
A numeric approximation of the GL definition from Equation (4) has been proposed

by [33] as

GL
a Dα

t f (t) = T−α
M(t)

∑
m=0

(−1)m
(

α
m

)
f (t−mT)

= T−α
M(t)

∑
m=0

c(α)m

(
α
m

)
f (t−mT)

(4)
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where T denotes the sampling time and L is a memory length chosen to satisfy

L ≥ 1
δ2

0Γ(α)

δ0 =
|GL
a Dα

t f (t)−GL
t−L Dα

t f (t)|
P

P = max
[0,∞]
| f (t)|

(5)

M(t) is the minimum between t/h and L/h, while c(α)m are binomial coefficients
defined as

c(α)m =

(
1− 1 + α

m

)
c(α)m−1 (6)

with c(α)0 = 1.
Another important piece in fractional calculus theory is the Mittag–Leffler function

Eα(t) =
∞

∑
m=0

tm

Γ(αm + 1)
(7)

that connects the pure exponential and power-law behavior, characterizing both integer
and fractional-order phenomena [34], resulting

L {Eα(±atα)} = sα−1

sα ∓ a
. (8)

A more recent fractional-order definition has been proposed by Coimbra in 2003 [35]
known throughout the specialized literature as the Variable-Order (VO) differential operator

VODα(t)
t f (t) =

1
Γ(n− α(t))

∫ t

0
(t− τ)−α(τ) d f (τ)

dτ
+

( f (0+)− f (0−))t−ατ

Γ(1− α(t))
. (9)

A simpler alternative to the highly popular RL definition has been offered by Jumarie
in 2006 [36] as

J Dα f (t) =
1

Γ(n− α)

dnt
dtn

∫ t

0

f (τ)− f (0)
(t− τ)α+1−n dτ. (10)

The VO , RL and Jumarie approaches are recognized as a powerful mathematical tool
for modeling viscoelastic phenomena such as deformation, viscoelastic fluid flows and
interactions, anomalous diffusion in porous media and various biomedical processes. It
has been proven that integer-order calculus cannot accurately describe complex diffusion
processes due to the limitations brought by the constant order, but a variable order of
differentiation is a natural solution to determine diffusion patterns [36,37]. The fractional
VO definitions does not hold the common properties of a derivative and are considered
extremely difficult to compute analytically, most often being approximated with numerical
approaches [35].

A major advantage associated with the RL definition is that f (t) does not have to be
continuous at the origin, nor differentiable. Furthermore, since Jumarie is a modified RL
derivative, f (t) does not have to be differentiable and the derivative of a constant is zero.
Another advantage of both Jumarie and RL is that there is no singularity at the origin for all
functions, such as ML. Modeling physical phenomena with the RL definition is a tedious
process since the RL derivative of a constant is different than zero. Furthermore, a constant
f (t) at the origin leads to a singularity in its fractional derivative, reducing its field of
applications [38]. A drawback associated with Jumarie is that if f (t) is discontinuous at
the origin its fractional-order derivative does not exist [39].
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The main advantage brought by the Caputo derivative is that it allows the specification
of initial and boundary conditions in a traditional manner and the derivative of a constant
is also zero. This is the reason Caputo is considered the most appropriate definition
for modeling real-world problems [40]. However, the Caputo derivative requires the
computation of the derivative of f (t) to compute its fractional-order derivative. There is
also the limitation that Caputo defines the differintegral only for differentiable functions
and functions that do not have a first-order derivative could have fractional derivatives of
all orders [41].

3. Fractional-Order Sensing

The most prevalent advantages of applied fractional-order differintegrals are widely
proven in process control as shown by multiple comprehensive review papers on the
fractional-order PID controller [6,42,43] and complex system modeling in biomedical
processes [2] through complex anomalous diffusion [9]. However, during recent years
different fields such as fractional-order circuits had undergone the possible integration
of fractional operators. Fractional-order sensors are a novel topic of applied fractional
calculus and its full potential is yet to be grasped by the scientific community.

The aim of this section is to provide some basic operating principles of fractional-order
dynamics in real-world sensors and current advances in sensing using this approach.

A fractional-order sensor can be defined as an electronic device that incorporates
fractional-order devices and their evident dynamics in its construction. The first element
built such that its impedance followed a power-law frequency of fractional-order is known
in the specialized literature as the fractance device. Power-law dynamics have been suc-
cessfully implemented in electronic devices using impedance spectroscopy, encapsulating
fractional calculus with the help of “fractional capacitors”, as shown in the extensive review
from [44]. The design, manufacturing and testing of various fractional-order device proto-
types have been presented through different approaches. An in-depth review regarding
construction possibilities, materials and techniques has been published in [45]. The circuit
and system design theory present behind these fractional-order components is extensive
and is out of scope of the present paper.

Furthermore, the review will discuss only studies that integrated fractional-order
components to build electronic devices with sensing capabilities. The focus is to provide
the reader with an idea towards the real-life applicability of fractional-order sensors,
without going into too much detail regarding their physical realization.

A novel architecture of a fractional-order sensing device is explored in [46] based on
the behavior of the popular accelerometer combined with fractional calculus. The con-
struction of the sensor is presented as a modular device with N stages, each consisting
of performing an analogy with the mass-spring-damper device. The paper shows that
properly selecting the properties of the mass-spring-damper construction leads to fractional
dynamics in the resulting circuit. Two possibilities of choosing the optimal parameters are
presented based on recursive formulas and particle swarm optimization. The presented
fractional-order sensor is presented solely in the conceptual stage. However, the authors
state that the device can be physically realized using micro electro-mechanical components,
but the advantages of using it in an industrial and/or commercial setting still need to
be determined.

A fractional-order sensor for measuring the quality of milk is proposed in [47]. The au-
thors develop a nanostructured aluminum oxide (Al2O3) constant phase impedance sensor
(CPI) by depositing porous oxide film on the double-sided metal plated substrate. Porous
film was fabricated by sol-gel technique and electrochemical anodization. When the sensor
was immersed in the ionic medium of milk samples, it showed constant phase behavior
over a certain frequency range, but the phase angle changes due to change in the type of the
milk samples. Experiments were conducted with the CPI sensor for different adulterated
milk samples and the sensor fabricated with anodized oxide film show better performance
for analyzing the quality of pure and adulterated milk.



Sensors 2021, 21, 5920 6 of 26

A new stick type sensor is proposed in [48] to analyze the quality of drinking water.
The sensor exhibits constant phase behavior which clearly indicates a fractional-order
impedance. The research shows that the variation of the ionic impurities in water lead
to a variation of the parameters of the sensor, the constant phase angle and the fractional
exponent. The preliminary results showed that the sensor could be a viable choice for the
development of a ball pen type probe for testing drinking water including its adulteration
with impure water.

Fractional-order circuits are used in [49] to develop a voltametric sensor used for taste
measurements of black tea liquor. The work is the first proposal of a fractional sensing
device in tasting applications and presents an experimental electronic tongue built using
fractional-order components. The authors start from the premise that the response of a
voltametric sensor is best modeled using fractional-order mathematical models and develop
a fractional-order circuit that registers the current response. A fractional-order equivalent
circuit is used to obtain an accurate model of the system which is further decomposed into
different elements with optimally selected parameters. The paper uses a direct approach,
with an additional novelty in completely avoiding the measurement of a fractional-order
impedance circuit.

The study published by [50] focuses on creating a new inductive transducer by com-
bining an impedance converter with a fractional-order element realized as an RC ladder
network. The paper presents both the construction details of the real-life sensing device
together with a working example consisting of the measurement of an input displacement.
The results obtained with the proposed fractional-order sensing device are compared with
different sensing approaches, proving the efficacy of fractional-order circuits in better
measuring physical phenomena. Furthermore, it is shown that incorporating fractional-
order devices in the electronic circuit improves the sensitivity and compensates for the
transducer’s nonlinearity with possible applications in a wide variety of measurements
such as force, pressure, etc.

4. Fractional-Order Filters
4.1. Analog Filters

Fractional-order circuits such as the previously mentioned fractance are employed to
create various analog filters with fractional-order components. The main advantages of
this type of filters are speed and operating conditions on a larger frequency range, with the
fractional element that provides a greater flexibility in shaping the frequency response.
Among the disadvantages, there is the need for physical space for the hardware compo-
nents, design and manufacturing of the electronic circuit, and inability to modify it on the
go. Furthermore, from the fractional-order filter perspective, there are also disadvantages
related to the scarcity of fractional-order electronic components. However, there are several
recent studies in the specialized literature that use fractional-order dynamics in analog
filters. Sotner et al. published in [15] an interesting comparison between an integer and a
fractional-order filter built using an integer-order capacitor and a fractional-order capacitor,
respectively. There are several differences outlined in the study between the responses
obtained with the two approaches, but the general conclusion is that the fractional-order
filter is more versatile.

One of the most prevalent analog fractional-order filters is the Butterworth filter
with various alterations. The concept of analog Butterworth filter has been extended for
fractional-order systems using the complex ω plane instead of the Laplace s transform
in [51]. The paper presents an in-depth mathematical analysis related to stability together
with simulation results and a set of guidelines for the physical realization of the filter.
The simulation results prove that the designed fractional-order filter is superior to integer-
order Butterworth filters through various comparisons on different frequency ranges and
filter orders. Furthermore, it is clearly shown that the fractional filter design technique can
meet exact frequency domain specifications, as opposed to integer-order filter design.
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A differential voltage current converter and two fractance devices are used in [52] to
create a real-life representation of a fractional-order Butterworth low-pass filter. The pa-
per tackles stability of the filter using Monte Carlo analysis and investigates its behavior
using different circuit parameters. The fractance device is also used in [53] to design a
fractional-order low-pass Butterworth analog filter. The parameters of the filter are deter-
mined using evolutionary optimization techniques consisting of the Artificial Bee Colony
Algorithm. The applicability of the proposed method is validated experimentally for real-
time processes, showing that fractional-order filters can successfully replace higher-order
integer systems. Another fractional-order low-pass filter with Butterworth characteristics
is proposed in [54]. The study focuses on presenting novel topologies of complementary
fractional-order filters based on approximation algorithms such as Continued Fraction Ex-
pansion and Oustaloup approximation. The paper also presents the circuit implementation
of the proposed filters using MOS transistors and evaluates the behavior of the filters for
fractional-order of α = 0.3, 0.5, 0.7.

Reference [55] presents the design of a fractional-order analog pseudo-differential
frequency filter with order 2 + α, where α ∈ (0 1). The resulting filter is a low-pass But-
terworth that employs a minimum number of passive components and current conveyors
as active elements. The filter is validated from both simulation and experimental points
of view through a custom PCB prototype. The study proves that the designed fractional-
order filter has a high common mode rejection ratio and low total harmonic distortion.
Both low-pass and high-pass Butterworth filters are introduced by [56], this time with
order 1 + α, where α ∈ (0 1). The filter coefficients are computed based on a tradeoff be-
tween stability margin and magnitude error. The study uses a field-programmable analog
array (FPAA) to experimentally validate the fractional-order filter, proving robustness,
reduced sensitivity to parameter variations and reduced errors for magnitude, passband
and stopband responses.

In [57], a different fractional-order filter is built using Current Feedback Operational
Amplifiers as an active element. The design procedure is exemplified for a 1 + α, α ∈ (0 1),
order low-pass filter using experimental results. One of the advantages of the study is the
usage of commercially available components to realize the fractional-order filter. Study [58]
presents the realization of a 2α fractional-order band-pass filter using Operational Transcon-
ductance Amplifiers as active elements. The proposed methodology results in a tunable
filter, featuring an electronic tuning possibility by changing the bias current. The filter is
successfully validated using parameter uncertainties, stability and the effect of transistor
mismatch. Current Feedback Operational Amplifiers are also used in [59,60] to realize low-
pass, high-pass and band-pass filters of fractional orders. The papers use fractional-order
resistor and capacitor banks to illustrate the physical realization of the filter.

The authors of [61] present a detailed study on the design, analysis and physical
realization of analog low-pass, high-pass and band-pass fractional-order filters. The paper
proposes a design strategy that uses s domain transfer functions, as opposed to similar
works that use the ω plane (such as [51,53]). The implementation possibilities of the
obtained fractional-order filters are versatile, featuring fractional Tow-Thomas capacitors,
FPAAs, Single Amplifier Biquads or Frequency Dependent Negative Resistors.

Universal single input multi-output fractional-order filters are designed in [62] using
DVCC+ block, capacitors and resistors. Unlike the previously presented works in this
subsection, the paper exemplifies all types of filters: low-pass, band-pass, high-pass, all-
pass and notch. The effects of the fractional-order term are analyzed for α ∈ (0.1 1.2) with
respect to noise rejection, cutoff frequency, gain and phase. A comparison with already
reported results shows that the proposed methodology yields a similar performance.

Another low-pass fractional-order filter is presented in [63]. The novelty of the study
is the usage of a fractional-order capacitor built from multi-walled carbon nanotubes.
The paper shows the fractional-order dynamics of the electronic element and the realization
of the filter with a biasing current source. The study is backed by experimental results.
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A novel category of fractional-order filters has been recently introduced by [64].
The proposed methodologies use curve fitting methods to completely eliminate the usage
of complex fractional-order Laplace operators. The main scientific contribution of the
work consists of providing a class of fractional-order filters that can be obtained using
available integer-order elements, without compromising the fractional-order dynamics of
the resulting devices.

The same authors also proposed double exponent fractional-order filters in [65]. The
proposed fractional-order filters can be designed as both low-pass and high-pass filters
with the transfer function similar to a second-order filter, but with arbitrary fractional
orders α and β. The filters are approximated to their integer-order equivalent using Pade
approximation and curve fitting tools. The paper also presents the physical realization of
the proposed filters using RC networks and electronically tunable Operational Transcon-
ductance Amplifiers.

The study published by [66] raises awareness of the possible benefits of fractional-
order analog filters in a wide range of domains such as video signal processing, sonar
receivers, radar devices, biomedical analog signal processing, etc. The common point
of the previously mentioned applicability of fractional filters is the necessity of a linear
phase response. For this purpose, ref. [66] proposes a methodology for fractional-order
analog filter design using Optimal Bessel Filters. It is shown that the obtained filter reduces
overshoot, eliminates ringing with minimal phase distortion and provides a better transient
response than an integer-order filter.

4.2. Digital Filters

From the fractional-order perspective, digital filters are much more common than
analog ones since they completely eliminate the need for a separate physical device. Digi-
tal filters are generally more versatile and can be easily implemented as a mathematical
formula on any system with a processor. There are no additional costs such as hardware
equipment and no external influences (temperature, humidity, etc.) on the long-term
functioning of the filters. However, digital filters are slower than analog ones, introduce
additional latency and they require previously acquired and/or processed data. A dis-
advantage encountered in digital integer-order filters is a more limited frequency range
when compared to integer-order analog filters. However, it has been shown that using
fractional-order digital filters can overcome the frequency range limitations of integer-order
ones, obtaining a reduced quadratic error between the desired frequency response and the
obtained filter [67,68].

The popular analog fractional-order Butterworth filter has multiple digital imple-
mentations proposed by [68–72]. Analog-to-digital transformations of a fractional-order
Butterworth filter are used in [69] using the infinite impulse response and Al-Alaoui op-
erator, followed by global search constrained evolutionary algorithms to determine the
parameters of the filter. Infinite impulse response is also used in [70] to design direct
digital fractional-order Butterworth filters through optimization routines. A digital filter
for image sharpening applications is proposed by [71] starting from the integer-order
Butterworth representation. Mathematical tools such as discrete cosine, sine and Fourier
transforms together with the Prony and Farrow methods are employed. The results prove
the effectiveness of the proposed filtering strategy on real-life image sharpening use cases.

A class of purely digital filters are the fractional-order delay filters. The scope of
such a filter is to delay the signal with a fractional of the sampling time. The authors
of [73] state that two main frequency domain specifications should be met to obtain the
fractional delay filter characteristic: the magnitude frequency response should have an
all-pass characteristic, while the phase plot must have a slope that is fixed and linear
throughout the entire bandwidth. The specialized literature reports two main design
strategies where the filter coefficients are computed using mathematical interpolation
formulas such as [74,75] or directly frequency domain optimization algorithms [76,77].
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The majority of fractional-order filtering literature from the last decade focus on the
extension of the well-known Kalman filter in the frequency domain resulting in three
widely used fractional-order Kalman filters: the fractional-order Kalman filter (FKF),
the fractional-order extended Kalman filter (FEKF) and the fractional-order unscented
Kalman filter (FUKF).

State estimation is a tedious task when it comes to fractional-order systems. The com-
plexity increases when dealing with nonlinear fractional-order systems, affected by delays,
missing measurements and various types of noises. Additional problems need to be solved
when the fractional-order system has a continuous-time form. Unlike integer-order systems,
the state estimation of fractional-order systems requires a lot of historical data of input
and output signals [78] due to the memory property of these particular systems. At the
same time, for an accurate estimation, the measured signals must be filtered to remove
noise [79]. As with the fractional-order models and controllers, researchers have demon-
strated that better accuracy can be achieved when using a fractional-order state estimator.
Thus, the fractional Kalman filter emerged [80]. Initially, these filters were used to estimate
the states of simple discrete-time fractional-order systems. Later, extensions have been
considered for delayed systems as well. The necessity of dealing with the state estimation
of nonlinear fractional-order systems lead to the development of the extended Kalman
filter and the unscented Kalman filter. Two major drawbacks of the fractional extended
EKF have been identified and refer to the differentiability of the dynamic and measure-
ment models and to the approximation of the nonlinearity by neglecting the higher-order
terms in the Taylor series expansion. Several ideas to solve this issue have been proposed
such as a statistically linearized method and cubature transform for state estimation in
fractional nonlinear systems [81]. These has paved the way for several development of
fractional-order cubature Kalman filters.

Dealing with continuous-time fractional-order systems represented a subsequent
challenge, as the fractional-order system had to be differentiated. Discretization became an
important research topic when designing a Kalman filter for continuous-time fractional-
order systems [11]. Researchers have proposed several combinations between existing
filters and discretization schemes, among which the Grünwald–Letnikov difference or the
Tustin generation function and fractional-order average derivative are the most widely
used. An additional challenge implies dealing with non-Gaussian noises in state estimation
of fractional-order systems. Several studies have emerged, with solutions proposed for
an accurate estimation of fractional-order systems states affected by Lévy noises and
colored noises.

The fractional-order Kalman filter (FKF) and the fractional-order extended Kalman
filter (FEKF) were the first ones developed to estimate the states and parameters of discrete
fractional-order state models [80]. A general form of this FKF is presented in [82]. Addi-
tionally, state estimation for discrete-time fractional-order systems with delay is studied
in [83,84]. A fractional Kalman filter-based multirate sensor fusion algorithm is presented
in [85] to fuse the asynchronous measurements of the multirate sensors. The state is re-
estimated whenever a delayed measurement occurs using a weighted fractional Kalman
filter. A standard Kalman filtering method is then used to estimate the state estimation at
the current time when the delayed measurement arrives.

To deal with nonlinear characteristics, the FEKF and the fractional-order unscented
Kalman filter (FUKF) have been developed. Such a generalization of the FEKF to the case
of uncertain observations is developed in [86]. The same authors also design an UKF where
the scaled unscented transformation provides approximations of the first and second-order
statistics of a nonlinear transformation of a random vector. Here, the nonlinear system is
represented by a fractional-order discrete state-space system with uncertain observations,
while independent Bernoulli random variables model the random interruptions in the
observation process. A dual estimation algorithm is later designed for nonlinear fractional-
order systems based on the fractional-order UKF [87]. The authors of [88] argue that the
performance of the estimation result is affected by missing measurements and additive
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uncertainty in the gain. Since accurate and effective state estimation is essential for nonlin-
ear fractional-order systems, a novel robust extended fractional Kalman filter (REFKF) is
developed in [88]. The simulation results demonstrate that the nonlinear fractional-order
system states can be accurately estimated even with missing measurements. Comparisons
with the conventional FEKF show that the proposed method achieves better estimation
performance. A robust state estimator for discrete-time nonlinear fractional-order sys-
tems is developed in [89]. The same issue regarding incomplete measurement data is
tackled. A nonlinear fractional-order Kalman filter is developed to provide a more reliable
and robust state estimation algorithm when both missing measurements and stochastic
nonlinearities affect the system. Two numerical examples are used to validate the results.

The convergence of the FUKF is analyzed based on Lyapunov functions for nonlinear
fractional-order systems, with the results indicating the divergence of the algorithm in the
case of huge estimation errors. An adaptive noise covariance is suggested to overcome
these huge estimation errors in [90] based on a fuzzy logic-based approach and a modified
FUKF algorithm is proposed. The proposed algorithm is implemented and tested on a two
electric pendulum system. The simulation results show that for the modified fuzzy logic
FUKF algorithm produces accurate state estimation.

To deal with the drawbacks of the FEKF, several ideas have been proposed such as
a statistically linearized method and cubature transform for state estimation in fractional
nonlinear systems [81]. The approach is validated through numerous simulation results
and its effectiveness is compared with the FEKF. A novel class of fractional interpolatory
cubature Kalman filters (FICKFs) are designed in [91], as a generalization of the fractional
cubature Kalman filter (FCKF) and the fractional unscented Kalman filter (FUKF). Based
on interpolatory cubature rule, the FICKF algorithm achieves a custom degree of accuracy
under accuracy under the Bayesian filtering framework. A robust FICKF algorithm is
proposed by combining a traditional FICKF and an uncertainty estimator to estimate the
states of a fractional-order uncertain nonlinear system. A hybrid version of the robust
FICKF is also developed to ensure accurate estimation both in the presence and in the
absence of uncertainty. To achieve this, the new algorithm has a switching mechanism
between a FICKF and a robust FICKF. The validation of the algorithm is performed for state
estimation of Malaria fractional nonlinear model with temporary immunity. The results
show that the FICKFs with suitable free parameters lead to better accuracy compared with
the existing filters with the same degree [91]. For nonlinear discrete-time fractional-order
systems affected by colored noise, a similar FICKF is proposed in [92]. The authors propose
a transformation of the system with colored noise into one with correlated process and
measurement noises. Based on the extension of the measurements differencing method,
new auxiliary outputs are introduced. The novel filtering algorithm is then applied to
these new outputs. Simulation results on a fractional-order hyperchaotic Lorenz system
targeting the cryptography in a communication system demonstrate the effectiveness of
the proposed scheme [92].

Discretization becomes an important step when designing a Kalman filter for
continuous-time fractional-order systems [11]. The Grünwald–Letnikov difference is used
to design the FKF in [93]. An improvement of the state estimation accuracy using the con-
cept of fractional-order average derivative was obtained for FKF in [94]. To overcome the
effect caused by the colored measurement and process noises, the FKF in [95] is designed
according to the Tustin generation function and fractional-order average derivative. In [11],
FEKFs are designed using fractional-order average derivative and the Grünwald–Letnikov
difference to handle state estimation for colored process noises and measurement noises,
respectively. The idea of colored process noise is related to Kalman filtering and suggests
that the system’s state changes over time, but without information on the cause or timing of
the change which is modeled as a random process. Similarly, the FEKF in [79] is designed
based on the fractional-order average derivative method and Tustin generating function
for the nonlinear fractional system with uncorrelated and correlated noises. The results
show that better estimation is obtained in this case compared to [78] or [94] where only the
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problem of uncorrelated noise is discussed. The Grünwald–Letnikov difference method is
also used in [96], where two types of adaptive Kalman filters are developed. To deal with
the nonlinearities, an adaptive extended Kalman filter is designed using the first-order
Taylor expansion. Additionally, an adaptive cubature filter is developed based on the
third-degree spherical-radial rule and the augmented vector method. Numerical examples
are included to validate the effectiveness of the proposed adaptive Kalman filters with
unknown parameters and fractional orders.

Hybrid fractional Kalman filters are also a suitable alternative for continuous-time
fractional-order systems. In [97,98], the Grünwald–Letnikov difference and the fractional-
order average derivative method are used to discretize a nonlinear continuous-time
fractional-order system. To handle the nonlinearities, extended Kalman filter (EKF) and the
unscented Kalman filter (UKF) are used. The EKF with the first-order Taylor expansion is
used to cope with nonlinearities at the current time, while the UKF is concerned for the non-
linear function at the previous time. Using this hybrid extended-unscented Kalman filter,
the accuracy of state estimation is improved since this allows for a third-order approxima-
tions for the nonlinear functions. A similar approach is taken for the design of the hybrid
extended-cubature Kalman filter in [24]. The fractional-order average derivative method is
used instead of the Grünwald–Letnikov difference method. The nonlinear functions are
dealt with the extended Kalman filter (EKF) and cubature Kalman filter (CKF). The EKF
with the first-order Taylor expansion is used to cope with nonlinearities at the current time,
while the third-degree spherical-radical rule is used to produce cubature points for the
functions in the state equation and output equation. The CKF uses this cubature points for
effective state estimation in both uncorrelated and correlated noisy situations. Simulation
results validate the effectiveness of the proposed approach. Additionally, fractional-order
systems with non-Gaussian noises represent a hot topic in research regarding state estima-
tion. The investigation of the FEKF is performed in [99] considering non-Gaussian white
noises, such as Lévy noises [100]. A modified FKF algorithm is developed in [101] for
discrete linear fractional-order systems under Lévy noises. An improved FKF is developed
in [25] for discrete linear stochastic fractional-order system with measurement Lévy noise.
The method is based on eliminating the maximum of the noise and then approximating
the Lévy noise by a series of Gaussian white noises. Then, the principle of least squares
is used to obtain the FKF. Two new Kalman filters for state estimation in fractional-order
systems using colored measurement noise are developed in [102]. The methods are based
on expanding measurement differencing method to produce new auxiliary outputs that
turn the fractional-order system with colored measurement noise into a system with corre-
lated process and measurement noises. The design of a discrete-time FKF is also developed
in [103] for fractional-order systems with colored noises in the measured signals. The same
problem is addressed in [11] where an FEKF is designed for nonlinear fractional-order
systems perturbed by colored noises.

Several other extensions of the initial fractional-order Kalman filter have been devel-
oped, such as innovation-based fractional-order adaptive Kalman filter [16], the generalized
fractional central difference Kalman filter [104] or a novel robust version [27]. The FEKF
is also used for nonlinear discrete-time fractional-order systems using observations with
multiple delays contaminated by additive white noise [99]. A new fractional singular
Kalman filter is designed by [84] for the state estimation of discrete-time linear stochastic
fractional-order singular systems using the deterministic least squares method. Later,
the proposed approach is analyzed in terms of convergence and stability [105]. Numerical
examples are provided to validate the results.

5. Applications of Fractional-Order Filters

The well-known Kalman filter is one of the most popular technique in the field of
sensor fusion being employed to compensate the effect of sensor noise [106]. Applications
of fractional-order filters cover mostly areas such as data transmission and networking
issues, as well as estimations of state of charge in lithium-ion batteries (largely used in
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several industrial domains, including automotive industry). However, other applications of
fractional-order filters cover areas such as aerodynamics, civil engineering, biomedical en-
gineering, etc. This section covers some of the most recent research regarding applications
of fractional-order filters.

5.1. Data Transmission and Networking

More practical problems occur when the physical data of a system are measured
and analyzed through a network. Therefore, one of the practical areas are communi-
cation networks, where effort in analyzing the effect of packet losses has been highly
considerable. To this kind of systems, generalization of Kalman filter algorithm can be
applied [23,107,108]. For estimation of nonlinear systems, a set of generalized algorithms
such as Extended Kalman filter (EKF) and Unscented Kalman filter are given in the lit-
erature [109–111]; especially, interesting algorithm is the Unscented Kalman filter that,
in opposition to the Extended Kalman filter, not required differentiation of nonlinear func-
tion. In [110,112], UKF algorithm was used to teaching process of neural networks. In [87],
the estimation results for fractional nonlinear systems based on Extended and Unscented
Fractional Kalman filter (UFKF) were presented. This subsection offers a revision of some
research papers dealing with communication networks.

A fractional-order transmitter in a noisy transmission channel is used in [113]. The trans-
mitter is described as a fractional-order stochastic chaotic system. An extended fractional
Kalman filter (EKF) is developed and employed as the received module and a synchroniza-
tion scheme is designed to be used in cryptography in these systems. Different lemmas
and theorems are presented in great detail, along with the proofs. Finally, the equations
for the output of the communication channel are derived, which take into account the fact
that the transmitter module might have another output that should be encrypted. The en-
cryption/decryption methods are also presented. The proposed technique is tested via a
fractional-order stochastic chaotic Chen system. The simulation results validate the theo-
retical part and show the effective performance of the proposed method in synchronizing
fractional-order chaotic systems in the presence of noise.

Modified Kalman filters are also used in [87]. Here, due to the high nonlinearity of
the processes involved an EFKF and an Unscented Fractional Kalman Filter (UFKF) are
designed for online dual estimation algorithms for state variables and order estimation.
Two situations are considered: direct and networked measurements. Different propositions
about the filters are given and proved and then particularized for the proposed work.
Several numerical examples are provided to validate the proposed approach. An analog
circuit which represents in this case a fractional inertial system is also presented and used to
test the developed estimation algorithm in three different conditions: direct measurements,
networked measurements and networked measurements transmitted by real network.
The conclusions suggest that the proposed technique is accurate enough and that it could
be of great use in different applications involving estimation of real objects of unknown
constant or variable order.

A modified fractional Kalman filter to reduce a common problem in network control
systems, data packet dropouts, is presented in [114]. The authors argue that assuming
an ideal information channel, without data dropouts, could be catastrophic. A weak
network between the sensor and the FKF makes data dropout very likely with inaccurate
information transmitted to the FKF. As a result, the whole filtering process is affected.
The researchers provide for two possible solutions to this problem: the use of the last
successfully transferred data packet which is simple, but very imprecise and inaccurate or
the estimation of the missing packet according to the past results to compensate the missing
data. A feasible implementation to the second solution is proposed, by introducing a new
parameter γ that indicates how much information was transmitted successfully, along
with the probability relationship between the measurement noise and γ. Then, the new
parameter is introduced in the classical Kalman filter algorithm equations. The equations
of the fractional Kalman filter (with the parameter γ) are obtained. The simulation results
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show that the estimations were fairly good, with a small error. The error between real and
estimated value also tended to decrease as the probability of data dropout decreased.

A FKF solution is proposed for the problem of identifying malicious code and then, cat-
egorizing it according to its type (viruses, Trojans, spyware, etc.) [115]. A two-dimensional
model commonly used in imagery is first used and adapted to a fractional-order state-space
system representation. Then, the FKF design is presented including a priori estimation,
variance, etc. Different methods of identifying the family of the malicious code are pre-
sented: image texturing, GIST feature extraction, etc. Simulation results are included that
demonstrate that the new solution leads to better accuracy and robustness since it can
ignore minor modifications of malicious code.

An improved fractional Kalman filter algorithm and its application to estimation
problems over lossy networks is designed in [116]. The proposed algorithm improves not
only the estimation process, but it also responsible for smoothing. The authors compare
their proposed method with a fractional Kalman filter, and the numerical examples include
the case when measured data are available directly from the plant. The simulation results
show that significant improvements can be obtained using the proposed method, even if
dropout problem in networks is important.

Medical, industrial, military fields use wireless sensors networks. Kalman filtering
methods are used here to ensure accuracy and precision of sensor measurements. To esti-
mate the states in sensors networks, a fractional-order distributed Kalman filter, as well
as fractional diffusion Kalman filters are developed in [117]. A feasibility analysis is per-
formed, with the simulations showing that the proposed algorithm leads to improved
accuracy and efficiency compared to previous methods such as conventional fractional
Kalman filter.

5.2. Applications Using Lithium-Ion Batteries

One of the applications of fractional-order filters is closely related to the field of elec-
trical vehicles that employ lithium-ion batteries as their main energy source. The reliability
of such batteries becomes of increasing importance. Batteries’ reliability depends heavily
on their Battery Management System (BMS), which determines their State Of Charge (SoC)
and State Of Health (SoH). SoC is a good indicator when it comes to mileage prediction,
while SoH is a measure of the battery’s ability to store and deliver electrical energy. Efficient
and non-destructive battery operation in automotive applications requires an accurate
SoC estimation by the BMS [26]. As SoC cannot be measured by sensors, an estimation
based on an equivalent circuit model of the lithium-ion battery is necessary. Traditionally,
the equivalent circuit model consists of an integer-order model. For accurate simulation of
the battery terminal voltage, the integer-order model needs a higher order, which causes a
significant increase in the number of calculations. Apart from this, research on this topic
has shown that many phenomena that occur in these batteries, such as mass transport [118]
and the double-layer effect [119], can be well modeled by fractional-order calculus. At the
same time, the fractional-order model uses less parameters to achieve higher accuracy [120].
In recent years, fractional-order calculus has been widely applied in battery modeling,
from simplified models with fixed orders of differentiation [121] to more complex models
with free differentiation orders [122–124]. A key drawback is that the order values are
obtained using offline methods and do not adapt to changing conditions. A widely used
method for estimating SoC based on the equivalent battery model consists of various
extension of the Kalman filter.

To improve the BMS’ accuracy when it comes to SoH and SoC co-estimation, a fractional-
order model is presented in [125]. First, the authors realize a fractional-order equivalent
circuit model for the battery. Electrochemical impedance spectroscopy is used to measure
the battery response to a multitude of frequencies. The results are used to determine a
Nyquist plot that is later employed in the parameter identification procedure that uses
global optimization algorithms such as Hybrid Genetic Algorithm and Particle Swarm
Optimization (HGAPSO). Additionally, a dual fractional-order extended Kalman filter
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(DFOEKF) is designed for SoC and SoH estimation. The accuracy of the estimations using
DFOEKF is also simulated with different tests. Finally, the battery is physically imple-
mented, and final conclusions are drawn regarding the efficiency of the approach.

The estimation of SoC is also addressed in [126]. In practical implementations, the struc-
ture of a lithium-ion battery consists of multiple single battery cells that are connected
(either in series or in parallel). To determine the state of each single battery cell, a BMS
is employed in each lithium-ion battery. One of the most important parameters the BMS
needs to determine is SoC. The authors of [126] propose a simple and feasible equivalent
circuit model based on fractional variable-order approach. The estimation of SoC is done by
an unscented fractional Kalman filter (UFKF). Its design is described in detail. First, some
basic definitions of fractional-order derivatives are introduced, along with the equivalent
model of the battery. Electrochemical impedance spectroscopy is used to measure the
response of the lithium-ion batteries to different frequencies. A Nyquist plot can be derived
based on the measured frequency response, as well as the physical circuit and the equations
that describe the behavior of the lithium-ion batteries. These equations are later translated
into a state-space model. Next, the equations for the sigma points generation, the state
estimation time update, state error covariance time update, output update, state estimation
measurement update and the state error covariance measurement update are formulated
as well as the initialization of the filter. A dual filter is designed to address the problem
of accuracy and quality of estimations. The necessary equations are reformulated, and a
block diagram of the dual estimation is presented. Simulations of SoC estimations are
then presented. The experimental setup is described and then the hybrid pulse power
characterization test is conducted to acquire the offline parameters. After that, the federal
urban dynamic schedule and Dynamic Stress Test (DST) are conducted to simulate real
driving conditions. The results are promising as the proposed model can accurately de-
scribe the behavior of a lithium-ion battery and therefore can produce exact estimation of
SoC. A fractional-order model combined with the fractional-order unscented Kalman filter
is used in [127] to facilitate SoC estimation.

A study of SoC estimation under different ambient temperatures is performed in [128].
An equivalent circuit model of a lithium iron phosphate battery is established in the form
of a first-order fractional model. Different charging and discharging battery capacity tests,
as well as open circuit voltage tests were performed. The authors proposed a simplified
modeling method considering hysteresis characteristics of open circuit voltage. The pa-
rameters of this model were identified at different temperatures based on a particle swarm
optimization algorithm with dynamic inertia weight. Finally, the fractional extended
Kalman filter was derived. Continuous Dynamic Stress Test conditions were used in the
estimation of the battery SoC. The results showed that the estimation method had higher
accuracy and increased robustness compared to the integer-order EKF.

Similar studies regarding different temperatures are presented in [26]. Here, both
frequency domain information based on recorded impedance spectroscopy data and time
domain information using a recursive least squares algorithm are used to derive a fractional-
order model for lithium-ion batteries. The research provides for a straightforward and effi-
cient way to identify the fractional orders based on recorded impedance spectroscopy. Then,
an extended Kalman filter is designed to estimate the SoC. The results clearly show that
the proposed approach using a fractional-order model and the designed fractional-order
Kalman filter provides a higher accuracy and robustness compared to the classical method.

A cascaded fractional Kalman filter is designed in [129] as a solution for online
estimation of SoC and the branch current in large battery structures. The approach is based
on the fact that lithium-ion batteries are composed of multiple single cells. The model of
the battery as well as the equivalent circuit model, equations and state space of a single cell
are developed using fractional calculus. Battery branches are united using mesh currents as
parameters. SoC is determined locally, which reduces the order of the computations. Only
the total current needs to be measured, rather than each individual branch current. These
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are estimated using the cascaded fractional Kalman filter structure. The measurement
setup is provided along with the results.

Several other papers offer different design procedures for fractional-order filters,
usually in the form of extended version of the Kalman filter. An adaptive fractional-order
extended Kalman filter is proposed in [130], for the estimation of state of energy (SOE).
This index is also important for the electrochemical energy storage system in electric
vehicles. The authors develop a physics-based fractional-order model with variable solid-
state diffusivity to characterize the dynamic performance of a LiFePO4/graphite battery.
The average current, as well as the average squared current is modeled since the available
battery energy changes according to different applied load current profiles, the relationship
between the remaining energy loss and the SoC. Different aging stages are considered,
and the model parameters are updated automatically using a multi-step model parameter
identification method based on the lexicographic optimization. An adaptive fractional-
order extended Kalman filter is used to estimate the SOE with different operating conditions
and different aging stages. The result presented demonstrate a small estimation error.

In [131], electrochemical impedance spectroscopy data are used to determine a
fractional-order impedance model, to describe the polarization effect in a simple and
meaningful way. Experimental data combined with genetic algorithms are used to identify
the parameters of the model, as well as the fractional-order. To improve the computation
efficiency, a fractional-order unscented Kalman filter technique is used, as well as the
‘short memory’ technique. The effectiveness of the proposed approach is demonstrated
experimentally. The results show that show that the SoC estimation accuracy can be sig-
nificantly improved using the proposed method, with an estimation error in the range
of 3% [131]. An adaptive unscented particle filter for lithium-ion battery SoC based on
an improved fractional-order model is also proposed in [132]. The algorithm uses the
fractional orders as hidden parameters, which reduces the number of particles and hence
the complexity of the algorithm iteration. A noise adaptive algorithm based on the residual
sequence is employed, which solves the divergence problem of the filter and improves the
adaptability. The experimental results show that in this case the SoC estimation is more
accurate, the algorithm has strong robustness and fast convergence, and the evaluation
index of the algorithm is the best, with a root mean-squared error of 0.67%. In [133],
a fractional-order circuit model is used to predict battery dynamics. A new fractional-order
model-based nonlinear estimator is proposed using a Luenberger term and a sliding mode
term. Lyapunov’s direct method is used to design the estimator gains. Electric vehicle
applications are used here as well. The proposed approach is validated, and comparative
results are provided with other estimators to showcase the benefits of using the proposed
method. The results demonstrate that the developed approach can estimate SoC with errors
less than 0.03 in the presence of initial deviation and persistent noise. The Luenberger
observer is also used for nonlinear fractional model-based SoC estimation in [124]. A direct
Lyapunov method is used here to ensure the global asymptotic stability.

Fractional-order models are integrated with adaptive fractional-order EKF to estimate
SoC, while updating part of the model parameters in [134,135]. A fractional-order EKF
is also used in [136] to estimate battery SoC, where a fractional-order model with two
Constant Phase Elements (CPE) is used to model the battery. Apart from using fractional-
order filters in estimating battery state, these have also been used in SoC estimation for
ultracapacitors. In [137], the results validate that the SoC estimator can precisely track the
true SoC, and that the associated errors are less than around 2% in dynamic driving-cycle
tests. The approach taken is very similar to that of SoC estimation in lithium-ion batteries.
The SoC estimation is also tackled in [138] through an FOEKF filter. The study uses the
Atangana–Baleanu fractional derivative to develop the fractional-order digital filter, which
is further validated on a laboratory prototype with uplifting results.
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5.3. Other Applications

Fractional Kalman filters and their more complex variants are also used in orientation
problems in aerodynamics, in biomedical engineering or environmental issues, to name
just a few. This subsection highlights some very recent applications of this kind.

Fractional-order complimentary filters are designed in [139] for small unmanned
aerial vehicles to handle orientation. Most research papers use Kalman filters for this task
and it produces good results when high-quality, high-cost sensors are used. However,
in the case of low-cost, low-quality sensors, complementary filters are more adequate,
since no assumptions are made with regards to linearity and noise statistics. The concepts
of fractional calculus are extended to these types of filters and the results show that the
proposed approach is indeed efficient on systems with non-Gaussian. In [106] a fractional
Kalman filter (FKF) is implemented for attitude estimation of a moving vehicle. The input
signals used are taken from a tri-axial MEMS (Microelectromechanical Systems) inertial
sensors, i.e., accelerometer, magnetometer and gyroscope. Sensor fusion is performed
on the measurements obtained by these sensors to obtain the vehicle’s roll, pitch and
yaw angles. Sensor data captured from commercial navigation units is used in the FKF
scheme. Reference attitude is used for comparative analysis. Several simulation case
studies are performed that show that the estimation accuracy is highly dependent on
system order. A robust central difference Kalman filter is designed in [27] and validated
on the attitude determination system of a three-axis satellite including a star tracker
and gyro sensor. The proposed approach is compared to numerous existing methods.
The numerical simulation results for various case studies demonstrate the superior accuracy
of the estimation method. A fractional-order gain Kalman filter is proposed in [17] for
tracking vehicles by using fractional-order gain Kalman filter. To achieve this, the Kalman
gain is modified using a feedback loop, which incorporates the fractional derivative of
previous Kalman gains. The results show that the algorithm exhibits high accuracy for
estimation of state-space variables, with the root mean square error improved by up to
17%. Robustness tests are also performed, with the overall conclusions that the proposed
method demonstrates better capability than the standard Kalman filter.

Implicit and explicit approaches for fractional nonlinear model order estimation are
covered in [28]. A benchmark model is used that links the applied angular rate to the
neuron’s firing intensity within the vestibular system. As far as the implicit approach is
concerned, several extended Kalman filters with fixed fractional-order nonlinear models
running in parallel are used in an interacting multiple models scheme. The explicit ap-
proach is based on an augmented Unscented Kalman filter, where the fractional-order of the
model is estimated explicitly within the filter state. Preliminary results on explicit joint state
and model order estimation are presented. A sensor fusion scheme based on the fractional
Kalman filter is presented in [140]. The Grünwald–Letnikov method is used to approximate
the fractional-order terms in the FKF. Two different versions are developed and compared
to integer-order conventional Kalman filters implementations. The case study considered
here consists of a real-life limb tracking application. The filters are analyzed and the results
are compared using a hand and a head motion data set, demonstrating the feasibility of
the proposed approach. A biomedical application where fractional-order filters are used is
presented in [68]. The study details the use of fractional-order filters to filter the myoelectric
signal acquired from m. biceps brachii during isometric maximal voluntary contraction.
Several ten test subjects are used to collect the data. The paper compares conventional and
fractional Butterworth filters of two order groups in terms of offline filtration.

Air-quality is an important factor that needs to be monitored for several different
reasons: it affects human life, climate change, meteorology, etc. In cases of decreased
air-quality due to pollution, immediate measures should be taken into consideration.
The aim of this paper [141] is to improve inverse air pollution emission and prediction
in metropolitan areas. To achieve this, a chemical transport model coupled with the
extended fractional Kalman filter (EFKF) is used. The EFKF is designed using a Matern
covariance function and tuned by a genetic algorithm. The research covered in [141] argues
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that if the performance is affected by unknown disturbances or parameter variations,
an EFKF may be a better option because fractional-order derivatives can be used for
more accurate description of state variables. The technique is tested against measurement
stations. Comparisons with a simple extended Kalman filter are also presented in terms of
the mean-squared error. The results show that the EFKF gives a more accurate prediction
due to its use of memorized results. A similar approach is also considered in [142]. The same
chemical transport model as used in [141] is also considered in [143]. Instead of using an
EFKF, the authors of Metia2016 propose a fractional Kalman filter. The results are compared
with the standard Kalman filter using a root mean square error criteria. The conclusions
drawn suggest that more accurate results can be achieved with a fractional Kalman filter
than a simple Kalman filter. Additionally, the results demonstrate that the estimation
becomes better when more iterations are done in the process. An extended fractional-order
Kalman filter is also used in [144]. Indoor air pollution in smart buildings is the topic
covered here, where an air-quality management system merging indoor air-quality index
and humidex into an enhanced indoor air-quality index using sensor data on a real-time
basis is proposed. Indoor air-quality index and humidex information are fused together
using an FEKF with enhanced performance against measurement noise and nonlinearity,
while indoor air pollutant levels are measured by a network of waspmote sensors. Based
on the resulting enhanced indoor air-quality index, overall air-quality alerts are provided
in a timely fashion. The method is validate using a case study.

An H-fractional extended Kalman filter algorithm is designed in [29] to estimate
the stiffness and damping parameter of civil structures using noisy measurement data
of the system response. Three load cases of engineering interest have been included in
the research, including wind turbulences and wind induced waves in coastal engineering
applications. In all cases, the accuracy of estimating the stiffness parameter was high.
The damping parameter on the other hand was estimated only with satisfying accuracy.
The method was compared to the standard extended Kalman filter (EKF). The results
demonstrate that in the case of the EKF poor identification results for both the stiffness and
the damping parameter were obtained, when neglecting the autocorrelation of the load
process. An improved version of the fractional-order unscented Kalman filter is designed
in [90] and applied to the electric pendulum model. Simulation results of this modified
fuzzy FUKF algorithm show that the algorithm produces significantly better estimation
results, especially when dealing with large initial estimation errors.

Image processing is another field that highly benefited from the advances of fractional-
order filtering throughout the last decade. A review paper has been published in 2016
featuring the advances of fractional calculus in image filtering applications [145] show-
ing that fractional-order filtering is a topic worth pursuing. The authors of [146] pro-
pose a fractional-order derivative filter to enhance image contrast using order prediction.
The paper uses a Grünwald–Letnikov fractional-order mask where the fractional-order
is determined in an adaptive manner, based on a prediction network built using a set of
training images. Experimental results performed on multiple different images prove that
fractional-order filters can be successfully used to improve the blur metric. Image denoising
techniques have been successfully developed using fractional-order filters based on Alexan-
der polynomials [147], Grünwald–Letnikov operator [148], total variations models [149] or
Riemann–Liouville and Caputo models [150]. The authors of [151] propose a fractional-
order principal component analysis theory and support vector machine algorithm for
pattern recognition. The applicability of the study is proven in the biomedical field on
highly similar digital images in ORL face databases. Several experiments are performed
for both fractional-order and integer-order algorithms and it has been proven that the
proposed fractional-order filtering method brings a 99.24% accuracy, significantly better
than other eight comparison algorithms. Biomedical and image processing fields are also
fused in [152] where a novel fractional-order filter is proposed for retinal blood vessel
segmentation. Experimental data based on well-known biomedical databases prove the
efficacy of the proposed algorithm as approximately 95%, showing a significant improve-
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ment than other methods. Another interesting application uses Grünwald–Letnikov to
develop a fractional-order image filter for digital fingerprint identification [153].

6. Discussions

Fractional calculus in modeling and control applications has seen a rapid growth over
recent decades. Several physical phenomena have been modeled using fractional calculus
tools, while numerous research studies have shown that fractional-order controllers provide
for better closed loop dynamics and robustness overall, but are definitely the suitable kind
for controlling systems described by fractional-order models. Sensing and estimation is a
crucial part for a closed loop system to work efficiently. It was then only a matter of time
before several studies on fractional-order sensing and filtering methods emerged.

The purpose of this manuscript has been to gather a collection of the most important
and relevant research papers covering fractional-order sensors, fractional-order analog and
digital filters.

Section 3 shows that research on fractional-order sensors is rather limited at the mo-
ment. However, the references that have been mentioned in this paper show that more
accurate data regarding the surrounding environment is possible to be collected using
this type of sensing devices. The papers featuring the real-life construction of a fractional-
order sensor have successfully proven the superiority of fractional-order measurements by
improving the sensitivity and compensation of the nonlinear character of the transducer.
The existing real-life applications are scarce, with a handful of papers featuring the experi-
mental construction of a fractional-order sensor. These have been focused on measuring
the quality of milk, the quality of drinking water and taste measurements in black tea
liquor. The pattern suggests that quality of various fluids can be successfully assessed by
impedance measurements using fractional-order sensors. The research trend shows that
there is active work invested in building fractional-order sensors for physical phenomena
such as pressure, force, displacement, currently only at a conceptual level, but with plenty
of extension possibilities.

Fractional-order analog filters have emerged as consequences of the fractance device
used for the development of fractional-order electronic components. However, current
limitations in fractional-order physical hardware have led to scarce literature regarding
the physical realization of fractional-order analog filters. The design of these filters is
thoroughly studied and presented in a manifold of research works, mostly from a theoretic
perspective. Most of these papers present the physical realization of the proposed analog
filter from a conceptual perspective. However, the construction of analog fractional-order
filters is limited by the need to create custom electronic components of fractional-order
characteristics. The field of analog fractional-order filters will definitely benefit when
fractional-order capacitors will be available commercially.

On the other hand, fractional-order digital filters are more abundant and various
different approaches have been taken so far. By far, the most popular filtering techniques
consist of fractional-order Kalman filters and various extensions such as the fractional-order
extended Kalman filter and the fractional-order unscented Kalman filter. About 75% of the
featured digital filtering papers focus on this topic, whereas the rest proposes variations of
the Butterworth filter and fractional-order delay filters. The fractional-order Kalman filter,
fractional-order extended Kalman filter, fractional-order unscented Kalman filter, robust
extended fractional Kalman filter and fractional interpolatory cubature Kalman filters are
used to deal with nonlinear fractional-order systems. Table 1 presents an overview of
relevant papers associated with digital filtering of complex nonlinear systems.

Fractional-order Kalman filters and their extensions and improvements have been
designed to deal with systems modeled by fractional-order equations. Kalman filtering via
limited capacity or fading communication channels (networks) is a relevant problem raised
by [154–156]. Reference [89], a very recent paper dealing with the issue of incomplete
measurements and stochastic nonlinearities, addresses this topic through a state estimator
based on robust fractional-order unscented Kalman filters. The results are compared
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with other types of filtering methods and the advantages of the proposed approach are
highlighted. Similar conclusions are drawn based on the results obtained in [88], where
both missing measurements and additive uncertainty in the gain are considered. Another
problem related to Kalman filtering with irregular and/or intermittent measurements
has been addressed in [157–159]. These aspects have been discussed by [91], another
recent paper which clearly highlights the advantages of using a hybrid robust fractional
interpolatory cubature Kalman filter instead of a traditional one.

Table 1. Main fractional-order digital filter papers targeting nonlinear systems.

Title Year Reference

Extended and Unscented Filtering Algorithms in Nonlinear
Fractional-Order Systems with Uncertain Observations 2012 [86]

Dual Estimation of Fractional Variable Order Based on the Unscented
Fractional-Order Kalman Filter for Direct and Networked Measurements 2016 [87]

State-of-Charge Estimation for Lithium-Ion Batteries Based on a
Nonlinear Fractional Model 2017 [124]

A Modified Fractional-Order Unscented Kalman Filter for Nonlinear
Fractional-Order Systems 2018 [90]

A novel cubature statistically linearized Kalman filter for fractional-order
nonlinear discrete-time stochastic systems 2018 [81]

Nonlinear Fractional-Order Estimator With Guaranteed Robustness and
Stability for Lithium-Ion Batteries 2018 [133]

Robust extended fractional Kalman filter for nonlinear fractional system
with missing measurements 2018 [88]

Fractional-order chaotic cryptography in colored noise environment
using fractional-order interpolatory cubature Kalman filter 2019 [92]

Fractional-order Kalman filters for continuous-time linear and nonlinear
fractional-order systems using Tustin generating function 2019 [78]

An adaptive unscented Kalman filter for a nonlinear fractional-order
system with unknown order 2020 [98]

Design of a Robust State Estimator for a Discrete-Time Nonlinear
Fractional-Order System With Incomplete Measurements and
Stochastic Nonlinearities

2020 [89]

Extended Kalman Filters for Continuous-time Nonlinear
Fractional-order Systems Involving Correlated and Uncorrelated Process
and Measurement Noises

2020 [79]

Extended Kalman filters for nonlinear fractional-order systems
perturbed by colored noises 2020 [11]

Hybrid extended-cubature Kalman filters for nonlinear continuous-time
fractional-order systems involving uncorrelated and correlated noises
using fractional-order average derivative

2020 [24]

Hybrid extended-unscented Kalman filters for continuous-time nonlinear
fractional-order systems involving process and measurement noises 2020 [97]

Novel hybrid robust fractional interpolatory cubature Kalman filters 2020 [91]

Adaptive fractional-order Kalman filters for continuous- time nonlinear
fractional-order systems with unknown parameters and fractional orders 2021 [96]

As indicated above, the methods reviewed in the current manuscript are applied to
handle similar problems as in [154–159]. The methods reviewed in this paper could be
applied to the systems in [154–159], but the systems need to be altered and generalized
to a fractional-order representation. This is not necessarily a problem, since it has been
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shown in several papers that fractional-order models can better represent the dynamics of
natural phenomena. Hence, to use fractional-order filtering techniques for [154–159], first
a fractional-order model of these systems must be estimated. Then, fractional-order filter-
ing methods can be applied. Since fractional-order models capture better the significant
dynamics of a system, compared to integer-order models, the conclusion would be that
using this combination of fractional-order model+fractional-order Kalman filters would
produce improved state estimation results compared to integer-order models and tradi-
tional filtering methods. A complete analysis and comparison between these approaches
represents a viable research direction in the field of fractional-order filtering.

This paper has covered an extensive review of the most recent research papers dealing
with fractional-order filters, both analog and digital. The last section of the paper provides
for a survey of recent applications of these fractional-order filters. The main applicability
has been associated with communication systems, followed by battery focused applications.
The research trend associated with data transmission and networking applications is
motivated by the need to filter physical data that is measured and analyzed through
a network. Many relevant works prove the usage of the Kalman filter together with its
variations to successfully compensate for the effect of packet losses and dropouts, malicious
code identification, estimation problems in lossy networks and online estimation of state
variables. Battery oriented applications are related to the automotive industry, especially
in the field of electric cars manufacturing. Many phenomena associated with batteries
can be accurately modeled using fractional-order derivatives, enabling fractional-order
digital filters as a useful tool in estimating State of Charge (SoC) and State of Health
(SoH). Proper estimation of both SoC and SoH are paramount for mileage prediction and
the ability to store and deliver electricity. Other domains with real-life applications of
fractional-order digital filters include filtering various signals related to aerial vehicles
orientation, air-quality estimations, civil structure measurements. Furthermore, another
interesting applicability consists of image processing, where fractional-order masks are
applied to obtain different effects such as sharpening, denoising, etc. with multiple benefits
in pattern recognition.

Despite the extensive reference list presented here, covering mostly research papers
of the last decade, fractional calculus in sensing and filtering methods is still a topic
that needs further research. Many problems need to be resolved, especially regarding
the implementation of such methods on real processes. However, as Leibniz said in
1695 fractional calculus is a paradox that will someday lead to useful consequences. This
review paper details how fractional calculus has made its mark on sensing and filtering
methods with multiple useful consequences. Increasing research over the last period
portrays a fractional calculus community on the brink of further expanding the useful
consequences as prophetically envisaged by Leibniz.
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