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Abstract: This paper presents a practical yet effective solution for integrating an RGB-D camera and
an inertial sensor to handle the depth dropouts that frequently happen in outdoor environments,
due to the short detection range and sunlight interference. In depth drop conditions, only the partial
5-degrees-of-freedom pose information (attitude and position with an unknown scale) is available
from the RGB-D sensor. To enable continuous fusion with the inertial solutions, the scale ambiguous
position is cast into a directional constraint of the vehicle motion, which is, in essence, an epipolar
constraint in multi-view geometry. Unlike other visual navigation approaches, this can effectively
reduce the drift in the inertial solutions without delay or under small parallax motion. If a depth
image is available, a window-based feature map is maintained to compute the RGB-D odometry,
which is then fused with inertial outputs in an extended Kalman filter framework. Flight results
from the indoor and outdoor environments, as well as public datasets, demonstrate the improved
navigation performance of the proposed approach.

Keywords: integrated inertial navigation; depth camera; directional constraints; epipolar constraints

1. Introduction

Autonomous small-scale aerial vehicles such as drones have drawn significant atten-
tion from academia and industry due to their accessibility, low cost, and easy operation,
with many potential applications. A continuous and robust navigation solution is crucial
for these vehicles to perform automatic control and guidance. To operate in cluttered envi-
ronments or in proximity to environments where the Global Navigation Satellite System
(GNSS) signals can be partially or fully blocked, various perception sensors (e.g., laser
scanners or cameras) are incorporated for odometry or simultaneous localization and
mapping (SLAM) solutions.

Due to the lightweight and rich information, the camera-based system has been ac-
tively researched for small-scale aerial vehicles. In particular, affordable, consumer-grade
RGB-D cameras (providing color and depth, such as Microsoft Kinect and RealSense)
have enabled considerable advancement for 3D reconstruction and SLAM odometry
navigation [1–4]. Although quite successful, most current applications have been lim-
ited to indoor scenarios due to the limited sensing range and depth dropout problems.
The presence of strong infrared interference from the sunlight significantly reduces the
maximum depth range (less than 4m in typical outdoor conditions). In addition, aerial
vehicles typically require enough clearance from the environment to avoid any collision
and operate safely. Consequently, the RGB-D sensor would act virtually as a monocular
camera, causing a depth dropout problem, limiting the usability of RGB-D sensors in
outdoor flying conditions.

Figure 1 shows typical RGB-D images collected from an aerial vehicle, showing partial
or no depth images. It also shows a reconstructed 3D map and trajectory obtained from
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this work. In addition, aerial vehicles typically experience a high rotational rate and/or
acceleration during maneuvers. For example, a high angular motion of the vehicle but
with small parallax can make the triangulation process slow and difficult. A high dynamic
sensor, such as an inertial measurement unit (IMU), is required to track the motion and
features. In the IMU-aided visual navigation system, the challenge occurs when the RGB-D
sensor degenerates to the monocular mode. The scale-ambiguous (non-metric) visual
translation needs to be fused with the (metric) inertial output. Although the scale can
be estimated from the inertial navigation system, the unaided low-quality inertial sensor
cannot converge until the features are robustly initialized.

(a) (b) (c)

Figure 1. (a) A Kinect color image from an aerial vehicle, (b) showing partial depths from a tree trunk
and the ground. (c) Reconstructed 3D map utilizing the direction constraints proposed in this work.

This work addresses the depth dropout problem by proposing a novel Inertial-RGB-D
(Kinect) fusion method that effectively integrates the inertial odometry outputs and RGB-D
or monocular images. The contributions of this work are as follows:

• The use of the directional constraint of the non-metric visual translation to aid the
inertial solutions. It is based on our preliminary work [5], providing more thorough
results using a public dataset as well as outdoor experiments.

• Our Inertial-Kinect odometry system integrates the full 6 degrees of freedom (DOF)
(rotation and translation) and partial 5DOF (rotation and scale-ambiguous translation)
information from the Kinect to estimate the pose of an aerial vehicle. Most existing
works have been directed at indoor applications in which the full 6DOF Kinect poses
are available.

• We demonstrate real-time, front-end odometry while the back-end pose-graph SLAM
supports low-priority multi-threaded processing for the keyframe optimization. The
real-time odometry outputs are subsequently used for hovering flight control in a
cluttered outdoor environment.

This directional constraint essentially comprises the epipolar constraints of features
between a pair of images that can aid an inertial system [6,7], and recently more computa-
tionally efficient multistate-constraint filters [8,9]. Although we rely on the same epipolar
principle (actually any visual ego-motion method relies on this constraint), our method is
different in that we cast the epipolar constraint as the directional constraint of the vehicle
motion, which is not limited to a planar scene or estimating the epipolar points. The key
benefit is the undelayed aiding of the IMU solution even under low parallax motion. In
addition, our method does not require the popular inverse depth parameterization, which
requires augmented state dimensions, thus more computational complexity.

If monocular configuration is used all the time, for example, due to the extended
period of depth-dropout, the performance will be similar to the standard visual odometry
method, causing scale drift over time along the direction of the motion. The tangential
direction error can be limited from the directional fusion.

Figure 2 illustrates the architecture of the navigation system, which consists of a
real-time, front-end odometry part and an off-board processed back-end SLAM part. An
extended Kalman filter is designed using a loosely coupled integration. When 3D images
are available from the Kinect sensor, a window-based, fixed-size map filter estimates
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the features’ positions to compute the full pose of the vehicle. The window-based map
filters do not maintain the cross-correlations between the features and vehicle. Thus they
are suboptimal but are computationally efficient and suitable for real-time estimation.
When only 2D images are delivered, the translation information with scale ambiguity is
converted as a directional motion constraint to aid the inertial outputs. The back-end
SLAM is processed off-board and maintains keyframe images to detect loop closures and
correction. The estimated pose of the vehicle is fed back to a flight controller, which
subsequently generates control signals to the onboard microcontroller.

Figure 2. A loosely-coupled Inertial-Kinect odometry system architecture. RGB-D images are pro-
cessed in a local Kinect odometry module that utilizes a window-based map for real-time processing.
2D RGB images are used for directional motion constraints and rotation rate and fused with inertial
odometry within an extended Kalman filter. There is an off-board back-end SLAM that utilizes a
keyframe-based graph SLAM to handle loop detection and update.

The paper is outlined as follows: Section 2 provides the literature review related to
the RGB-D-based navigation and mapping. Section 3 provides the methods of inertial
odometry, visual pose measurements with and without directional constraints, and the
integration filter. Section 4 presents the experimental results and discussions from the
indoor and outdoor environments, followed by conclusions.

2. Related Work

There exists a vast amount of literature on visual navigation and SLAM, and thus
this review will focus on the RGB-D-related work and its integration with inertial sen-
sors. The work by Huang et al. [10] uses full RGB-D information for 3D SLAM on aerial
vehicles. It uses full color and depth information from a Kinect sensor to detect features
from the gray-scale image and use their corresponding depths for the motion estimation.
Keyframe-based feature matching is performed to estimate the final camera pose of the
aerial vehicle in an indoor environment. The final smoothing is performed by graph-based
optimization to build a globally consistent map. The use of depth-only information is
proposed by Izadi et al. [11] for a hand-held scenario, utilizing the iterative closest point
(ICP) method for structured indoor environments. Another work [12] focuses on the real-
time performance in which an ICP and a constant size feature map are maintained for
real-time implementation. Scherer et al. [13] also use depth information in the context of
the mono-SLAM framework. Another work by [14] integrates the 3D visual odometry with
the ICP-based SLAM approach.



Sensors 2021, 21, 5913 4 of 13

The above mentioned RGB-D techniques heavily rely on the full depth information.
The work of [15] addresses the depth dropout issue by solving the offline SLAM opti-
mization problem for indoor conditions. Their work combines monocular and RGB-D
measurements into a local map formation in an offline setting. The scale of the monocular
camera is recovered in an offline scenario.

Considering the work in the visual-inertial domain, there exist two paradigms: tightly-
coupled and loosely-coupled architecture. In the tightly-coupled paradigm, the work
of [16–20] addresses the fusion of visual and inertial information using optimization or
EKF-based SLAM. Ref. [16] applied the bundle adjustment technique for the visual-inertial
odometry with an efficient loop-closure method. Ref. [17] applied a similar optimization
method while eliminating any moving objects, such as pedestrians, improving the robust-
ness of the visual odometry. Ref. [18] used the filtering approach exploiting the planar
geometry of the ground plane. Although quite successful, these methods are computation-
ally expensive as well as dependent on specific visual processing pipelines. Considering
the rapid development of vision processing algorithms, the integration algorithms need
to be revised accordingly. Any bundle adjustment (e.g., VINS mono, DUI-VIO) or depth
estimation methods (inverse depth parameterization) can cause drift in the IMU solution
during the process. Other papers mentioned exploit certain geometry such as planar
ground or moving object elimination, which are different to our focus.

An alternative architecture is a loosely coupled method in which the visual and inertial
information is treated as a separate entity, and visual constraints are used to update and aid
the inertial sensor [21]. The gyro information is also used to help the RGB-D pose estimator
as in [22,23], in which gyroscopes are used to estimate the rotation of the cameras, or as a
prior to the ICP algorithm. Ref. [4] addresses the degeneracy problem of the IMU-Kinect
sensor utilizing the indoor plane features from the camera. These Kinect-based approaches
either work indoors or require a structured environment. Refs. [24,25] uses an indirect
Kalman filter that is based on the errors in the estimated measurement instead of the direct
measurements from the camera and IMU systems. The work estimates the scale of the
monocular camera motion estimate in the filter with an assumption of a smoothly changing
scale of the scene. Learning techniques can provide a good alternative to fill the gaps in
the depth image. There have been several supervised/semi-supervised depth mappings
mostly in road environments, and it would be interesting to see their performance in
outdoor/forest environments, which are unstructured and irregular.

Our work follows the loosely-coupled approach with direct-filter implementation
(the advantage of the loosely-coupled system is constant-time processing and a modular
implementation). Using the concept of visual directional constraints, we avoid the explicit
estimation of the scale in integrating the monocular and IMU. The proposed framework
consists of two modules, a front-end EKF-based odometry system, and a back-end module
based on pose-graph optimization for global consistency. The map is not maintained in the
EKF, hence resulting in the loosely coupled architecture. The benefit is the system becomes
more modular, and other vision algorithms can be effectively incorporated.

3. Methods
3.1. Inertial Odometry

The inertial odometry model consists of the kinematic equations of an inertial naviga-
tion system driven by the IMU measurements, which are the specific force (or the sum of
the dynamic acceleration and gravity) and angular rate. The position (Pn), velocity (Vn),
and Euler angles (Ψn) of the vehicle are defined with respect to a local tangent, local-fixed
navigation frame, and evolve as

Ṗn = Vn

V̇n = Rn
b (f

b − bb
a)− 2ωn

ie ×Vn + gn(Pn) (1)

Ψ̇
n
= En

b (ω
b − bb

g),
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where

• ωn
ie is the Earth rotation rate in the navigation frame;

• gn(Pn) is the acceleration due to gravity;
• fb is the accelerometer measurement in the body frame;
• ωb is the gyroscope measurement in the body frame;
• bb

a is the accelerometer bias in the body frame;
• bb

g is the gyroscope bias in the body frame;
• Rn

b is a direction cosine matrix transforming a vector from body to navigation frame

Rn
b =

 cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ

cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ

−sθ sφcθ cφcθ


• En

b is a matrix transforming a body rate to an Euler angle rate.

En
b =

 1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

,

where s(·), c(·), and t(·) are shorthand notations for sin(·), cos(·), and tan(·), respectively.

Although the Euler angles have a singularity problem when the pitch angle approaches
90◦, it rarely happens in most drone operational scenarios. Thus, due to the simplicity
compared to other representations such as the quaternion, the Euler angles are adopted in
this work.

3.2. Visual Pose Measurement

Figure 3 shows that a pipeline of Kinect image processing is performed to extract the
visual features and match them across frames. In this work, Harris corners are used on the
gray-scale image. If the corner features do not have the corresponding depth information,
they are discarded from the feature list. Speed-up robust features (SURF) descriptors are
used for the feature matching purpose. The Kinect odometry module consists of two parts:
6DOF and 5DOF pose processing modules. The full 6DOF poses are computed when the
depth information is available from the Kinect sensor. When the depth dropouts occur,
then the 5DOF poses are computed.

(a) (b) (c) (d)

Figure 3. Feature detection and matching process. (a) Input image. (b) Corresponding depth image.
(c) Selected image features that have corresponding depths. (d) Feature matching between two
consecutive images using SURF descriptors followed by RANSAC.

6DOF Pose Measurement

The 6DOF pose measurement is the rigid-body transformation (R, P) of the camera
from its original pose and is obtained in two steps. First, an initial pose is computed
using the closed-form solution from the point clouds as in [26]. It is then used to run a
weighted-ICP (iterative closest point) for fine refinement.
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The spatial location of the feature in the pixel coordinates with raw depth gives
(u, v, d) ∈ R3, which can be converted into a 3D Euclidian feature position, (x, y, z) ∈ R3,
relative to the camera. The mapping function g : (u, v, d)→ (x, y, z) becomes:

x =
z
f
(u− u0), y =

z
f
(v− v0), z =

f
d

L, (2)

where f is the camera focal length, (u0, v0) is the center of the image, and L is the baseline
length between the infrared emitter and the receiver in the Kinect sensor. The related covari-
ance matrixW of the transformed Euclidian 3D position can be computed using a Jacobian
of the mapping function, assuming independent noise in pixel and depth measurements:

W = J

 σ2
u 0 0

0 σ2
v 0

0 0 σ2
d

JT , with J =
∂g(x, y, z)
∂(u, v, d)

. (3)

The 3D features are declared as a map (M) defined in the local navigational frame.
All the subsequent feature measurement data (D) are matched with the existing map
features using the SURF descriptors. The comparing score is based on the sum-of-absolute-
difference and if it is within a specified threshold then it is declared a matched-pair. As this
matching can still lead to wrong matches, RANSAC is used to remove the outliers during
the optimization:

arg min
R,P

(
1
N ∑

i∈A
ci‖Mi − (R Di + P)‖2

Wi

)
, (4)

where i stands for the index of inlier feature-set A, and ci is the correspondence withW
being the weighting matrix from (3).

A ring buffer of features is maintained to track the locally tracked features, while the
global keyframe map is retained in the pose-graph module as discussed in Section 3.5. The
features within a predefined Euclidean vicinity are declared as update points, whereas
others are declared as new points. The existing points are updated using a weighted
averaging method. If the limit of the ring buffer is reached, then the old features are deleted.

3.3. 5DOF Measurement Using Directional Constraints

The 2D image processing pipeline is similar to the 3D case except the local feature
map is not utilized. The rotation (R) and translation (λP) are estimated using the standard
5-point visual odometry algorithm together with RANSAC. Using the sampling time, the
motion between two consecutive images is converted to the rotational rate and translational
velocity (up to scale) (ω, λV). In order to integrate these motion estimates with the inertial
sensor (which operates in metric space), the translational velocity is further converted into
a unit directional constraint in the body frame Ub. This constraint can also be related to the
inertial odometry. That is, the unit velocity in the body frame can be obtained from the unit
velocity in navigation frame Ub = [Rn

b ]
TVn/||Vn||, yielding,

 Ub
x

Ub
y

Ub
z

 =
1√

V2
N + V2

E + V2
D

 cθcψVN + cθsψVE − sθVD
(−cφsψ + sφsθcψ)VN + (cφcψ + sφsθsψ)VE + sφcθVD
(sφsψ + cφsθcψ)VN + (−sθcψ + cφsθsψ)VE + cφcθVD

 (5)

If the vehicle motion is constrained to the ground, this is similar to the non-holonomic
motion constraint. For example, the tangential components of the velocity (Vb

y = 0, Vb
z = 0)

become zero in the body frame, assuming no side skidding. In a general 3D case, such as
for a flying vehicle, this constraint does not hold.

The concept of the directional constraints naturally extends this non-holonomic motion
constraint to the visual velocity in which the lateral image velocities of the visual motion
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are treated as zero. The key benefit of this concept is the undelayed aiding of IMU outputs
without requiring 3D information of the features or map. However, the longitudinal image
velocity is unobservable and thus requires additional depth information, which is delivered
from a pose-graph SLAM module.

3.4. Integration Filter with Directional Constraints

An extended Kalman filter is designed to integrate the inertial and Kinect mea-
surements in a loosely-coupled integration architecture. After discretization, the state
Equation (1) and the observation equation with directional constraints (5) become:

x(k) = f(x(k− 1), u(k− 1), w(k− 1)) (6)

z(k) = h(x(k), v(k)), (7)

where x(k), u(k), and z(k) are the state vector, control input, and measurement vector at
time step k, respectively. w(k)and v(k) are the process and observation noise, which have
zero means and strength matrices Q andR.

Given the models, the estimate of the state x̂(k|k) and covariance P(k|k) can be
recursively computed within the filter. First, the predicted state and covariance become:

x̂(k|k− 1) = f(x̂(k− 1|k− 1), u(k− 1), 0) (8)

P(k|k− 1) = ∇fxP(k− 1|k− 1)∇fT
x +∇fuQ∇fT

u , (9)

where ∇ represents the gradient operator.
The switching criteria between RGB-D and RGB measurements are based upon the

availability of depth features and their spatial distribution. If the number of features is
uniformly distributed over the image and depth features are available, then the RGB-D
measurements are used to update the EKF filter. Otherwise, the monocular directional con-
straints are used for the filter update. The uncertainty of the measurements is scaled directly
with the number of inliers in order to gauge the quality of motion estimates. In order to
cater to the measurement delay in the vision processing pipeline, we maintain a timestamp
of each predicted state (from EKF) in the ring buffer. Whenever the Kinect measurements
(RGB-D or visual constraints) are available, the past EKF state is retrieved/updated accord-
ingly, and the corrected state is then propagated to the current state. When a measurement
is available, innovation and its covariance are calculated as follows:

ν(k) = z(k)− h(x̂(k|k− 1), 0) (10)

S(k) = ∇hxP(k|k− 1)∇hT
x +∇hvR∇hT

v . (11)

Then the state estimate and its covariance are updated:

x̂(k|k) = x̂(k|k− 1) + K(k)ν(k) (12)

P(k|k) = P(k|k− 1)−K(k)S(k)K(k)T , (13)

with a Kalman gain matrix:

K(k) = P(k|k− 1)∇hT
x S−1(k). (14)

3.5. Pose-Graph Optimization

As a back-end module, a keyframe-based pose-graph SLAM is applied to constrain
the inertial-Kinect odometry further. Keyframes are selected from the Kinect measurements
using the threshold on the accumulated motion estimates. Their corresponding pose/state
from the EKF filter is passed to the pose-graph optimizer (only for selected keyframes). A
new edge constraint is added to the pose-graph when a loop is detected using the SURF
descriptor matching between the keyframes and the current image frame. Subsequently,
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the graph is optimized, and on convergence, the filter state (for the respective timestamp of
the keyframe) is updated in the ring buffer. The corrected state is then propagated to the
current EKF state to minimize the effect of drift.

3.6. Observability of the System

The extended Kalman filter designed in the previous section integrates the 3D or
2D visual measurements depending on the availability of the depth information. If the
directional constraints are incorporated as in Equation (5), it is clear that the velocity vector
becomes partially observable due to the unknown velocity scale λ. In addition, the velocity
estimated from the IMU requires integration of the acceleration and thus does not increase
the observability of the velocity state. If we use an instantaneous coordinate system of
the motion (m) and express the velocity along the axial (‖) and normal (⊥) directions, the
velocity vector Vm = Vm

‖ + Vm
⊥ = Vm

‖ , as the tangential velocity components are zero. The
axial velocity component can be made observable from the 3D measurements with depth
information, which effectively computes the scale of the translation and thus the velocity.
Please note that the unknown velocity scale can be estimated within the EKF, as in the
popular inverse-depth parametrization approaches. However, the predicted velocity from
the IMU is also unobservable due to the integration process, and thus the estimated scale
suffers from drifting, causing the so-called scale drift problem. It can only be properly
estimated from the 3D measurements as in our work or the loop-closures in SLAM.

4. Results and Discussion
4.1. Depth Calibration

The Kinect sensor used is reasonably well-calibrated from the factory settings. How-
ever, the raw range output is expressed as inverse disparity, not actual depth, thus requiring
further calibration. We adopted the methods from [27], in which a checker-board is used
for intrinsic/extrinsic parameter estimation using bundle adjustment-based refinement.
We estimate the depth provided from the Kinect sensor for a region of interest (where
the object is present) and average it. After the calibration, the depth with respect to the
ground truth shows less than 1% error for up to a 3-m range, showing consistent depth
results. After the depth calibration, the RGB camera is calibrated using a standard camera
method. Finally, the calibration between the vision and inertial sensor is performed using
the method proposed by [28], where the rotational misalignment is estimated by using the
direction of gravity (from the accelerometers) and the camera’s vertical orientation.

4.2. Indoor Experiment

A hexacopter platform is developed, which is equipped with a low-cost IMU with a
38 Hz data rate and a Kinect RGB-D sensor at 22 Hz, as shown in Figure 4. To evaluate
the performance in an indoor environment, a Vicon motion capture system is utilized. A
dual-core Atom embedded computer mounted on the platform collects and processes the
data, running under the Robot Operating System (ROS). All data are timestamped for
the synchronization, and ring-buffers are also used to handle the time difference between
the acquisition and processing time. The hexacopter autopilot system is modified to
accommodate the position control commands from the Atom processor. A cascaded PID
position controller running at 50 Hz generates the waypoints and hovering commands
using the Inertial-Kinect odometry outputs.
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Figure 4. A hexacopter platform equipped with Kinect/IMU sensors and an Atom processor.

To verify the method, 900 Kinect frames and 1501 IMU data packets were collected
from an indoor environment. To simulate the depth dropouts, some of the depth data
were discarded to verify the proposed approach. The estimated pose from the proposed
method was compared against the ground truth data from Vicon, as shown in Figure 5.
The trajectory shows the take-off and lateral movements of the hexacopter platform, and
the dropouts are shown in a rectangular box. The errors were computed using the ground
truth in terms of root-mean-square error (RMSE). Table 1 summarizes the performance
showing that the RMSE is less than 0.2 m and 0.5◦, and there is an improved performance
closely resembling the ground truth. Figure 6 also confirms the consistency of the system,
showing a visibly consistent 3D map after the pose-graph SLAM optimization.

Figure 5. Indoor results of real-time Inertial-Kinect estimated trajectory (in red) compared with
the Vicon ground truth (in blue). Directional constraint updates are simulated and shown in the
rectangular box.
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Table 1. Evaluation of proposed approach against Vicon outputs (RMSE error).

Px(m) Py(m) Pz(m) φ (◦) θ (◦) ψ (◦)

Monocular Visual-Inertial [29] 2.61 3.13 1.79 1.07◦ 1.01◦ 0.81◦

Inertial-Kinect w/o directional constraints 2.43 1.75 2.66 3.84◦ 2.70◦ 2.14◦

Inertial-Kinect with directional constraints 0.05 0.04 0.19 0.40◦ 0.04◦ 0.48◦

Figure 6. Indoor results: before (left) and after (right) pose-graph optimization where the room wall
was textured with forest-like images.

4.3. Public Indoor Dataset

We also tested the proposed method for the publicly available dataset (fr1/desk,
fr2/desk and fr1/room) from the University of Freiburg [30] to compare the performance
of the Inertial-Kinect solutions. Each dataset comes with an accurate ground truth captured
by external motion capture systems (Vicon). Table 2 summarizes the results on the relative
pose error (RPE) for more datasets (fr1/xyz and fr2/xyz), confirming accurate estimates
compared to the ground-truth data. Table 3 compares the proposed method with the state-
of-the-art SLAM methods in terms of the absolute trajectory error (ATE): robust edge-based
VO (REVO) key frame (KF) [31], REVO frame-to-frame (FF) [31], FOVIS (an ROS module
for visual odometry) [10], and dense visual odometry [14]. The comparison confirms
that our proposed method performs better or with competitive accuracy compared to
those methods.

Table 2. Relative pose error (RPE) evaluation of proposed approach against Vicon outputs.

Dataset Trans (m/s) Max Trans (m/s) Rotation (◦/s) Max Rotation (◦/s)

fr1/xyz 0.120 0.053 1.342 5.415

fr1/desk 0.011 0.372 4.219 9.173

fr2/xyz 0.301 0.017 0.321 4.310

fr2/desk 0.147 0.172 3.102 3.999

Table 3. Comparison of median/maximum values of ATE with state-of-the-art algorithms.

Algorithm fr1 Desk fr2 Desk fr1 Room
Median Max Median Max Median Max

RGB-D SLAM [14] 0.068 0.231 0.118 0.346 0.152 0.419

Monocular SLAM [29] 0.931 1.763 0.982 1.621 2.531 0.792

REVO-KF [31] - 0.547 - 0.095 - 0.288

REVO-FF [31] - 0.186 - 0.329 - 0.305

FOVIS [10] 0.221 0.799 0.112 0.217 −0.238 0.508

Proposed Approach 0.024 0.214 0.012 0.092 0.133 0.317



Sensors 2021, 21, 5913 11 of 13

4.4. Outdoor Experiment

Currently, to our knowledge, there is no public 3D dataset from a forest-like envi-
ronment. Therefore outdoor flight tests were performed in a cluttered tree environment.
The average flight height was 10 m above the ground, and the maximum ground speed
was approximately 5–7 m/s. The environment was challenging due to the absence of
GPS position sensing due to the tree canopy. An area of 10 m× 12 m was explored by a
manual pilot mode collecting 1701 RGB-D Kinect frames in which 240 data frames lacked
depth information due to the depth dropout. Figure 7 shows the 3D trajectory of the
aerial vehicle, which was estimated in real-time from the onboard computer. Figure 8
also shows the pose-graph optimization results processed on an off-board laptop, which
also shows an input image, a 3D depth map used in the Kinect odometry. It can be seen
that the pose graph optimization makes the global keyframe maps visibly more consistent.
As there is no absolute GPS information available for the comparison, the normalized
innovation sequences were used to check the filter consistency, showing that most of the
sequence falls within the 95.5% confidence interval. The results confirm that the proposed
Inertial-Kinect algorithm is capable of estimating the vehicle states in a challenging outdoor
environment. The Kinect processing time is also summarized in Table 4, having less than
100ms processing time and thus the real-time capability of the method.

Figure 7. Estimated 3D flight trajectory of the hexacopter for outdoor sequence (in blue) and inertial
output (in red). The Kinect sensor was activated after the take-off, showing some drift in the
inertial output.

Figure 8. Outdoor mapping results before (left) and after (right) the pose-graph optimization
showing more consistent 3D map after the optimization.
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Table 4. Kinect processing time on an embedded computer (Kinect update rate is 10 Hz).

Module Processing Time per Frame (ms)

Data acquisition 08.60

Feature detection and matching 43.17

Motion estimation 28.92

Pose update 19.05

However a high-speed camera with fast optical-flow algorithms can also be utilized
to improve the navigational accuracy, thanks to the loosely coupled integration of the
vision processing module. The real-time management of the estimator is also crucial for
the control and guidance of the vehicle. Currently, the 10 Hz pose output rate is adequate
for the high-level control of the vehicle, thanks to the fast internal angular stabilization
within the drone.

5. Conclusions

An Inertial-Kinect integration framework was presented, which fuses an IMU odom-
etry and Kinect odometry in a loosely coupled EKF integration architecture. The Kinect
odometry system computes the full 6DOF, or partial 5DOF poses depending on the depth
availability. An efficient and fixed-size local feature map is maintained to calculate the full
Kinect odometry. When depth dropouts occur, the visual translation is used as a directional
motion constraint. The lateral image velocity components become zero, which enables a
seamless aiding of IMU errors without delay. The back-end SLAM module performs the
pose-graph optimization detecting the loop closures and further correcting the IMU errors.
Indoor and outdoor flight results demonstrate the robustness of the proposed approach in
challenging outdoor environments. Future work will involve combining the Inertial-Kinect
odometry outputs and path-planning algorithms with exploring the outdoor settings.
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