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Abstract: This paper reports the design, fabrication and measured performance of a passive mi-
croelectromechanical transducer for the wireless monitoring of high irradiation doses in nuclear
environments. The sensing device is composed of a polymer material (high-density polyethylene)
sealed inside a cavity. Subjected to ionizing radiation, this material releases various gases, which
increases the pressure inside the cavity and deflects a dielectric membrane. From the measurement
of the deflection, the variation of the applied pressure can be estimated, and, in turn, the dose may
be determined. The microelectromechanical structure can also be used to study and validate the
radiolysis properties of the polymer through its gas emission yield factor. Measurement of the dielec-
tric membrane deflection is performed here to validate on the one hand the required airtightness of
the cavity exposed to doses about 4 MGy and on the other hand, the functionality of the fabricated
dosimeter for doses up to 80 kGy. The selection of appropriate materials for the microelectromechani-
cal device is discussed, and the outgassing properties of the selected high-density polyethylene are
analysed. Moreover, the technological fabrication process of the transducer is detailed.

Keywords: passive sensors; microelectromechanical systems (MEMS) technology; microelectrome-
chanical transducer; dosimeter; nuclear irradiation; nuclear dose; high-density polyethylene; gas
emission yield factor G

1. Introduction

Passive (or “zero-power”) and wireless dosimeters show promising features for moni-
toring irradiation doses in nuclear environments. Indeed, as they do not require battery
or/and energy harvesters for supplying DC power, such sensors are expected to have
very long lifetimes. Moreover, their wireless interrogation may be performed to remotely
estimate the irradiation doses in inaccessible areas. Zero-power and wireless dosimeters
may be very useful in irradiated regions that drastically limit any in-situ human being
interventions, e.g., the structure health monitoring of nuclear infrastructures after a nuclear
incident. Hydrogen Pressure Dosimeters (HPD) [1,2] or track etched detectors [3], as well
as sensors using alanine-polymer film [4] or based on radio-photo-thermo-luminescent
structures [3,5,6], have been reported so far. However, these devices do not provide real-
time measurement of irradiation doses and provide only post-factum monitoring of doses.
Moreover, complex methods are often applied during the measurement process, such
as electron spin resonance spectroscopy for alanine-based dosimeters [4]. Passive HPD
dosimeters using microelectromechanical systems (MEMS) technology and a polymer as
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reactive material under irradiation have been recently proposed in [7] using a long-range
wireless radio-frequency sensing technique that exceeds 3.5 m [8]. These dosimeters may
be advantageously used for the remote and real-time measurement of irradiation doses.
Very preliminary results are reported in [7] on these very promising devices, but to date
proof-of-concept is not established.

This paper investigates for the first time the radiolysis properties of polyethylene by
using the MEMS prototype reported in [9] when irradiation doses reach about 80 kGy. The
design, constitutive materials and manufacturing process of this MEMS device are dis-
cussed, and the integrity of the microelectromechanical transducer is tested for doses up to
4 MGy. A method is also proposed to estimate the irradiation dose and finally, the measured
performances of the fabricated MEMS device are compared with theoretical predictions.

2. General Working Principle of Passive Radiofrequency Dosimeter

Investigation of the impact of nuclear irradiations on polymers is crucial to guarantee
the materials’ compatibility with specific nuclear environments or facilities [10–15], to
secure nuclear waste packages during transportation, storage and/or disposal [16–20],
and finally to improve the physical and chemical properties of the materials [21–25]. The
effects of nuclear irradiation on polymeric structures are well-documented [21,22,26–29]
and mainly consist of chains scissions and crosslinking, creation of unsaturated bonds in
polymers and generation of low molecular weight components which can be trapped in
the materials or released as gases. Their relative contribution depends on the polymer
type and irradiation conditions (e.g., the dose level, atmosphere properties, irradiation
type, among others) [12,16,28,30–33]. Following [7,8] the overpressure measurement result-
ing from polymer outgassing can be used to estimate the irradiation dose. As sketched
in Figure 1a, the passive Radio Frequency (RF) dosimeter based on overpressure mea-
surement is composed of a polymer material, which is sealed inside an airtight cavity
and releases gases from radiolysis when subjected to ionizing radiation. The outgassing
generates an overpressure in the cavity that deflects a thin dielectric membrane electromag-
netically coupled with a two-port RF planar resonator below the dielectric membrane. Such
deflection modifies the electromagnetic coupling, leading to variation of the scattering
parameters of the RF resonator and finally modifies the radar cross-section of the dosimeter
(see [34–36]). By monitoring of the radar cross-section variation, the measurement of dose
can be remotely derived. Aperture-coupled microstrip lines can be advantageously used to
feed the membrane-loaded resonator by electromagnetic waves [37,38].
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We focus here on the design, fabrication and measured performances of the passive mi-
croelectromechanical transducer (which does not include the RF resonator) shown in Figure 1c
for the wireless monitoring of high doses of γ-rays up to 80 kGy in nuclear environments.

3. Material Choice for the Microelectromechanical Transducer
3.1. Constitutive Materials

As illustrated in Figure 1a, the transducer uses two substrates that are bonded together
to seal the polymer and RF resonator in the same airtight structure. The bonding steps in
the technological process are performed carefully in order to avoid any alteration of the out-
gassing property of used materials under irradiation. Various assembling techniques can
be applied to seal the polymer and RF resonator in the same airtight structure [39], such as
eutectic bonding [40], silicon [41,42] or metal-to-metal [43,44] direct bonding, solder bond-
ing [45] or low-temperature melting glass bonding [46]. The anodic bonding [47] consists
of the direct silicon-to-glass bonding performed at high temperature (typically between
300–600 ◦C) and high voltages (between 0.2 kV and 2 kV) between contacting substrates.
During the technological process, the bonding interface is fabricated from strong siloxane
Si-O-Si bonds. Details of the bonding mechanisms and chemical reactions can be found
in [47,48]. This process is widely applied to package components and devices [49,50], but
also to fabricate sealed cavities [48,51–53] with long-term airtightness [8,54] and low leak
rates [52]. The airtightness quality depends mainly on the surface state of the substrates,
the temperature and applied voltages. Studies reported in the open scientific literature have
demonstrated that a good resistance to γ irradiations (γ-rays) of substrates can be obtained
from isolated or assembled silicon and borosilicate substrates using anodic bonding [55].
No significant change in the physical properties was reported on the silicon substrate [55],
while a slight densification and presence of optical alterations were detected on the borosil-
icate material [56–59]. However, to the best knowledge of the authors, no study has been
reported on the impact of irradiation on the bonding interface and, more specifically, on
the airtightness of sealed cavities. Since borosilicate glass is mainly composed of Si-O
bonds, γ-rays are expected to weakly impact the bonding interface. Furthermore, since
anodic bonding was previously used for the fabrication of sensors working under ionizing
radiation in spatial environment [49,60,61] or placed in irradiated areas [7,8,53], this bond-
ing technique is a priori suitable for the fabrication of passive dosimeters. Consequently,
high resistivity silicon (HR Si) [62] and borofloat B33 substrates [63] are chosen for the
membrane and resonator substrates, respectively. The low losses of these substrates make
them convenient for sensing applications in the microwave frequency range [8,34,38,64].

3.2. Polymer

As mentioned before, outgassing is one phenomenon among many other reactions
when polymers are subjected to ionizing radiations. Both the nature and quantity of
gases depends on the polymer composition and the irradiation properties, such as the
irradiation temperature, the surrounding atmosphere, the nature of the irradiation (γ-rays,



Sensors 2021, 21, 5912 4 of 35

pile irradiations and ions irradiations, among others), the dose deposition or the dose
rate [16,17,19,65]. In our application, the polymer must fulfil the following requirements:

(i) It must be suitable for the selected assembling technological process, which requires
good thermal stability with no loss of mass, and stable radiolysis properties in the
temperature range of the anodic bonding.

(ii) It must generate gases over a wide range of irradiation dose levels and in sufficient
quantity to be measured.

(iii) Polymers, including aromatic cycle or unsaturated C=C bonds, should be discarded
because of their higher stability under irradiation, leading to reduced outgassing
when compared with other families of polymers [22,30,32].

(iv) Emission by the irradiated polymer of corrosive gases must be avoided in order
to maintain the integrity of the transducer structure. Undesirable hydrochloric or
hydrofluoric acids are actually released during the radiolysis of polyvinyl chloride
and polyvinylidene fluoride [16,22,32].

Among the polymers studied in the literature, polyethylene (PE) is a good candidate
for our application. PE is one of the most stable polymers as temperature varies: mass
loss and polymer degradation start near 250 ◦C in air and at about 400 ◦C in an inert
atmosphere [66–68]. This polymer presents the thermal stability required by the process
fabrication process. According to the state-of-the-art, the hydrogen emission yield factor
GH2 of PE is between 2.3 × 10−7 mol·J−1 and 4.6 × 10−7 mol·J−1 [33]. Two main types of
PE are commercially available: high-density polyethylene (HDPE) and low-density polyethylene
(LDPE). HDPE is composed of long chains with very few branches compared with LDPE
(see Figure 2). The higher the quantity of branches in PE, the lower the crystallinity. Unlike
claims reported in some studies (e.g., [30,69]) it appears that the crystallinity degree of
polyethylene has a weak impact on the hydrogen emission yield factor [33,70]. Crystallinity
was not a discriminant parameter in the conditions of our application. Furthermore, PE
can be used up to few MGy [10,69] and generates very high quantities of gases under
irradiation [11,12,16,19,28,32]. The gases generated by HDPE during irradiation under
vacuum or an inert atmosphere are mainly composed of hydrogen H2 (between 85% and
99%). In case of LDPE, a small quantity of hydrocarbon gas (<7%) may also be present,
such as ethane C2H6 (<2.3%), methane CH4 (<0.9%) and/or ethylene C2H4 (<0.4%), these
gases being related to the branched chains nature and concentration. To facilitate and
ascertain the estimation of the quantity of gases released from PE, HDPE appears to be the
best choice. When irradiation is performed under an oxidative atmosphere, oxygen reacts
with the radical in the polymer chain to form a peroxy radical, which then reacts to form
stable defects [71], including carbon monoxide (CO) and dioxide (CO2) [11,12,17,30,72,73].
This oxygen to estimate precisely the total pressure inside the cavity. Consequently, the
irradiation of the PE polymer sealed in a vacuum appears to be much more preferable.
Moreover, there is no dose rate effect under such atmospheric irradiation conditions.
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Figure 2. Molecular structure of (a) high-density polyethylene (HDPE) and (b) low-density polyethylene (LDPE) [30].

The gas emission yield factor Ggas of HDPE in an inert atmosphere is close to the
hydrogen emission yield factor GH2 . This factor is estimated in Section 7.3 for the selected
polymer and for different dose levels, dose rates and fixed (room) temperature. HDPE
can be found in many different shapes, such as rods, pellets, powders, films, sheets or
fibres [74,75]. Even if the hydrogen emission yield factor GH2 seems not to depend on the
HDPE thickness and shape [76], the release of this gas in the surrounding atmosphere
depends on its diffusion inside the material (Fick’s law of diffusion). Thin films of PE
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appear to be the best choice in our application. As the hydrogen emission yield factor GH2 is
almost constant for low doses up to 200 kGy [30], the quantity of H2 is directly proportional
to the dose in this range. At room temperature and in an inert (He) atmosphere, the
decrease of factor GH2 occurs at higher doses due to the generation of C=C unsaturated
bonds during the irradiation that acts as an energy sink [30,70,77]: energy and radicals
transfer preferentially to these bonds, leading to undesirable reduction of H2 release. For
example in [70], the hydrogen emission yield factor GH2 during β irradiation at room
temperature was of 4 × 10−7 mol·J−1 at low dose level and only 2 × 10−7 mol·J−1 at
about 10 MGy. Another example is reported in [30] where GH2 for the ultra-high molecular
weight polyethylene (UHMWPE) during β irradiation (dose rate of 5 kGy/h) in vacuum
and room atmosphere was 4.0 × 10−7 mol·J−1 at 1kGy and only of 1.8 × 10−7 mol·J−1 at
2 MGy. Consequently, our transducer had to be used in the low dose range domain, that is
up to 200 kGy.

The microelectromechanical transducers designed, fabricated and characterized in
this study were irradiated at room temperature (25–30 ◦C). We chose to fill the cavity with a
thin film of HDPE polymer encapsulated in a vacuum for monitoring γ radiation in nuclear
facilities such as plants and particle accelerators. The dose rate in such environments range
typically between a few kGy·h−1 and a few 100 kGy·h−1. These devices can be used up to
200 kGy, but preferably less to ascertain a constant hydrogen emission yield factor.

4. Working Principle of the Microelectromechanical Transducer
4.1. Polymer Outgassing

Among many other characteristic reactions, outgassing occurs when a polymer is
irradiated by γ-rays. To evaluate the structural modifications of polymers caused by such
ionizing radiation, we consider here the gas emission yield factor Ggas (in mol·J−1) of
polymers. The number ngas of gas (in moles per unit of energy) deposited in the polymer
during irradiation is then given by:

ngas = mPO·Ggas·D (1)

where mPO denotes the mass (in kg) of polymer and D designates the dose level (in Gy
or J·kg−1) deposited in the polymer. For a polymer of volume VPO placed inside a sealed
structure of volume Vcav (see Figure 3), the pressure Pg (in Pa) generated by the radiolysis
can be estimated from the ideal gas law as follows:

Pg =
mPO·Ggas·D·R·T

Vg
(2)

where R (=8.314 J·mol−1·K−1) is the ideal gas constant, T is the temperature (in K) and Vg
is the volume occupied by the gas (in m3) given by:

Vg = Vcav −VPO (3)

As can be derived from Figure 3, the cavity volume Vcav is given by:

Vcav = Vcav−glass + Vcav−Si = Vcav1−glass + Vch + Vcav2−glass + Vcav−Si (4)

where Vcav−glass and Vcav−Si are the volumes of regions patterned in the glass and silicon
substrates, respectively. Following (4), these volumes are composed of three different
contributions: (i) the volume Vcav1−glass of the cavity located below the membrane, (ii) the

volume Vcav−PO

(
= Vcav2−glass + Vcav−Si

)
of the cavity in which the polymer is placed,

and (iii) the volume Vch of the channel between the two cavities. Moreover, the mass of
polymer in (2) is given by:

mPO = ρPO·VPO (5)
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where ρPO designates the polymer density (in kg·m−3). Thus, the pressure Pg (in Pa)
generated by the radiolysis given by (2) can be rewritten as follows:

Pg = ρPO·R·T·
VPO
Vg
·G·D (6)
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4.2. Membrane Deflection

Let tm and rm be respectively the thickness and radius of the circular membrane (note

that the radius rm is identical to the radius rcav1−glass =
Φcav1−glass

2 of the circular cavity 1
placed below the membrane). For very small deflections compared with the membrane
thickness, and assuming perfect membrane clamping, the largest variation ∆Wg of the
membrane deflection is given by the following approximation [78]:

∆Wg ∼=
12
64
·1− ν2

E
· rm

4

tm3 ·Pg (7)

where ν and E are, respectively, the Poisson coefficient and the Young’s modulus of the
membrane. Furthermore, membrane deflection creates a volume variation which is negligi-
ble with respect to the overall cavity volume Vcav The operating principle of the microelec-
tromechanical transducer is based here on the measurement of the membrane deflection
caused by the overpressure generated by the outgassing of an irradiated polymer. Hence,
the relationship between the amount of gas produced by the irradiated polymer and the
amplitude of the membrane deflection can be established. From (6) and (7), the descriptors
of the two cavities, of the membrane and of the polymer, must be determined to control the
amount of outgassing due to radiolysis and to maximize the membrane deflection.

5. Design Requirements of the Microelectromechanical Transducer
5.1. Requirements for Silicon Membrane Dimensions

According to (7) the thickness tm and radius rm of the silicon circular membrane have a
significant impact on the largest variation ∆Wg of the membrane deflection or, equivalently,
on the membrane sensitivity to applied pressure. The lower the thickness and larger the
radius, the higher the sensitivity to applied pressure. However, membrane thickness and
radius play a crucial role in the maximal stress σmax applied to the membrane, which may
cause a fracture if it exceeds the membrane tensile strength. For a circular membrane
clamped on the border, the approximation of maximal stress σmax can be derived from the
following relationship [78]:

σmax =
3
4
·∆P·

(
rm

tm

)2
(8)

where ∆P denotes the pressure applied to the membrane surface. Crystallographic orienta-
tion, shape and thickness of the monocrystalline silicon substrate have a strong impact on
the membrane tensile strength [79–91]. However, to the best knowledge of the authors, few
studies on the maximal tensile strength for thin film circular silicon membranes have been
reported to date. The value of tensile strength for the silicon membrane was fixed here to
300 MPa, that is, close to the smallest tensile strength reported in scientific literature [90].
Consequently, the membrane dimensions were selected carefully in order to guarantee
that the membrane stress σmax was lower than the maximal tensile stress of 300 MPa for
applied pressure ∆P of 1 bar in standard conditions (that is, for a cavity in vacuum and the
atmospheric pressure applied to the structure). It can be derived from Equation (8) that the
following requirement must be fulfilled:

rm

tm
< 63·25 (9)

Moreover, the high voltage U (in V) involved during the anodic bonding process
creates the pressure Pe (in Pa) which causes the deflection of the membrane in the direction
of the cavity 1. The pressure is given by [47]:

Pe =
1
2
·ε0·
(

U
hcav−glass

)2

(10)
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where ε0 is the permittivity of the vacuum (=8.85 × 10−12 F·m−1). The pressure Pe will
provide a requirement on the minimum value of the cavity height hcav−glass for avoiding
undesirable bonding between the silicon membrane and the bottom of the cavity. To
prevent such necking, the deflection We due to the electrostatic pressure must be smaller
than 2

3 hcav−glass. Finally, the maximum deflection of the membrane W must be smaller than
the height of the glass cavity hcav−glass at the initial state for which no irradiation occurs.
Therefore, the following requirement must be fulfilled:

rm
4

tm3 <
hcav−glass

∆P
·64
12
· E
1− ν2 (11)

5.2. Requirements for the Cavities Dimensions

According to (6), the ratio VPO/Vg has a strong impact on the pressure Pg due to
radiolysis: the higher the ratio, the larger the pressure inside the structure. In order to
ensure a large pressure Pg, we needed to use a high quantity of polymer (i.e., large volume
VPO) and a low volume containing the gas (i.e., low volume Vgas or equivalently, low Vcav).
As can be observed from Figure 3, VPO and Vcav depend on the dimensions of cavities and
the polymer. Since the polymer is placed inside the silicon cavity, a high ratio VPO/Vg
requires a small contribution of the cavity etched in the glass substrate with respect to the
total cavity volume (i.e., Vcav−glass < 10%·Vcav). Assuming a negligible impact of Vcav1−glass
and Vch compared with that of the volume Vcav2−glass, high ratios of VPO/Vg are achieved
when the following requirement is fulfilled:

hcav−glass <
1
9
·hcav−Si·

(
φcav−Si

φcav2−glass

)2

(12)

A good trade-off must be found between the dimensions of the membranes and
cavities in order to achieve the reliability of the technological process, the high sensitivity
of the membrane to applied pressure and sufficient mechanical robustness of the device.

5.3. Design Selection

The dimensions of cavities are reported in Figure 4 and Tables 1 and 2. The diameter of
the membrane cavity was set to 550 µm, while the membrane thickness tm was 5 µm and the
cavity height hcav−glass 10 µm. Since the silicon membrane deflects in the crystallographic
direction <001>, the Poisson coefficient ν and the Young’s modulus E of this membrane
were set to 0.28 and 130 GPa, respectively. Following (7) the membrane sensitivity ∆Wg/Pg
to applied pressure was found to be of 0.61 µm per 100 mbar. Furthermore, setting
hcav−glass at 10 µm avoided the risk of unwanted bonding between the membrane and
the cavity during the sealing process for applied voltages ranging from 0.5 kV to 1 kV,
that is, for the voltage range used in [48] to obtain strong interface bonding. As sketched
in Figure 4a,b, PE cavities in silicon and glass are designed with respective diameters of
5 and 6 mm. Since it is placed inside the silicon cavity, the PE sample must have a volume
smaller than the volume of the cavity. Moreover, particular attention must be paid on
the choice of the PE film thickness tPE and height hcav−Si of the silicon cavity in order to
maximize the volume ratio VPO/Vg and, consequently, to maximize the applied pressure
Pg (see [6]). Two thicknesses tPE of HDPE films were selected for the analysis: tPE = 10 µm
(commercially available [74]) and tPE = 200 µm (commercially available [92]). The impact of
these thicknesses on the transducer performance was investigated when the cavities were
filled with HDPE films. The corresponding ratio VPO/Vg is reported in Table 2 for a gap of
50 µm between the PE sample and the top of the silicon cavity. The lateral dimensions are
given in Figure 4 and Table 1. For a HDPE sample having a disk shape and diameter of
3.5 mm, VPO/Vg was 7.02% for tPE = 10 µm and of 58.7% for tPE = 200 µm. The resulting
membrane sensitivity to applied pressure for tPE = 200 µm was eight times larger than
that obtained for tPE = 10 µm. Consequently, the 200 µm thick PE sample was chosen for
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the fabrication of the MEMS transducer. Moreover, the PE filling of the cavity had to be
analysed in order to understand polymer behaviour during the anodic bonding process,
and to determine the most appropriate height of the cavity.
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Figure 4. Layouts of the structure on (a) the glass substrate and (b) the silicon substrate; (c) superposition of the two layouts.

Table 1. Height (in µm), diameter (in µm) and volume (in mm3) of cavities patterned on the glass substrate (see Figure 4).
Wch (in µm) and Lch (in µm) denote, respectively, the width and length of the channel between the two cavities.

hcav-glass φcav1-glass Lch Wch φcav2-glass Vcav1-glass Vch Vcav2-glass Vcav-glass

10 550 2000 50 6000 2.38 × 10−3 1 × 10−3 2.83 × 10−1 2.86 × 10−1

Table 2. Height (in µm), diameter (in µm) and volume (in mm3) of the cavity patterned on the silicon
substrate, and the ratio VPO/Vg ratios for HDPE samples of 3.5 mm diameter with two different
thicknesses tPE of 10 µm and 200 µm.

φcav-Si tPE hcav-Si VPO Vcav-Si Vg VPO/Vg

5000
10 60 9.62 × 10−2 1.18 1.37 7.02%

200 250 1.92 4.91 3.27 58.7%

6. Manufacturing Process of the Transducer
6.1. Fabrication Process of the Microelectromechanical Transducer

Two substrates were required for the fabrication of the transducer, as sketched in
Figure 3. Borosilicate glass 500 µm thick (B33 from Schott [63]) was used for the resonator
substrate and was manufactured as sketched in Figure 5a (see details in [9]). After cleaning
for 2 min in a bath in Piranha, and exposure to oxygen plasma for 10 min, the cavities and
the channel shown in Figure 3 were fabricated. A 100 nm thick layer of chromium (Cr) and
gold (Au) was first deposited on the surface through PVD deposition, and was patterned
by a photolithography step and wet etching. The Cr/Au layer served as the hard mask
for the wet etching process of the glass in a HF solution concentrated at 12.5%. Finally,
both photoresist and metal layers were removed. The substrate dedicated to the membrane
substrate fabrication was processed in parallel on a silicon-to-insulator (SOI) wafer from
BT electronics [62], as illustrated in Figure 5b. The SOI substrate was composed of the
5 µm thick top (100) silicon layer and the 2 µm thick SiO2 layer above the 400 µm thick
silicon bulk. Such a substrate is preferred to the standard Si wafer for better technological
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reliability of the membrane thickness. Any lack of control on this thickness would actually
lead to unpredictable membrane sensitivity to applied pressure. First, the membrane
substrate was cleaned in a bath with a 5% HF concentrated solution in order to remove the
native oxide of the silicon. As the process was applied to the two substrate sides, alignment
marks were necessary and were first patterned on the top face through photolithography
and reactive ion etching (RIE). Next, photolithography and deep reactive ion etching (DRIE)
under SF6 plasma were performed on the silicon bulk part until reaching the oxide layer,
which acted as the etch stop layer. This layer was then removed using a wet etching process
with a 5% HF concentrated solution. After the photoresist was removed through oxygen
plasma, and after cleaning of the substrate as described above, the front side was processed
using the photolithography step and DRIE under SF6 plasma to pattern the polymer cavity.
After processing all the substrates, the anodic bonding was finally launched (see Figure 5c).
A cleaning step of these substrates was first required. It consisted of a succession of different
baths in order to remove remaining organic particles, native oxides and residues due to
the different etching performed on the SOI and glass bonding surfaces: (i) the Piranha
solution; (ii) a 5% HF concentrated solution; (iii) ammonia solution; (iv) deionised (DI)
water rinsing and finally (v) megasonic bath immersion (frequency ranging from between
1 MHz to 100 MHz). The same process was applied to the glass substrate excluding the HF
solution bath.
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Figure 5. Steps of the fabrication process for manufacturing of (a) the glass substrate, (b) the silicon
substrate and (c) final anodic bonding.
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After the manufacturing process, the PE sample was introduced inside the silicon
cavity etched from the top side and the different substrates were placed inside the wafer
bonder. Following [48,53], the strong bonding interface was achieved here with a 400 ◦C
temperature and a 1kV applied voltage. However, these conditions had to ensure the
airtightness of the cavity without damaging the polymer. Therefore, the behaviour be-
fore irradiation of the polymer at high temperature and under a high applied voltage
wase analysed.

6.2. Polyethylene Manufacturing

The technological processing of the PE thin film was required before filling the cavity.
It consisted of several steps illustrated in Figure 6 and detailed below.
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(i) A cleaning (step 1) using two different solvents (acetone and ethanol) in order to
remove eventual organic pollution.

(ii) Thermo-compression annealing in a vacuum by mechanically applying a pressure of
4 bar (step 2) to limit any structural deformation due to the high temperature of the
anodic bonding.

(iii) Shaping of the PE film (step 3) into a disk of 3.5 mm diameter by using a precise die
cutter for good reproducibility of the polymer volume and mass, and the deposition
of the polymer inside the cavity (step 4).

(iv) The second annealing (step 5) was performed in a vacuum during the anodic bonding
process for at least 30 min and before applying high voltage (step 6). During annealing,
the glass and silicon substrates were separated to release the eventual polluting gas
inside the polymer and the cavity.

The temperatures of annealing in steps 2 and 5 must were chosen to prevent the
thermal degradation of the polymer, which could impact radiolysis and, consequently,
could change the gas emission yield factor Ggas of the PE. The appropriate temperature
range was derived from the thermo-gravimetric analysis (TGA, see Section 7.1.1), which
consisted of measuring the degradation of the polymer as the temperature increases.
Structural studies also needed to be performed in order to estimate the impact of the
second annealing process (step 5) and applied voltage (step 6) on the PE sample inside the
cavity. Finally, the quantitative and qualitative gas composition was measured through
high-resolution gas mass spectrometry of the polymer after γ-irradiation at different
dose levels.
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7. Physical Characterization of the Polyethylene
7.1. Characterisation of the Polymer before Irradiation
7.1.1. Thermo-Gravimetric Analysis

This analysis (performed in ELEMCA laboratory, Toulouse, France) consists of mea-
suring the mass variation of the PE material with the temperature and annealing duration.
It allows the determination of the temperature at which the polymer degradation occurs,
that is, the temperature at which the PE starts losing mass. The study was performed on
a 15.2 mg HDPE sample under a nitrogen environment with a temperature increase of
+5 ◦C·min−1 between 25 ◦C and 500 ◦C. The mass variation of this polymer is shown in
Figure 7. A mass reduction of 5% (corresponding to a mass of 14.4 mg) occurred at 438 ◦C.
From these points, a fast degradation occurred when the temperature increased. This result
is in good agreement with those reported in the literature [21,66–68], showing a thermal
stability up to 250–290 ◦C in air and about 400 ◦C in an inert atmosphere (vacuum, nitrogen
or argon). The temperature used during the annealing processes was set here to 350 ◦C and
constituted a good trade-off between PE preservation and bonding interface strength. At
this temperature, no mass loss was observed in inert atmosphere. Besides, the temperature
of the first annealing process (step 2) was set at 200 ◦C and corresponded to the highest
temperature available from the used thermo-compression tool, but it remained significantly
lower than the temperature degradation of PE under air.
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7.1.2. Microstructural Analysis
7.1.2.1. PE Disk Thickness before the First Thermo-Compression Annealing

In order to analyse the uniformity of the PE thickness, tomographic measurement
on three different HDPE disks was performed. Figure 8a displays thickness mapping of
the disks surface, from which was derived the number of pixels for the thickness to take
a predefined threshold (Figure 8b). The mean value of the thickness was then calculated
for each disk as reported in Table 3. The global thickness average was 0.201 mm for
HDPE disks, with a standard deviation of 4.2%. These results showed good technological
reproducibility of the PE thickness.

Table 3. Mean thickness values for three different HDPE disks.

Polymer Mean Thickness
Value (mm)

Mean Total Value
(mm)

Standard Deviation
(%)

HDPE #1 0.2108
0.201 4.2%HDPE #2 0.1954

HDPE #3 0.1973
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7.1.2.2. Structural Modification after Annealing in the Wafer Bonder

Morphological deformations of HDPE disks were investigated at different technologi-
cal steps of the fabrication process. As shown in Figure 9a, HDPE samples were placed at
the centre of the cavities etched in silicon, as shown in Figure 5b. The gap length (denoted
by Dg) between the top of the HDPE sample and the top of the cavities were measured
using an optical profilometer and cavity microsections (Figure 9b). These microsections
were performed after cleavage of the substrate near the cavity edges. The structure was
then coated with a resist to keep its integrity during final polishing, until reaching the
cavity centre. The cavities patterned in silicon (diameter of 5 mm and height of 290 µm)
were manufactured according to the process described in Section 6.1 on a standard silicon
substrate. All PE disks used in this study were processed by following the technological
steps detailed in Section 6.2 and are illustrated in Figure 6. Figure 10 shows microsection
photographs after annealing at 350 ◦C in a vacuum (about 10−4 mbar) for 30 min in the
wafer bonder. This step is equivalent to step 5 described in Section 6.2. Different param-
eters measured by using optical profilometer are reported in Table 4: (i) the gap length
Dg; (ii) the maximum thickness HMAX of the HDPE samples; (iii) the maximum thickness
variation ∆HMAX of PE sample before and after the annealing and (iv) the diameter ΦPE
after annealing estimated from the microsection photographs in Figure 10. These pictures
show modification of the disk shape from a flat into a convex profile. Furthermore, the
disk diameter was not significantly modified by the annealing process (maximum diameter
variation of 9%). The thickness (about 250 µm) of the HDPE samples was significantly
modified during the process (+122% of the maximum thickness HMAX) and, as reported
in Table 4, exceeded the cavity height for all samples. This thickness modification may be
an issue for PE sealing and, consequently, an appropriate encapsulation technique should
be applied in future experiments to insert the polymer inside the cavity. The next section
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presents the properties of the different HDPE samples after annealing and application of
the voltage during the bonding between silicon and glass substrates.
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Figure 10. (a) Photograph of PE samples (in black) placed in the cavity etched in silicon after
annealing; (b) microsection photographs of a HDPE sample inside glass and silicon cavities.

Table 4. Gap length Dg between the top of the PE sample and the top of the cavity, and maximum
thickness HMAX of PE sample inside the cavity after the annealing process. ∆HMAX is the maximum
thickness variation of the PE sample before and after annealing, while ΦPE is the diameter of the PE
sample after annealing.

Polymer ΦPE (mm) hcav-Si (µm) HMAX (µm) Dg (µm) ∆HMAX (µm)

HDPE#1 3.5 287 470 183 269

HDPE#2 3.8 293 424 131 223

7.1.2.3. Microstructural Study after the Application of the Voltage

Other cavities with 5 mm diameter and 320 µm height were fabricated on a standard
silicon substrate and filled with the HDPE samples processed as detailed in Section 6.2.
These samples were placed at the centre of the cavities. After annealing at 350 ◦C in
a vacuum (at a pressure of about 10−4 mbar) for almost 1 h in the wafer bonder, the
silicon substrate was bonded with the glass substrate applying a 600 V voltage at 350 ◦C
in a vacuum. A contact force of about 100 N was applied between the silicon and glass
substrates during voltage application. The cavities filled with PE before and after anodic
bonding are shown in Figure 11a,b, respectively. As expected, it appears from Figure 11b
and the microsection of the cavities shown in Figure 12 that all HDPE samples were present
and concentrated at the centre of the cavity without impacting the overall bonding. The
bonding interface presented a dark grey aspect without any colour fringes, as observed
in [53]. This reflects good quality of the sealing. Although the thickness of PE samples was
higher than the height of cavity after annealing (see Section 7.1.2.2), these results validated
the proposed approach for the polymer encapsulation and the technological process for
the fabrication of the MEMS transducer.
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7.2. Irradiation of the PE Samples

To determine the gas and hydrogen emission yield factors Ggas and GH2 of HDPE
samples, high-resolution gas mass spectrometry was performed on each sample after
irradiation. This technique allows the qualitative and quantitative measurement of the
gas composition released during polymer radiolysis. The irradiations were performed
using a Gammacell irradiator using 137Cs as the γ-ray source (energy of 6671.7 keV) in the
CEA Saclay laboratory (Saclay, France). The PE sample was first cleaned and annealed
at high temperature (below 350 ◦C) in a vacuum to remove eventual pollution inside the
polymer. A sample of known mass was placed inside a 10 cm3 glass vial closed by a valve.
The tightness was guaranteed by using an O-ring. Before closing the valve, three cycles
of pumping in a vacuum and in helium (He) filling the vial were performed in order to
remove the presence of any residual air. After these steps, the sample was placed inside the
irradiator. The radiolysis of the polymer was performed inside the vial at room temperature
and in a He inert atmosphere.

7.3. Identification of the Gas Released by the Polymer

After irradiation, the vial was connected to a high-resolution gas mass spectrometer.
When the vacuum was achieved inside the measurement apparatus, the valve of the
vial was opened and the gas was injected in the mass spectrometer [33], allowing the
determination of the gas composition in the irradiated vial. Since the irradiation was
performed in the He inert atmosphere, the quantity of helium was measured (helium
occupied more than 99% of the total gas at the end of the experiment) and allowed the
determination of the final pressure inside the vial, after irradiation. As described in the
next section, the vial volume, which contained the polymer sample, was measured for
determining the total gas and hydrogen emission yield factors in the He inert atmosphere.
For the sake of illustration, Figure 13 displays the gas composition of a 49.7 mg HDPE
sample placed inside a vial (volume of 9.84 cm−3), which had been irradiated at a dose
of 24.03 kGy using a dose rate of 0.27 kGy·h−1. It shows the presence of H2, hydrocarbon
gas (such as CH4, C2H4 and C2H6), but also of dinitrogen N2 (41.6%), oxygen O2 (0.6%)
and water vapour H2O (2%). These gases were produced by the irradiated polymer or by
the traces of residual air remaining in the vial after its conditioning. The lower oxygen
quantity compared with the dinitrogen quantity can be explained by oxygen consumption
of the polymer during radiolysis, which led to the presence of CO (6.2%) and CO2 (7.4%).
It may also have originated from a gas leak occurring during gas analysis with the mass
spectrometer. To check the absence of reaction of the surrounding gas during irradiation,
a glass container with gas but without polymer was irradiated with an identical dose
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rate and dose level. As expected (see Figure 14b), the concentration of gas constituents
was almost the same before and after the irradiation. Both the eventual presence of H2 in
a quantity lower than the threshold detection, and the absence of CH4, C2H4 and C2H6,
confirmed that dihydrogen and hydrocarbon gases originated from polymer radiolysis. If
these gases are removed from the PE composition histogram (see Figure 14a), the dinitrogen
concentration is found to be very close to the one obtained from the empty test vial and
PE samples. Furthermore, the ratio between dinitrogen and dioxygen concentrations
derived from the empty vial histogram (Figure 14b) was about 2.5 (with and without
irradiation) and was found to be lower than the ratio (=3.7, see Table 5) measured in
standard atmosphere. Besides, the water vapour, dinitrogen and argon concentrations
were almost the same for the HDPE analysis and the reference test case. Consequently,
these gases did not originate from any leakage during vial conditioning or from polymer
outgassing, but were released during experimental gas mass analysis. Moreover, the
oxygen consumption by the polymer and its conversion into carbon monoxide and dioxide
during irradiation were confirmed by comparing their respective concentrations between
the irradiated HDPE (case A) and empty vial (case B). By taking into account the presence
of CO, CO2 and O2, a total volume proportion of about 23.5% in case A was obtained,
which was close to the proportion of O2 (27.5%) in case B. Consequently, the analysis of the
gas composition due to PE radiolysis required removing the contribution of the following
gases: He (surrounding atmosphere during the irradiation), O2, CO, CO2, Ar, N2 and H2O.
The result of this analysis is reported in Figure 15. A hydrogen concentration of about
89.8% and a proportion of 5.1% of hydrocarbon gases were finally obtained, which was in
good agreement with state-of-the-art results reported in Section 3.2. From these measured
proportions, the gas emission yield factor of HDPE samples is derived in the next section.
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Figure 13. Gas composition of the HDPE sample exposed at a dose level of 24.03 kGy (helium is
removed from the spectrogram). The data in the ordinate (in %) represent the volume proportion of
each detected gas. NI represents the species that are not identified. Pf−tot denotes the pressure after
irradiation inside the vial, while Pf /He is the final pressure without the helium contribution.

Table 5. Typical gas composition in ambient environment.

N2 O2 Ar H2O

78.1% 21.0% 0.9% Between 0.5% and 5% *
* According to the humidity level.
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mined and are reported in Table 6. As expected (see Section 3.2), the major contribution 
to gas generation in the radiolysis process was that of hydrogen, with a contribution of 
90%. In Table 7 are reported some hydrogen emission yield factors for various film 
thicknesses and two dose levels (12.15 kGy and 24.03 kGy). This factor appeared not to be 
significantly dependent on the film thickness and dose level, at least for doses lower than 
24.03 kGy. The maximum duration time ∆𝑡ெ஺௑ (in s) necessary for hydrogen to diffuse 
outside of the polymer can be estimated from the Fick’s law [76] as follows: ∆𝑡ெ஺௑ =  ℎு஽௉ாଶ6. 𝐷ுమு஽௉ா (14)

where ℎு஽௉ா  (in µm) is the film thickness and 𝐷ுమு஽௉ா (in µm2·s−1) denotes the hydrogen 
diffusion coefficient in the polymer. At a film thickness ranging from 10 µm to 1000 µm 
and a typical diffusion coefficient of 2.2 × 106 cm2·s−1 [76], ∆𝑡ெ஺௑ was between about 2 s 
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Sensors 2021, 21, x FOR PEER REVIEW 17 of 36 
 

 

  
(a) (b) 

Figure 14. (a) Gas composition after a 24.03 kGy dose exposure of a HDPE sample without the hydrogen contribution, 
and (b) gas composition of an empty test vial without polymer before and after an irradiation of 24.03 kGy. The helium 
contribution is not reported. In subfigure a, the volume proportions of dihydrogen and hydrocarbon molecules are not 
given. The data in the ordinate (in %) represent the volume proportion of each detected gases. 

 
Figure 15. Gas composition after irradiation of a 24.03 kGy HDPE sample. Proportions of 𝐻𝑒, 𝑂ଶ, 𝐶𝑂, 𝐶𝑂ଶ, 𝐴𝑟 and 𝑁ଶ are not reported. The data in the ordinate (in %) represents the volume pro-
portion of each detected gases. 

The emission yield factor 𝐺௫ of gas constituent 𝑥 can be estimated as follows: 𝐺௫ =  %௫௩௢௟. 𝑃௙. 𝑉௩௜௔௟𝑚௉ை. 𝑅. 𝑇. 𝐷  (13)

where 𝑉௩௜௔௟ is the free volume of the vial (in m3), 𝑃௙ denotes the pressure inside the vial 
after irradiation (in Pa), %௫௩௢௟ designates the volume fraction of gas constituent 𝑥, and 𝐷 
the dose level (in Gy). From Figures 13 and 15, the emission yield factors were deter-
mined and are reported in Table 6. As expected (see Section 3.2), the major contribution 
to gas generation in the radiolysis process was that of hydrogen, with a contribution of 
90%. In Table 7 are reported some hydrogen emission yield factors for various film 
thicknesses and two dose levels (12.15 kGy and 24.03 kGy). This factor appeared not to be 
significantly dependent on the film thickness and dose level, at least for doses lower than 
24.03 kGy. The maximum duration time ∆𝑡ெ஺௑ (in s) necessary for hydrogen to diffuse 
outside of the polymer can be estimated from the Fick’s law [76] as follows: ∆𝑡ெ஺௑ =  ℎு஽௉ாଶ6. 𝐷ுమு஽௉ா (14)

where ℎு஽௉ா  (in µm) is the film thickness and 𝐷ுమு஽௉ா (in µm2·s−1) denotes the hydrogen 
diffusion coefficient in the polymer. At a film thickness ranging from 10 µm to 1000 µm 
and a typical diffusion coefficient of 2.2 × 106 cm2·s−1 [76], ∆𝑡ெ஺௑ was between about 2 s 

Figure 15. Gas composition after irradiation of a 24.03 kGy HDPE sample. Proportions of He, O2, CO,
CO2, Ar and N2 are not reported. The data in the ordinate (in %) represents the volume proportion
of each detected gases.

The emission yield factor Gx of gas constituent x can be estimated as follows:

Gx =
%vol

x ·Pf ·Vvial

mPO·R·T·D
(13)

where Vvial is the free volume of the vial (in m3), Pf denotes the pressure inside the vial
after irradiation (in Pa), %vol

x designates the volume fraction of gas constituent x, and D
the dose level (in Gy). From Figures 13 and 15, the emission yield factors were determined
and are reported in Table 6. As expected (see Section 3.2), the major contribution to gas
generation in the radiolysis process was that of hydrogen, with a contribution of 90%. In
Table 7 are reported some hydrogen emission yield factors for various film thicknesses and
two dose levels (12.15 kGy and 24.03 kGy). This factor appeared not to be significantly
dependent on the film thickness and dose level, at least for doses lower than 24.03 kGy.
The maximum duration time ∆tMAX (in s) necessary for hydrogen to diffuse outside of the
polymer can be estimated from the Fick’s law [76] as follows:

∆tMAX =
h2

HDPE
6DHDPE

H2

(14)
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where hHDPE (in µm) is the film thickness and DHDPE
H2

(in µm2·s−1) denotes the hydrogen
diffusion coefficient in the polymer. At a film thickness ranging from 10 µm to 1000 µm
and a typical diffusion coefficient of 2.2 × 106 cm2·s−1 [76], ∆tMAX was between about 2 s
and 13 min, that is, a duration shorter than the time between the end of the irradiation
and beginning of the gas composition analysis. This confirms that there was no residual
gas trapped in the HDPE film during our experiment and, consequently, the total quantity
of hydrogen produced during the radiolysis was accurately estimated. From (13), the
measurement uncertainty on gas emission yield factor Gx can be determined as follows:

∆Gx

Gx
=

√√√√(∆%vol
x

%vol
x

)2

+

(
∆Pf

Pf

)2

+

(
∆Vvial
Vvial

)2
+

(
∆mPE
mPE

)2
+

(
∆T
T

)2
+

(
∆D
D

)2
(15)

where ∆X (for X = %vol
x , Pf , Vvial , mPE, T, D) denotes the absolute standard deviation on

X values (see Table 8). The measurement uncertainty on the emission yield factor of each
gas constituent is ±10.4%.

Table 6. Emission yield factors (in 10−7 mol·J−1) of each gas constituent after irradiation of an HDPE
sample of 49.7 mg. The factor Ggas (in 10−7 mol·J−1) is the total emission yield factor and was calcu-
lated from summation of the emission yield factors of all gas constituents. DL stands for “quantity
smaller than the Detection Limit of the apparatus” and NI stands for “Not Identified species”.

PE Material GH2 GCH4 GC2H4 GC2H6 NI Ggas

HDPE (24.03 kGy irradiation) 4.0 <DL 0.1 0.1 0.2 4.4

Table 7. Hydrogen emission yield factor (in 10−7 mol·J−1) for different HDPE samples irradiated at
two different dose levels and for various film thicknesses.

Thickness and Sample
Material 12.15 kGy 24.03 kGy

HDPE 10 µm thick 4.1 4.3
HDPE 200 µm thick 3.9 4.0
HDPE 1 mm thick 3.7 4.1

Table 8. Measurement uncertainties on the gas emission yield factors.

X %vol
x Pf [mbar] Vamp [cm3] mPE [mg] T [K] D [kGy] Gx[mol·J−1]

∆X 1 0.27 0.1 1

∆X/X 1% 0.14% 2.7% 0.22% 0.33% 10% 10.4%

8. Theoretical Estimations and Measurement Uncertainties
8.1. Validation of the Anodic Bonding Conditions and the Selected Dimensions

Analysis of the PE material exposed as described in the previous sections allowed
determination of the anodic bonding conditions, that is, the temperature of 350 ◦C under
vacuum, the applied voltage of 600 V and the contact force of about 100 N between the glass
and silicon substrates. While keeping polymer integrity, the assembling step performed
under vacuum would also prevent any effect of the silicon membrane roughness on the
deflection measurement. According to (7), bonding under a vacuum condition provides
larger membrane displacement than bonding under atmospheric pressure: the pressure
gradient is actually about 1bar if the anodic bonding is performed in vacuum, while it is
only of a few mbars when bonding is done under atmospheric pressure. Furthermore, the
selected dimensions of the structure (Tables 1 and 2) combined with a pressure gradient in
the vacuum anodic bonding avoided the two following issues.
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(i) The membrane breaking, as the maximal stress (about 240 MPa according to (8))
was smaller than the membrane tensile strength (300 MPa).

(ii) Membrane collapse, as the maximum membrane deflection (6.83 µm) was lower
than the height (10 µm) of the cavity. By assuming a flat displacement of the membrane,
this corresponds to a volume variation of around 4.60 × 10−4 mm3 which can be neglected
with respect to a glass cavity volume Vcav−glass of 2.86 × 10−1 mm3 (see Table 1).

The final dimensions of the dosimeters are reported in Figure 16, which shows the PE
cavity (height of 290 µm) etched in silicon substrate.
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8.2. Measurement Uncertainty on the Pressure Generated by the Radiolysis

From (2), the following measurement uncertainty on the pressure Pg generated by the
radiolysis can be determined:

∆Pg

Pg
=

√[
∆T
T

]2
+

[
∆Ggas

Ggas

]2
+

[
∆mPE
mPE

]2
+

[
∆Vg

Vg

]2
+

[
∆D
D

]2
(16)

Section 8.2.1 is devoted to the detailed calculation of ∆mPE
mPE

, ∆Vg
Vg

is determined in

Section 8.2.2, and finally, the measurement uncertainty ∆Pg
Pg

on the pressure Pg generated
by the radiolysis is derived in Section 8.2.3.

8.2.1. Estimation of the Mass Measurement Uncertainty ∆mPE
mPE

Mass uncertainty was first estimated from the measurement of several PE samples.
These samples were shaped from a HDPE film and processed by following the steps 1 to
3 detailed in Section 6.2. The mass measurement was performed using a microbalance
Mettler Toledo XSE [93] with a precision of ±0.01 mg. From 20 mass measurement results
of the same sample, it was derived that the measurement uncertainty of mass was ±2.3%
(see Table 9). Next, the variability analysis on the shaping process of PE disk samples was
performed by measuring the mass of 35 HDPE disk samples. Both average and standard
(absolute and relative) deviations are reported in Table 10. The average mass of a processed
disk sample was 1.78 mg with a mass measurement uncertainty ∆mPE

mPE
of 5.1%.
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Table 9. Average value and standard deviations of 20 HDPE mass measurement results obtained by
using a microbalance and performed on the same sample (reproducibility analysis).

Average Value (mg) Absolute Standard Deviation
(∆m, in mg)

Relative Standard Deviation
(∆m/m, in %)

1.77 0.04 2.3

Table 10. Average value and standard deviations of 35 mass measurement results obtained by using
a microbalance (variability analysis).

Average Value (mg) Absolute Standard Deviation
(∆m, in mg)

Relative Standard Deviation
(∆m/m, in %)

1.78 0.09 5.1

8.2.2. Estimation of the Uncertainty Measurement ∆Vg
Vg

The absolute uncertainty measurement of the volume Vg can be derived from (3) and (4).

∆Vg

Vg
=

√√√√[∆Vcav−glass

Vcav−glass

]2

+

[
∆Vcav−Si
Vcav−Si

]2
+

[
∆VPE
VPE

]2
(17)

In (17), ∆VPE was determined from the results reported in Section 8.2.1. The analysis
of the technological process of glass and silicon substrates was reported for estimating
∆Vcav−glass and ∆Vcav−Si, and finally the absolute uncertainty measurement of the volume
Vg was derived from (17).

From the definition of mass density, one can establish that the uncertainty ∆VPE
VPE

on the
PE volume is given by:

∆VPE
VPE

=
∆mPE
mPE

(18)

For the 3.5 mm diameter of the disk sample, and using the average thickness of the
disk determined in Section 8.2.1 and the mass uncertainty reported in Table 10, the value
was ∆VPE = 0.098 mm3. Moreover, the photolithography process (see step 3 in Figure 5a
and step 9 in Figure 5b) included photoresist coating, exposition and development, which
generated measurement uncertainty on the cavity dimensions due to apparatus inaccura-
cies and human operator interventions during the technological process. The maximum
absolute uncertainty ∆zmax on each cavity dimension due to the photolithography process
performed on glass and SOI substrates was 2 µm. As shown in Figure 4b and detailed
in Section 5.3, the cavity fabricated on the glass substrate was composed of three parts:
two circular cavities (volumes Vcav1−glass and Vcav2−glass) linked by a channel (volume
Vch). From Table 1, it can be observed that Vch and Vcav1−glass represented only 1.2% of the

total volume Vcav−glass. Consequently, the volume uncertainty
∆Vcav−glass
Vcav−glass

in (17) is given
as follows:

∆Vcav−glass

Vcav−glass
∼=

∆Vcav2−glass

Vcav2−glass
=

√√√√4.

[
∆Φcav2−glass

Φcav2−glass

]2

+

[
∆hcav−glass

hcav−glass

]2

(19)

Therefore, the estimation of
∆Vcav−glass
Vcav−glass

required the estimation of the variations in the
glass cavity diameter Φcav2−glass and of the depth etching in glass hcav−glass. As detailed
in Section 6.1, two wet etchings were performed on the glass substrate. Consequently,
over-etching may occur during the metal and glass etchings, which might impact on the
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final cavity dimensions. By taking into account the etching depth hetch, the undesirable
over-etching effect xetch can be estimated as follows [94]:

xetch
∼= 0.7hetch (20)

Photolithography adds the so-called over-etched diameter φover
cav2 to the cavity 2, which is

given by:

φover
cav2 = φth

cav2 +∆zmax + 2
(

xmetal + xglass

)
= φth

cav2 +∆zmax + 1.4
(

hmetal + hcav−glass

)
(21)

where xglass denotes the over-etching impact on the thickness (hcav−glass) of the glass sub-
strate, xmetal denotes the over-etching impact on the thickness (hmetal) of the metal layer, and
φth

cav2 designates the targeted (or theoretical) diameter of the cavity. The thickness hmetal of
the metal layer was approximately of 100 nm (see Section 6.1) and was negligible compared
with the etching depth (10 µm) performed on glass substrate. Therefore, Φcav2−glass

∼= φover
cav2

and ∆Φcav2−glass
∼= ∆φover

cav2. The absolute uncertainty ∆φover
cav2 is then given as follows:

∆φover
cav2 = ∆zmax + 1.4 ∆hcav−glass (22)

In order to evaluate the maximum uncertainty ∆hcav−glass, a reproducibility study
was performed by measuring the depth etching hcav−glass of 64 different cavities using a
mechanical profilometer. The standard deviation, average and relative uncertainties are
reported in Table 11. They were determined using four glass substrates with 16 cavities
with a targeted height of 9 µm (this height was obtained from a 25 min bath in a 12.5%
concentrated HF solution). The reproducibility of the glass etching led to a variation of
1.0% on the cavity height. It was then possible to determine the relative uncertainty on the
cavity volume etched into the glass substrate.

Table 11. Average and standard deviation of measured height of cavities etched into the glass substrate.

# Substrate 1 2 3 4 Overall Average

ĥcav-glass [µm] 8.890 8.952 8.730 8.870 8.859
∆hcav-glass [µm] 0.090 0.079 0.097 0.089 0.089

∆hcav-glass/hcav-glass 1.0%

Table 12 indicates that this uncertainty was 0.9% for a glass cavity height hcav−glass of

10 µm. We then proceeded to estimate ∆Vcav−Si
Vcav−Si

in (17). As it can be observed from Figure 4a,
only the cavity of volume Vcav−Si had an impact on the volume occupied by the gas. The
uncertainty ∆Vcav−Si

Vcav−Si
is given by:

∆Vcav−Si
Vcav−Si

=

√
4.
[

∆Φcav−Si
Φcav−Si

]2
+

[
∆hcav−Si
hcav−Si

]2
(23)

Table 12. Relative and absolute uncertainties on the cavity volume performed on the glass substrate.

hcav-glass
[µm] φover

cav2[µm] ∆φover
cav2[µm]

Vcav2-glass

[mm3]
∆Vcav2-glass

[mm3]
∆Vcav2−glass
Vcav2−glass

[%]

10 6016.21 2.13 2.827 × 10−1 2.530 × 10−3 0.9

Since the cavities were etched into the silicon substrate from DRIE (see Section 6.1),
there was no over-etching effect during the technological process. Only photolithography
could generate inaccuracy in the diameter Φcav−Si of the PE cavity given by:

φcav−Si = φth
cav−Si ± ∆zmax = φth

cav−Si ± ∆φcav−Si (24)
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where φth
cav−Si designates the targeted (or theoretical) diameter of the cavity and where

∆φcav−Si denotes the uncertainty of the cavity diameter fabricated in the silicon. Following
the above-described method, the technological reproducibility of the DRIE etching was
analysed. The height measurement of 19 silicon cavities with height close to 300 µm was
performed on four different silicon substrates. From Table 13 it can be determined that the
reproducibility of the DRIE Si etching provided an uncertainty of 0.7% on the cavity height.
Both relative and absolute uncertainties on the volume Vcav−Si were finally calculated and
are reported in Table 14.

Table 13. Average and standard deviation of measured height of cavities etched into the silicon substrate.

# Substrate 1 2 3 4 Overall Average

ĥcav-Si [µm] 290.50 320.22 310.80 304.60 304.28
∆hcav-Si [µm] 1.29 2.84 2.64 1.34 2.02

∆hcav-Si/hcav-Si 0.7%

Table 14. Relative and absolute uncertainties on the cavity volume performed on the silicon substrate.

hcav-Si [µm] φth
cav−Si[µm] ∆φcav−Si[µm] Vcav-Si

[mm3]
∆Vcav-Si
[mm3]

∆Vcav−Si
Vcav−Si

[%]

290 5000 2 5.694 3.986 × 10−2 0.7

From (17) and uncertainties reported in Tables 12 and 14, both absolute uncertainty
∆Vg and relative uncertainty ∆Vg

Vg
of the volume occupied by the gas in the dosimeter could

finally be estimated (see Table 15). One finds ∆Vg
Vg

= 5.3 %.

Table 15. Relative and absolute uncertainties on the sealed cavity volume Vg.

Vg [mm3] ∆Vg [mm3] ∆Vg
Vg

[%]

4.044 0.214 5.3

8.2.3. Measurement Uncertainty ∆Pg
Pg

on the Pressure Pg Generated by Radiolysis

Table 16 reports the relative uncertainty ∆Pg
Pg

on the pressure Pg generated during the

radiolysis derived from (16) and from Section 8.2.1 (calculation of ∆mPE
mPE

) and Section 8.2.2

(calculation of ∆Vg
Vg

). The pressure uncertainty ∆Pg
Pg

was 16.2%.

Table 16. Relative uncertainties ∆X/X on the parameter X appearing in (16).

X Ggas mPE Vg T D Pg

∆X/X 10.4% 5.1% 5.3% 0.3% 10.0% 16.2%

8.3. Theoretical Estimation of the Membrane Deflection

Table 17 reports the pressure Pg obtained from (2). The gas emission yield factor Ggas
was set to 4.4 × 10−7 J·mol−1 (see Table 6) and the temperature T to 300 K. In this table, the
membrane deflection ∆Wg (∆Wg = 0 when there is no irradiation) is calculated from (7)
and a membrane thickness tm of 6.64 µm. This value corresponds to the average of several
thickness measurements performed by using focused ion beam (FIB) sections on dummy
cells (see Figure 17).
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Table 17. Theoretical determination of the pressure Pg generated by polymer radiolysis during
nuclear irradiation and membrane deflection ∆Wg for five different dose levels. ∆Pg denotes the
absolute uncertainty on pressure Pg.

Dose Level [kGy] Pg [mbar] ∆Pg [mbar] ∆Wg [µm]

1 4.92 0.80 0.01

20 98.44 15.95 0.29

40 196.88 31.89 0.57

60 295.32 47.84 0.86

80 393.76 63.79 1.15
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Figure 17. SEM micrograph of the cavity membrane and FIB micrograph showing the membrane
cross section (in inset i). tm denotes the thickness of the silicon membrane.

9. Experimental Validation
9.1. Measurement Setup

As mentioned in Section 4.1, the quantity of gas produced during the polymer radiol-
ysis inside the sealed cavity can be derived from the maximum deflection amplitude of
the silicon membrane. For experimental validation purpose, this amplitude was measured
from an interferometric profilometer, which provided a contactless scanning of the mem-
brane surface. Data processing of the surface scanning allowed retrieval of the maximum
deflection amplitude at the centre of the membrane with a measurement uncertainty of
±0.05 µm. On one hand, the deflection analysis allows verification of the long-term air-
tightness of the structure after irradiation (and for different dose levels) and validation of
the choice of dosimeter materials and the assembling technique. On the other hand, the
correlation between the pressure-dependent deflection amplitude with the gas emission
yield factor of the polymer demonstrates the feasibility of the proposed dosimeter topology.
Note that the deflection amplitude is negative when the membrane deflects in the direction
of the cavity. This occurs when the pressure Pin inside the sealed cavity is lower than the
pressure Pout outside the cavity (see Figure 18).
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9.2. Long-Term Stability of Airtightness

The airtightness of different MEMS transducer was investigated by measuring varia-
tion of the deflection over time. The gas quantity used for obtaining the results reported
in Figure 19 refers to the relative deflection normalized with respect to the first deflection
measurement at t = 0. This analysis was performed on four cells (denoted #1 to #4) filled
with polymer. All these measurements were made under an external room atmosphere.
The samples were irradiated four times at the dose level of around 20 kGy and a dose rate
of 0.36 kGy·h−1. The irradiation equipment was the same as described in Section 7.2. Each
irradiation step is indicated by a coloured arrow in Figure 19. The airtightness of the MEMS
transducers for a long period (at least 2 years and half) is sufficient for our application, as
the relative deflection is constant between two irradiations and does not increase over time.
Furthermore, we observed that the fabricated sensor can be used for measuring dose levels
up to 80 kGy. This result validates experimentally the sensor design. Other dummy cells
without polymer were also used to evaluate the integrity of the structure for high dose
levels up to few MGy. The irradiations were performed at LABRA (CEA Saclay, Saclay,
France) using 60Co (photon energy: 1.17 and 1.33 MeV) as the γ-ray source with a dose rate
of 1.7 kGy·h−1. Three dose levels were used on the dummy structures: 501.2 kGy (applied
on cell#5; #6; #10 and #11); 1104.1kGy (applied on cell#7) and 4032.0 kGy (applied on cell#8
and #9). From the graph presented in Figure 20, no deflection shift is observed for a long
period (at least 2 years and half), proving the compatibility of the selected materials and
assembling technique for the targeted application, and for a dose range up to at least 4 MGy.
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Figure 20. Airtightness variation over time of MEMS transducers (without polymer) subjected to
high dose levels. Each arrow indicates when the irradiation occurs (t = 0 refers to the time of the first
deflection measurement).
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9.3. Radiolysis Pressure Pg Extraction

The variation of the silicon membrane deflection of cell#1 to #4 at different dose levels
up to 80 kGy is displayed in Figure 21a–d. As a first approximation, the relationship
between deflection and dose level was linear (the coefficient of determination of the linear
regressions is at least of 0.93). For most membranes, the initial deflection before irradiation
(at 0 kGy) was similar with a mean value of −5.3 µm and a relative standard deviation of
2.2%, while the membrane sensitivities to dose level were close: the mean value of this
sensitivity was 14.65 nm·kGy−1 with a relative standard deviation of 11.1%. Moreover, the
deflection measured before the first irradiation confirmed that the cavity was in a vacuum.
Figure 22 displays the shift ∆Wg of the deflection shift before irradiation. This shift was
computed from Table 17 and for various dose levels. The measured deflection shifts are in
good agreement with the predicted values. Therefore, the proposed model can be used to
estimate the pressure Pg generated by the PE radiolysis for the different dose levels up to
80 kGy.
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Figure 21. Deflection as a function of the dose level for different passive MEMS test devices ((a) for cell#1; (b) for cell#2;
(c) for cell#3 and (d) for cell#4). For each transducer the linear regression between the deflection W and the dose level D are
reported (R2 designates the coefficient of determination of the linear regression).

Another experimental set up was used to obtain more accurate estimations of the
pressure Pg. The MEMS test devices were placed inside an airtight chamber where the
pressure (noted Pout in Figure 18) was monitored. The deflections were measured by
an interferometric profilometer for different applied pressures. The technique consisted
of achieving after each irradiation the deflection measured before the irradiation. The
pressure Pg to be applied to the membrane for retrieving the deflection before the very first
irradiation can be predicted from:

Pg = PAI−k
out − PNI

out (25)

where PNI
out and PAI−k

out are, respectively, the external pressure applied on the cell nonirradi-
ated (NI state) and after the kth irradiation (AI-k state) and leading to the same deflection
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value in the NI and AI-k states. This method does not depend on the eventual pressure
inside the sealed cavity before irradiation. Prior to the estimation of the pressure Pg, the
mechanical properties of the membrane were first investigated. Figure 23 displays the
membrane deflection W as a function of the external pressure Pout applied to the different
structures and before the first irradiation. The measurement uncertainty on this pressure
was ±20 Pa. As a first approximation, the relationship between deflection and the applied
pressure was linear (the coefficient of determination of the linear regressions was at least
0.97). The uncertainty δP on the applied pressure depends on the uncertainty δW on the
membrane deflection as follows:

δP = δW/|α| (26)

where α denotes the mechanical sensitivity of the membrane linked to the deflection
variation with respect to the applied pressure (in µm·bar−1). Estimation of δP from (26)
was found to be of 11 mbar for all the passive dosimeters. The radiolysis pressure Pg was
derived from Figure 24 for all the fabricated cells. This figure displays the pressure per kGy
for each dose level ranging from 20 kGy to 80 kGy.
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(cell#1 to #4). The blue line refers to the shift computed from the model of Equation (7).

The results reported in Figure 24 are in good agreement with the theoretical predictions
up to 40 kGy (all the data points belong to the green region of the figure). The gas emission
yield factor Ggas was 4.4 × 10−7 mol·J−1 for dose levels ranging from 20 kGy to 80 kGy. All
the experimental data points were below the expected value for doses between 60 kGy and
80 kGy. This can be explained by the reduction of the yield factor Ggas compared with the
factor at 40 kGy, which leads to a nonlinear relationship between the pressure Pg and the
dose level. A. Ventura et al. proposed in [95] to model the H2 emission yield factor GH2

as follows:

GH2(D) = Gsat
H2

[
1−

(
1−

GD→0
H2

Gsat
H2

)
·e−γ·D

]
(27)

where D is the dose level, GD→0
H2

and Gsat
H2

are H2 emission yield factor, respectively, at low
and high dose levels. According to (6), the applied pressure Pg can be rewritten as follows:

Pg = ρPO·R·T·
VPO
Vg
· Gsat

H2

[
1−

(
1−

GD→0
H2

Gsat
H2

)
·e−γ·D

]
·D (28)
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Figure 23. Absolute value of the deflection W with respect to the external pressure Pout applied on the MEMS transducers:
(a) for cell#1; (b) for cell#2; (c) for cell#3; and (d) for cell#4 (R2 denotes the coefficient of determination of the linear regression).

Sensors 2021, 21, x FOR PEER REVIEW 27 of 36 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 23. Absolute value of the deflection 𝑊 with respect to the external pressure 𝑃௢௨௧ applied on the MEMS trans-
ducers: (a) for cell#1; (b) for cell#2; (c) for cell#3; and (d) for cell#4 (R2 denotes the coefficient of determination of the linear 
regression). 

  
(a) (b) 

  
(c) (d) 

Figure 24. Pressure Pg generated by the radiolysis as a function of the dose level (in kGy) for each MEMS transducers:
(a) for cell#1; (b) for cell#2; (c) for cell#3 and (d) for cell#4. The blue point at 60 kGy is estimated from using the results of
Figure 23. The horizontal error bars refer to the 10% uncertainty on the dose level (see Table 8), while the vertical error
bars correspond to the uncertainty δP on the pressure (see (26)). In the green region, the central dashed blue line and
dashed green lines correspond respectively to the theoretical value of Pg at 4.92 mbar·kGy−1 and the uncertainty δPg of
±0.80 mbar·kGy−1 (see Table 17) for the total gas emission yield factor G of 4.4 × 10−7 mol·J−1 (see Table 6).
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Figure 25 shows two different models used to describe the relationship between the
average radiolysis pressure and the dose level: (a) a linear regression model and (b) an
exponential law given by Equation (28). It appears that the exponential law is in better
agreement with the experimental results than the linear relationship. Nevertheless, by
taking into account the uncertainties determined in Section 8.2, the emission yield factor
G can be assumed constant. As a matter of fact, the difference between the measured
radiolysis pressure at 80 kGy and the expected pressure range (see Figure 24) was only
about 5.3%. As the uncertainty δP on the applied pressure was ±11 mbar, the linear
relationship between the average radiolysis pressure and the dose level would lead to
a resolution of about 2.8 kGy for the proposed passive dosimeter. Note that the most
accurate model, linear vs. exponential, for describing the relationship between the average
radiolysis pressure and dose level should be selected from the measurement of many
samples irradiated at a dose level of at least 40 kGy and from the analysis of gas composition
using the mass spectrometry. This selection could be applied in a future investigation.
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Figure 25. Average pressure Pg (in magenta) as a function of dose level using (a) a linear relationship and (b) the exponential
relationship proposed in [95]. The blue, orange, red and yellow points refer to the radiolysis pressure for the cells #1; #2; #3
and #4, respectively.

9.4. Detection Limit, Thermal Variation Impacts and Longtime Airtightness Analysis

The detection limit of the mechanical transducer were evaluated using the measure-
ment uncertainty of the deflection (0.05 µm) and the linear regression between the deflection
and the nuclear dose. According to the values obtained in Figure 21a–d, the minimum
irradiation dose which detectable by the proposed devices was 3.4 kGy. However, as
explained in Section 2 and depicted in Figure 1, the transducer was a first prototype to be
included in the final RF dosimeter (under development). Nevertheless, the measurement
resolution in the irradiation dose of the overall passive and wireless RF dosimeter can be
estimated. The full-scale measurement range of both the final sensor and MEMS transducer
was 1bar, as the mechanical structure could detect absolute pressure inside the cavity from
0 bar to 1 bar. Furthermore, the authors showed in [35] that a 50 mbar minimal detectable
applied pressure (i.e., 5% of the full-scale measurement range) can be achieved from passive
and wireless sensors. Consequently, with a radiolysis pressure Pg of 4.92 mbar·kGy−1,
the measurement resolution of the sensor was 10.2 kGy. Such a detection limit may be
decreased from an optimized sensor design. The first solution consisted of improving
the radiolysis yield of the polymer, which led to an increase of the G factor and also of
the quantity of gas inside the cavity after irradiation. The second solution consisted of
increasing the volume ratio VPO/Vg by reducing the volume etched in the silicon cavity.
Considering the cavity with a depth of 210 µm (instead of 290 µm) and a diameter of
4.5 mm (instead of 5 mm), the VPO/Vg ratio was 1.13, i.e., 2.4 higher than the original value.
The radiolysis pressure Pg was then higher at almost of 12 mbar·kGy−1. At the same time,
the measurement resolution of the irradiation dose decreased to 4.2 kGy.
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Furthermore, even if not investigated in this paper, we can consider two main thermal
phenomena which may impact the passive mechanical transducers characteristics.

(i) The effect of the temperature variation on the gas dilatation and pressure inside the
cavity. Assuming a temperature variation ∆T of 30 ◦C around a room temperature
of 25 ◦C, we can achieve a relative temperature variation (and so a relative pressure
variation inside the cavity) of about 10%. It is possible to measure and to compen-
sate, in part, for the effect of the pressure variation by using a passive temperature
sensor [96].

(ii) The effect of the temperature variations on the differential expansion behaviour
between constitutive materials (i.e., glass and silicon) of the sensor, which may modify
the mechanical properties of the membrane. However, this effect is assumed to be
negligible because glass and silicon have similar linear thermal expansion coefficients
over a wide temperature range. For example, for temperature ranging from −40 ◦C
to +60 ◦C, the thermal expansion coefficient is 3.2 × 10−6 K−1 for the borosilicate
material (see [63]) and between 2.0 × 10−6 K−1 and 2.9 × 10−6 K−1 for the silicon
material (see [97]). Moreover, the silicon-glass technology has been successfully used
for manufacturing capacitive pressure sensors with a temperature sensitivity of some
100 ppm·K−1 in this large temperature range [98].

Even if the airtightness of the structure was validated for at least 2 years and half (as
shown in Figure 19), it could be interesting to evaluate the time necessary to detect a specific
variation of pressure due to a leak in the device. In the context of nuclear dose monitoring
in a standard environment (i.e., 25 ◦C and 1bar), and supposing a radiolysis pressure of
1bar inside the cavity, the gas composition and partial pressure for each component inside
and outside the MEMS transducer are presented in Table 18. Furthermore, the permeation
rates KM

X reported from different articles, as in [52,99–101], are tabulated for each gas
component (noted X) through constitutive materials (noted M) at a given temperature.
|∆PX | denoting the absolute value of the partial pressure difference for the gas component
X inside and outside of the cavity. Strong permeation of a gas X through a material M
depends on both a high partial pressure difference |∆PX | and a high permeation rate KM

X .
According to the |∆PX | values in Table 18, the main components susceptible to permeate
trough the structures are the following: N2; O2; H2O and H2. To the best knowledge of the
authors, no permeation rate has been identified in the literature for O2; H2O; CO2; Cx Hy in
silicon material, and for Ar; H2O; CO2 Cx Hy in glass substrate. Since KSi

He corresponding
to the largest permeation rate value found at room temperature is very small compared to
KSiO2

He , the permeation phenomenon through silicon material for all gases can be considered
negligible compared to the permeation through glass. Besides, the diffusion parameter
of H2O in silicon dioxyde at room temperature presented in [102] and shown in Table 19
is almost 5.3 × 1011 smaller than the diffusion coefficient of He. Consequently, we may
assume that water permeation through glass can be neglected. By simplification, only the
permeation of H2; N2 and O2 should be taken into account.

The permeation rate for each gas component allowed the determination of the leak
rate LSiO2

X for each molecule, as expressed in (29):

LSiO2
X = KSiO2

X · S
tSiO2

·|∆PX | (29)

where S and tSiO2 represent respectively the area of the cavity from which the species
goes inside and outside of the device (evaluated at around 1.1 cm2 by considering the
dimensions of the MEMS transducer) and the thickness of the glass substrate after etching
(taken at 490 µm). The values of the different leak rate for the selected component are given
in Table 20.



Sensors 2021, 21, 5912 30 of 35

Table 18. Composition, partial pressure (in mbar) inside (noted in.) and outside (noted out.) of the cavity and permeation
coefficient (in cm2·s−1) through silicon (KSi

X ) and glass (KSiO2
X ) for some components X at a given temperature. |∆PX |

corresponds to the difference of partial pressure (in mbar) for each gas component inside and outside the cavity.

Gas
Component

Gas
Composition

(out.)

Partial Pressure
(out.)

Gas
Composition

(in.)

Partial
Presssure

(in.)
|∆PX| KSiO2

X KSi
X

N2 78.1% 781 0% 0 781 5.0 × 10−17 (25 ◦C) <1.9 × 10−11 (1200 ◦C)

O2 21.0% 210 0% 0 210 5.0 × 10−17 (25 ◦C) NR

Ar 0.9% 9 0% 0 9 <10−15 (700 ◦C) <1.9 × 10−11 (1200 ◦C)

CO2 4.2 × 10−2% 4.2 × 10−1 0% 0% 4.2 × 10−1 NR NR

H2O 0.5–5% 5–50 0% 0 5–50 NR NR

Cx Hy 1.8 × 10−4% * 1.8 × 10−3 * 5.1% * 5.1 * 5.1 * NR NR

H2 5.5 × 10−5% 5.5 × 10−4 89.8% 898.0 898 3.4 × 10−16 (20 ◦C) 5.7 × 10−40 (20 ◦C)

He 5.2 × 10−4% 5.2 × 10−3 0% 0 5.2 × 10−3 3.5 × 10−11 (20 ◦C) 3.2 × 10−34 (20 ◦C)

Ne 1.8 × 10−3% 1.8 × 10−2 0% 0 1.8 × 10−2 2 × 10−16 (25 ◦C) <1.9 × 10−11 (1200 ◦C)

Kr 1.1 × 10−4% 1.1 × 10−3 0% 0 1.1 × 10−3 NR NR

* Mainly CH4 ; NR stands for not reported in the literature according to the best knowledge of the authors.

Table 19. Diffusion coefficient at room temperature noted Droom for some chemical species in amor-
phous silicon dioxide [102].

Molecule Droom [cm2·s−1]

He 2.8 × 10−8

H2 1.5 × 10−11

H2O 5.3 × 10−20

Table 20. Partial pressure difference, permeation rate through the glass material and leak rate for
each gas component.

Gas Component |∆PX|[mbar] KSiO2
X [cm2·s−1] LSiO2

X [bar·cm3·s−1]

N2 781 5.0 × 10−17 (25 ◦C) 8.8 × 10−16

O2 210 5.0 × 10−17 (25 ◦C) 2.4 × 10−16

H2 898 3.4 × 10−16 (20 ◦C) 6.9 × 10−15

From the leak rates, it was possible to calculate the time TSiO2
X necessary to change the

pressure inside the cavity of a value δP due to the entrance (in the case of N2 and O2) or
the escape (here H2) from the cavity by using the following expression [103]:

TSiO2
X =

Vg

LSiO2
X

·
∣∣∣Pout

X − Pin
X (0)

∣∣∣·ln(∣∣∣∣∣ Pout
X − Pin

X (0)
Pout

X − Pin
X (T)

∣∣∣∣∣
)

(30)

where Pout
X and Pin

X correspond respectively to the partial pressure of the component X
outside and inside of the cavity at an initial time T = 0 (noted Pin

X (0)) and at a time T (noted
Pin

X (T) =
∣∣Pin

X (0)–δP
∣∣). Table 21 presents different values of time TSiO2

X for each component
and for different δP. From this table, we can see that the escape of H2 from the cavity
happens first, and that a shift δP of 1 mbar inside the cavity may occur in almost 20 years.
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Table 21. Time (in years) necessary to see a difference δP inside the cavity.

Gas Component δP = 50 mbar δP = 10 mbar δP = 5 mbar δP = 1 mbar

N2 ~7600 ~1470 ~730 ~150

O2 ~30,620 ~5500 ~2710 ~540

H2 ~960 ~190 ~94 ~19

10. Conclusions

This paper reports the design, technological fabrication and characterization of a
microelectromechanical transducer for monitoring irradiation dose level in nuclear envi-
ronments. This device is composed of an airtight cavity containing a polymer (HDPE),
which releases gases under nuclear radiation. The pressure generated by the polymer
radiolysis during irradiation was estimated from measurement a membrane deflection. A
disk of HDPE of 3.5 mm diameter and 200 µm thick was used. Good airtightness of the
cavity was obtained for at least 2.5 years for a dose level of 4 MGy. The eventual impact on
the HDPE disk of the anodic bonding used during the technological fabrication process
was investigated. A maximum temperature of 350 ◦C was recommended to ensure both
the strong bonding interface and no mass loss of the polymer. It was also observed that
both temperature and voltage led to the deformation of the HDPE disk, but this did not
damage the bonding interface. The nature and quantity of the gas released by irradiated
HDPE film was measured by using a high-resolution gas mass spectrometry for dose
levels up to 24 kGy. Both gas emission yield factor and gas composition were consistent
with available published data. Next, an experimental setup was proposed to estimate
the radiolysis pressure from the measurement of the membrane deflection. The sensor
performances were validated experimentally up to 80 kGy and were in good agreement
with theoretical predictions.

The impact on the sensor performances of α, β or neutron irradiations, the temperature
and dose rate could be investigated in future work. Moreover, even if they do not alter the
interface bonding, the observed deformations of the polymer due to irradiation may be
reduced from polymer encapsulation before the sealing process. Since the ratio between
the volume occupied by the gas inside the cavity and the volume of the polymer play a
role in sensor sensitivity to dose level, the combination of encapsulation with the stacking
of the thin polymer film may actually enhance the sensitivity of the MEMS dosimeter.
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