
sensors

Article

Enhanced Changeover Detection in Industry 4.0 Environments
with Machine Learning

Eddi Miller , Vladyslav Borysenko , Moritz Heusinger, Niklas Niedner, Bastian Engelmann *
and Jan Schmitt

����������
�������

Citation: Miller, E.; Borysenko, V.;

Heusinger, M.; Niedner, N.;

Engelmann, B.; Schmitt, J. Enhanced

Changeover Detection in Industry 4.0

Environments with Machine

Learning. Sensors 2021, 21, 5896.

https://doi.org/10.3390/s21175896

Academic Editors: Anastasios

Doulamis, Nikolaos Doulamis and

Athanasios Voulodimos

Received: 12 August 2021

Accepted: 30 August 2021

Published: 1 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute Digital Engineering (IDEE), University of Applied Sciences, Würzburg-Schweinfurt,
Ignaz-Schön-Strasse 11, 97421 Schweinfurt, Germany; eddi.miller@fhws.de (E.M.);
vladyslav.borysenko@fhws.de (V.B.); moritz.heusinger@fhws.de (M.H.); niklas.niedner@fhws.de (N.N.);
jan.schmitt@fhws.de (J.S.)
* Correspondence: bastian.engelmann@fhws.de; Tel.: +49-9721-940-8772

Abstract: Changeover times are an important element when evaluating the Overall Equipment Effec-
tiveness (OEE) of a production machine. The article presents a machine learning (ML) approach that
is based on an external sensor setup to automatically detect changeovers in a shopfloor environment.
The door statuses, coolant flow, power consumption, and operator indoor GPS data of a milling
machine were used in the ML approach. As ML methods, Decision Trees, Support Vector Machines,
(Balanced) Random Forest algorithms, and Neural Networks were chosen, and their performance
was compared. The best results were achieved with the Random Forest ML model (97% F1 score,
99.72% AUC score). It was also carried out that model performance is optimal when only a binary
classification of a changeover phase and a production phase is considered and less subphases of the
changeover process are applied.

Keywords: machine learning; changeover; human–machine interaction

1. Introduction

In a study by the Leibniz Centre for European Economic Research (ZEW), it was carried
out that digitalization in SMEs in Germany is progressing slowly (SME: small and medium-
sized enterprise [1] (p. 4), [2]. With the intention to support and digitalize the system
landscape of these metalworking companies, the OBerA project (OBerA: “Optimization of
processes and machine tools through provision, analysis, and target/actual comparison of
production data”) was founded. The consortium is formed by five production-oriented
companies from the region of Franconia in northern Bavaria, Siemens as a technology
partner, and the University of Applied Sciences Würzburg-Schweinfurt as an academic
partner (for a detailed description of the consortium, please see [3]).

One focus of the research project is to improve the availability management on the
shopfloor. Especially, the changeover times of machines were identified as a major working
task in terms of availability management. A use case was built up at the Pabst GmbH
company from the consortium, which manufactures mechanical components by drilling,
milling, and grinding processes in small lot sizes. As a consequence, the machine tools need
to run changeover procedures several times a day. The transparency of the changeover
process to facilitate availability management so far is limited. These changeover processes
are mostly done manually, and the changeover interval is not documented. Additionally,
different workers are involved in this procedure during different shifts.

Therefore, the research technique is to increase the transparency of changeover pro-
cesses to support the availability management on the shopfloor. This shall be achieved
by Machine Learning approaches, which are applied to identify changeover processes
out of a big dataset generated by external sensors, which are attached to real production
machines. In Section 2 of this article, the former research work of the authors in the field of

Sensors 2021, 21, 5896. https://doi.org/10.3390/s21175896 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3755-0666
https://orcid.org/0000-0003-2364-5250
https://orcid.org/0000-0002-2053-0995
https://orcid.org/0000-0003-4537-7680
https://doi.org/10.3390/s21175896
https://doi.org/10.3390/s21175896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21175896
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21175896?type=check_update&version=2

Sensors 2021, 21, 5896 2 of 17

changeover detection with machine learning is summarized. Section 3 explains how the
preliminary research work was enhanced to further improve the Machine Learning model
performance. In Section 4, the implementation of the enhancements is described. At last, in
Section 5, the results of the enhancements are discussed. Section 5 also summarizes the
article and provides an outlook to further research activities.

2. Summary of Preceding Research Work

In a former article, it was described that changeover times are one of the main rea-
sons to decrease the Overall Equipment Effectiveness (OEE) of production facilities. To
improve transparency in the changeover processes, a machine learning (ML) approach was
presented to distinguish between changeover and production phases by a setup of external
sensors, which can be applied to existing antiquated machines. The corresponding sensor
setup was established at a milling machine (DMG 100 U duoBLOCK) of the company Pabst
GmbH from the OBerA project consortium. The company Pabst GmbH belongs to the
group of small to medium-size companies (SME). Multiple machine learning models such
as Ensemble Classifiers, Support Vector Machines (SVM), Naïve Bayes, Logistic Regres-
sion, and Decision Tree algorithms were applied. A “Fine tree” model as a Decision Tree
algorithm performed with a value of 0.92 for the performance indicator “Area Under the
Curve” (AUC, not suited: 0; ideal: 1), but the true/false positive rates of the “Changeover”
class were both around 50%, meaning that a “Changeover” event was often erroneously
predicted as “Production” (48.3%), and on the other hand, a true “Changeover” event was
only predicted correctly with 51.7%. In comparison, a RUSBoosted tree as an Ensemble
Classifier achieved much better true/false positive rates for the “Changeover” class (false
positive rate: 11.6%, true positive rate: 88.4%) with an AUC score of 0.93. In conclusion, it
was pointed out that a detection of changeover phases with a heterogeneous sensor setup
is feasible, and as a further research goal, the refinement of the classification approach was
proposed. On one hand, this implied improvement of the boundary conditions for the
machine learning model i.e., the sensor setup, and on the other hand, it indicated the need
to make use of more detailed subphases for the general “Changeover” phases [3].

3. Setup and Enhancement of the Research Technique

To add more flexibility and transparency, the entire programming project was shifted
from the MATLAB “Classification Learner” environment to Python Jupyter notebooks.
It was possible to reproduce the results from [3] in a Python environment. All but one
of the algorithms were successfully replicated in Python using the scikit-learn library,
while the RUSBoosted Decision Tree was built using the imbalanced-learn library, which
is fully compatible with scikit-learn API. The MATLAB “Classification Learner” operates
via presets and then automatically finds optimal parameters. When transferred to Python,
the same parameters were manually assigned to similar algorithms in an attempt to
copy MATLAB presets to get the same results in the Python environment before any
improvements or adjustments were made (see Table 1).

Table 1. Corresponding functions in Python to MATLAB Classification Learner.

MATLAB Classification Learner Python Library Python Function Kernel/Settings

Fine Decision Tree scikit-learn DecisionTreeClassifier() max_leaf_nodes = 100
Medium Decision Tree scikit-learn DecisionTreeClassifier() max_leaf_nodes = 20
Coarse Decision Tree scikit-learn DecisionTreeClassifier() max_leaf_nodes = 4
Logistic Regression scikit-learn LogisticRegression()

Gaussian Naive Bayes scikit-learn GaussianNB() Bernoulli’s had to be used
Kernel Naive Bayes scikit-learn BernoulliNB() BernoulliNB()

Linear SVM scikit-learn LinearSVC(), SVC() Linear
Quadratic SVM scikit-learn SVC() Quadratic

Cubic SVM scikit-learn SVC() Cubic
Fine Gaussian SVM scikit-learn SVC() Radial Basis Function (RBF), gamma = 0.5

Medium Gaussian SVM scikit-learn SVC() Radial Basis Function (RBF), gamma = 2
Coarse Gaussian SVM scikit-learn SVC() Radial Basis Function (RBF), gamma = 8

Boosted Trees scikit-learn DecisionTreeClassifier() AdaBoostClassifier()
Bagged Trees scikit-learn DecisionTreeClassifier() BaggingClassifier()

RUSBoosted Trees scikit-learn, imbalanced-learn DecisionTreeClassifier() RUSBoostClassifier()

Sensors 2021, 21, 5896 3 of 17

MATLAB displays the performance of each model via accuracy. Therefore, the same
metric was used when evaluating models in Python. It is important to note that the
parameter accuracy is not the best metric for the used test dataset and was only used to
compare models within two environments and not their overall performance. For more
details on ML performance metrics, see Section 5.2. Table 2 shows the obtained results from
MATLAB and Python with the same test dataset. In all cases but the Linear SVM model,
the results from MATLAB were replicated and even improved. However, the Linear SVM
shows only a 0.1% worse performance in Python than in MATLAB:

Table 2. Accuracy comparison between MATLAB Classification Learner and Python.

Model MATLAB Accuracy, % Python Accuracy, %

Fine Decision Tree 92.8 93.4
Medium Decision Tree 91.6 92.8
Coarse Decision Tree 90.3 90.3
Logistic Regression 88.6 88.6

Naive Bayes 88.5 88.6
Linear SVM 88.7 88.6

Fine Gaussian SVM 90.8 93.8
Medium Gaussian SVM 89.0 95.4
Coarse Gaussian SVM 88.7 96.2

Boosted Trees 92.6 93.1
Bagged Trees 92.7 93.6

RUSBoosted Trees 79.5 80.6

In the former research, the research task was to distinguish between “Changeover”
and “Production” with a binary classification in a supervised learning approach [3]. The
supervision is conducted by a researcher who oversees the complete changeover and
production process and records timestamps for the specific phases. Then, these timestamps
are assigned to the sensor data, which were recorded during the supervision (“labeling”).
Then, the machine learning models were trained with this labeled data (“supervised
learning”). From a production planning point of view, this approach makes it possible
to derive starting and stop times of the changeover by applying the trained machine
learning model later with current production sensor data. These can be used to improve
production planning or adjust product cost calculation. Hence, a binary classification
between “Changeover” and “Production” is sufficient for this requirement. From the
point of view of manufacturing engineering, more subphases for changeover could create
more knowledge of the entire changeover process to facilitate further optimizations of
changeover times. Accordingly, the supervisor has more efforts in labeling more than two
phases, and the machine learning algorithms must conduct a multiple classification. After
weighing the pros and cons, it was decided to include more than two changeover phases in
the supervision and labeling process (see Section 3.1).

Tran et al. discuss in [4] the potential of Indoor Positioning Systems (indoor GPS)
and its applicability to Lean Management concepts. They identify the high potential of
indoor GPS for setup and changeover. As the changeover process at the company Pabst is
conducted manually, it was decided to also integrate an indoor GPS into the sensor setup to
track the position of the worker while conducting the changeover and production process
(see Section 3.2).

Section 3.3 describes the data-handling process, while Section 3.4 explains the data
preparation.

Vojdani and Erichsen carried out a literature review to determine the potential of
different machine algorithms in different production-related applications areas. As appli-
cation areas, “Line feeding/line stocking/kitting/part feeding”, “production planning”,
“production control”, “inventory/warehouse”, “production scheduling and sequencing”,
and “transport” were identified. The following Figure 1 shows the number of search results

Sensors 2021, 21, 5896 4 of 17

of machine learning algorithms in the areas “production planning”, “production control”,
and “production scheduling and sequencing” [5]:

Sensors 2021, 21, 5896 4 of 19

timestamps are assigned to the sensor data, which were recorded during the supervision
(“labeling”). Then, the machine learning models were trained with this labeled data
(“supervised learning”). From a production planning point of view, this approach makes
it possible to derive starting and stop times of the changeover by applying the trained
machine learning model later with current production sensor data. These can be used to
improve production planning or adjust product cost calculation. Hence, a binary
classification between “Changeover” and “Production” is sufficient for this requirement.
From the point of view of manufacturing engineering, more subphases for changeover
could create more knowledge of the entire changeover process to facilitate further
optimizations of changeover times. Accordingly, the supervisor has more efforts in
labeling more than two phases, and the machine learning algorithms must conduct a
multiple classification. After weighing the pros and cons, it was decided to include more
than two changeover phases in the supervision and labeling process (see Section 3.1).

Tran et al. discuss in [4] the potential of Indoor Positioning Systems (indoor GPS) and
its applicability to Lean Management concepts. They identify the high potential of indoor
GPS for setup and changeover. As the changeover process at the company Pabst is
conducted manually, it was decided to also integrate an indoor GPS into the sensor setup
to track the position of the worker while conducting the changeover and production
process (see Section 3.2).

Section 3.3 describes the data-handling process, while Section 3.4 explains the data
preparation.

Vojdani and Erichsen carried out a literature review to determine the potential of
different machine algorithms in different production-related applications areas. As
application areas, “Line feeding/line stocking/kitting/part feeding”, “production
planning”, “production control”, “inventory/warehouse”, “production scheduling and
sequencing”, and “transport” were identified. The following Figure 1 shows the number
of search results of machine learning algorithms in the areas “production planning”,
“production control”, and “production scheduling and sequencing” [5]:

Figure 1. Search results by machine learning algorithm and application area (adapted from [5]). Figure 1. Search results by machine learning algorithm and application area (adapted from [5]).

Among all algorithms, the application of Neural Networks/Deep Learning algorithms
was most frequently counted in the search results of this literature research. However, in
the former research work, the best classification results were achieved with a Decision Tree
algorithm and an Ensemble Classifier. It was also decided to include Neural Networks in
the further research technique (see Section 4).

3.1. Changeover Phases

According to VDI guideline 3423 [6], the occupied time TB of a single machine consists
of the following:

• Utilization time TN;
• Test time TC;
• Preventive Maintenance time TW; and
• Organizational and Technical Downtime TO and TT.

The time for changeover is part of the Organizational Downtime TO, which consists
of the following:

• Downtime from short-term lack of jobs TA, and
• Time needed for setup of the machine TR.

Hence, the time for changeover is covered by the parameter TR. According to the
definitions above, the time period of changeover can be considered as TR, and the remaining
time consists of all the other parameters mentioned above. In this case, two phases need
to be classified by an ML algorithm. Depending on the underlying time model, there are
more phases thinkable: e.g., in the ERP system SAP, additionally, a teardown time after the
processing and a setup time during processing are considered.

Sensors 2021, 21, 5896 5 of 17

With the consortium of the OBerA project, a workshop was carried out to find
subphases of their individual changeover processes. These phases were organized into
three groups, including the starting phase of changeover, the main phase, and the end
of the changeover process. Table 3 shows the collected 19 subphases in the workshop.
For each subphase, the partner of the consortium who conducts the specific subphase is
added in brackets, e.g., “BFKP”, meaning that the companies Brehm, Franken, Kritzner,
and Pabst conduct this subphase. The subphases were assigned to the three groups having
preparation activities mostly covered by the starting phase, the running and optimization
of the NC program in the main phase, and manual component treatment and closing
actions in the ending phase. The subphases 7+8, 14+15, and 16+17 were grouped together
to facilitate the later labeling process with longer phase durations.

Table 3. Derived subphases for changeover processes in the OBerA companies.

Starting Phase of Changeover Main Phase of Changeover Ending Phase of Changeover

(1) Logging on/off the setup job at the
terminal (BFKP) (11) Swiveling of machine tables (P) (14 * + 15) Cleaning of the component

and dismantling of the component (BKP)

(2) Cleaning of the machine table (KP) (12) Setting the zero point (BFKP)
(16 * + 17) Deburring of the component
and remeasurement of the
component (BKP)

(3) Moving the fixture from machine table
to workbench (KP)

(13) Running and optimizing the NC
program (BFKP)

(18) Load the optimized NC program on
the server (P)

(4) Fastening of component to
fixture (BKP)

(19) Logging on/off the setup job at the
terminal (BFKP)

(5) Transfer of fixture from workbench to
machine table (KP)
(6) Attachment of fixture to machine
table (KP)
(7 * + 8) Loading the NC program (BFKP)
and performing tool presetting (BKP)
(9) Filling the tool magazine (BFKP)
(10) Entering the current tool
dimensions (BFKP)

Companies: Brehm (B), Franken (F), Kritzner (K), Pabst (P); * only first number used for labeling.

For the machine learning task, it was decided to classify three different phase concepts:

• Two-phase approach (No. 1: Changeover including intermittent idle time, No. 2:
Production phase);

• Five-phase approach (No. 1: Starting phase, No. 2: Main phase, No. 3: Ending phase,
No. 4: Idle/break phase, No. 5: Production phase); and

• Twenty-one-phase approach (No. 1–19 Subphases from Table 3, No. 20 Idle/break
phase, No. 21 Production phase)

The machine learning approach, which is applied in this article, belongs to the super-
vised learning. In this case, a supervisor tracks the changeover processes while the data of
the connected sensors are recorded. During the tracking, the supervisor selects one of the
21 subphases from the list, which covers all the current changeover situations and assigns
at same time the current timestamp. With these timestamps, later on, the recorded sensor
data can be labeled with the subphases that occurred in the changeover process. Then,
these labeled data are used to train a machine learning model.

Then, the five-phase approach is labeled by assigning a Starting phase, Main phase,
and Ending phase according to Table 3. Accordingly, the two-phase approach can be finally
labeled as a holistic changeover phase consisting of a Starting phase, Main phase, and
Ending phase.

Sensors 2021, 21, 5896 6 of 17

3.2. Adjusted Sensor Concept

The initial work of changeover detection started with the measurements taken by
the following five sensors, which were mounted onto one of the milling machines of the
company Pabst [3]. The machine is a machining center and allows for a complete processing
of parts with complex geometries. It is equipped with an automatic tool changer and can
perform tasks such as turning, milling, drilling, and grinding.

To check the status of the tool holder door, an Ifm 5D150 distance sensor was installed.
It measures the distance from its mounting point to the handle of the tool holder door. When
the operator opens the door, the measured distance increases, and the sensor recognizes
the door as being opened. As the door closes, the distance decreases, the operator leaves
the tool holder, and the tools have been changed. To further monitor the machine activities,
the coolant flow was chosen. The Keyence FD-Q Series measures the flow of coolant liquid
via IO-Link interface. The sensor is mounted directly on the coolant pipe. As soon as the
machine starts working and pumping coolant, the sensor detects the flow. The next vital
points of the machine are the workpiece chambers. The milling machine is equipped with
two separate chambers, which both have to be observed. In order to register when the
operator opens one of the two doors, two pairs of Velleman HAA27 contact switches were
placed. Each pair consists of two magnet switches that generate a signal when coming
close to each other. Finally, to measure the power output of the milling machine, the
Wago IoT-Box 9466 was considered. This IoT-Box is a ready-to-use three-phase power
measurement module that uses Rogowski coils. The coils are mounted directly onto the
three power phases of the machine in the electrical cabinet. Then, it enables observing the
machine data such as the strength of the electric current, voltage, and power. The sensor
concept is illustrated in Figure 2.

Sensors 2021, 21, 5896 7 of 19

recognizes the door as being opened. As the door closes, the distance decreases, the
operator leaves the tool holder, and the tools have been changed. To further monitor the
machine activities, the coolant flow was chosen. The Keyence FD-Q Series measures the
flow of coolant liquid via IO-Link interface. The sensor is mounted directly on the coolant
pipe. As soon as the machine starts working and pumping coolant, the sensor detects the
flow. The next vital points of the machine are the workpiece chambers. The milling
machine is equipped with two separate chambers, which both have to be observed. In
order to register when the operator opens one of the two doors, two pairs of Velleman
HAA27 contact switches were placed. Each pair consists of two magnet switches that
generate a signal when coming close to each other. Finally, to measure the power output
of the milling machine, the Wago IoT-Box 9466 was considered. This IoT-Box is a ready-
to-use three-phase power measurement module that uses Rogowski coils. The coils are
mounted directly onto the three power phases of the machine in the electrical cabinet.
Then, it enables observing the machine data such as the strength of the electric current,
voltage, and power. The sensor concept is illustrated in Figure 2.

Figure 2. Milling machine and sensor setup with added GPS monitoring.

Even when using all the described sensors above, there are still changeover steps that
cannot be easily monitored or recognized. In particular, subphases 13 and 14 of the Ending
phase of Table 3 are difficult to cover by the sensors described so far, which are attached
to the machine. As the mentioned activities are conducted at workplaces nearby,
additional GPS location data were utilized to cover these phases. To monitor the position
and behavior of the machine operator, a Localino indoor tracking system was used. The
Localino system consists of multiple anchors and a tag. The anchors are placed around
the milling machine to triangulate the signal of the tag. At the beginning, the anchors were
spread further inside the production hall to increase the covered area, but the massive
milling machine was blocking the signal. As a result of this, the positions of the anchors
were limited to a smaller area around the machine where the operator was working. After

Figure 2. Milling machine and sensor setup with added GPS monitoring.

Sensors 2021, 21, 5896 7 of 17

Even when using all the described sensors above, there are still changeover steps
that cannot be easily monitored or recognized. In particular, subphases 13 and 14 of the
Ending phase of Table 3 are difficult to cover by the sensors described so far, which are
attached to the machine. As the mentioned activities are conducted at workplaces nearby,
additional GPS location data were utilized to cover these phases. To monitor the position
and behavior of the machine operator, a Localino indoor tracking system was used. The
Localino system consists of multiple anchors and a tag. The anchors are placed around the
milling machine to triangulate the signal of the tag. At the beginning, the anchors were
spread further inside the production hall to increase the covered area, but the massive
milling machine was blocking the signal. As a result of this, the positions of the anchors
were limited to a smaller area around the machine where the operator was working. After
placing and activating the anchors, the tag can also be activated. The tag is immediately
recognized by the anchors and writes the coordinates of the operator who is holding the
tag into the Localino service backend that is running on the NUC mini PC. Table 4 shows
all used sensor systems with the corresponding measuring object and measuring type.

Table 4. All sensors used in addition with GPS monitoring.

Sensor Type Measuring Object Measuring Type

Ifm 5D150 Door status tool holder Distance measurement
Keyence FD-Q Series Coolant flow Flow measurement

Velleman HAA27 Door status machine main door Contact measurement
Velleman HAA27 Door status second chamber Contact measurement

Wago IoT-Box 9466 Machine power/performance Power measurement
Localino indoor tracking Operator GPS data GPS measurement

3.3. Data Handling Concept

To provide internet access to all sensors via LAN, an LTE-Router in combination with
an Ethernet switch is used. Both the Ifm 5D150 and Keyence FD-Q Series are IO-Link
devices, which need to be connected to an IO-Link master. It controls the communication of
all plugged-in IO-Link devices. The Velleman HAA27 contact switches on the other hand
cannot be connected via IO-Link. Therefore, a Simatic IoT2040 gateway was installed. The
contact switches are directly attached to the gateway, which then reads the digital signals
generated by the contact switches. The Wago IoT-Box, as a ready-to-use application, has a
built-in PLC and has access to different protocols. The Localino setup creates its own Wi-Fi
network to exchange data between beacons and tags and then is connected to the LTE
router, which forwards the collected data to the backend. The backend is a service, which is
running on an NUC mini PC. The whole setup revolves around using the MQTT protocol.
Each sensor is capable of transmitting data via MQTT. The NUC mini PC is equipped with
a central MQTT server and Node-Red, which provides a graphical programming interface
to integrate IoT equipment. It allows for a convenient way to subscribe to the different
data message topics and to transform the acquired sensor data into a usable format. At last,
after being received and processed by Node-Red, the data are sent and stored into an SQL
database. The rows and columns of the data are configured to display the ID, timestamp,
topic, value, unit, and sensor name. Furthermore, for the purpose of ML classification, each
dataset is labeled with the phase label according to the corresponding phase approach (see
Section 3.1).

3.4. Adjusted Data Preparation

The measured values are transmitted from the described experimental setup directly
into the SQL database. This means that every second, one row for each sensor value is
written into the database. However, to process the data in a machine learning model,
the data structure has to be changed, since the raw data from SQL provide readings per
second in seven separate rows instead of just one with all the sensor data. Therefore, a
Python script that retrieves sensor data from MySQL database and creates a unique table

Sensors 2021, 21, 5896 8 of 17

for each sensor was coded. Afterwards, all the tables were combined into one using the
outer join on the timestamp. This way, a table with the timestamps as well as the different
sensor values as columns was created. While joining all tables, all sensor columns were
also renamed to human-readable names.

Initially, the new data frame showed missing values especially in the columns of
the Localino sensor, be it due to sensor data acquisition frequency or as a result of outer
join. Simply deleting the corresponding rows of the table resulted in an enormous loss of
training data. For this reason, the gaps were filled with the moving average of 10 measured
values. For the sensors of power, coolant, and the status of the machine doors, rare gaps
occurred in the range of 1–2 s (equivalent to two timestamp rows), and they were filled
with the preceding last valid value from the specific column.

In the next step of data preparation, the measured values of the Ifm 5D150 distance
sensor were converted from the file format float to a binary signal to match the data
characteristic of the other two door sensors. As a part of Z-Transform, the data were also
clipped, meaning that all the values beyond thresholds of three standard deviations were
rounded up/down to the value of the threshold. This way, outliers were eliminated, and
the data were prepared to the next step of standardization using scikit-learn StandardScaler.
StandardScaler standardizes features by removing the mean and scaling to unit variance,
thus ensuring the data are normally distributed and have a mean of zero [7].

The resulting data frame contained a total of 39.591 rows. Then, this data frame was
labeled with the data of a changeover workshop in the period under consideration using
the setup phases described in Section 3.1. The final table was finally transferred to a new
SQL database to make it permanently available.

4. Application of Machine Learning for Changeover Detection

As described in Section 2, in the former research work, the machine learning models
Ensemble Classifiers, Support Vector Machines (SVM), Naïve Bayes, Logistic Regression,
and Decision Tree algorithms were applied. For the further research, Decision Trees,
Support Vector Machines, and (Balanced) Random Forest algorithms were chosen. In
Section 3, it was explained that the frequent application of Neural Networks in production
optimization-related publications led to the additional consideration of Neural Networks
to the choice of machine learning models, which shall be covered by this research work.

In Section 4.1, the application of Neural Networks is described. In the subsequent
sections, Decision Trees (Section 4.2), Support Vector Machines (Section 4.3), and (Balanced)
Random Forest (Section 4.4) are explained.

4.1. Neural Networks

Artificial Neural Networks (ANN) are modeled in the way the human brain works.
Neurons are the working units of the network. These units process input values in three
steps. In the first step, the input values are weighted. Then, the resulting network input is
processed in what is called the actuation function. In the last step, the network output is
determined depending on a threshold value [8], (pp. 19–194).

ANNs consist of a large number of such neurons, which are structured in layers
and interact with each other via directed and weighted connections. Neural Networks
usually consist of an input layer, one or more hidden layers, and an output layer. The input
layer processes the input values of the analysis. The output of the input layer neurons
results in an activation of the hidden layer neurons. It is to be mentioned here that the
activation degree of the hidden layer neurons is determined independently during the
training process. The programmer only determines the hyperparameters of these layers,
but he does not exert any influence in the form of predefined relations on the neurons of
these layers. The output layer determines the target variable of the network [9] (p. 302).

The neuron weights are adjusted in the training process. This process is often per-
formed with the backpropagation algorithm, which minimizes the total error of the network

Sensors 2021, 21, 5896 9 of 17

iteratively using the gradient method. ANN that work like this are called Recurrent Neural
Networks (RNN) [10], (p. 712).

In this research work, an RNN with two hidden layers for classification is used.
The model was developed with the Python library TensorFlow. In order to optimize
the hyperparameters of the network, a grid search has been applied. The following
Table 5 shows the selected parameters as well as the optimal combination of these for the
neural network.

Table 5. Parameters for recurrent neural networks.

Hyperparameter Tested Variables Best Result

Optimizer SGD, Adagrad, Adadelta, Adam, Adamax, Nadam Adam
Number of epochs 20, 30, 40, 50, 60 50

Batch size 15, 30, 50, 60, 100 50
Learning rate 0.001, 0.01, 0.1, 0.2, 0.3 0.001
Loss function sparse_categorical_crossentropy -

Number of neurons HL1 20, 30, 50, 100, 150, 200 150
Actuation function HL1 softmax, softplus, softsign, relu, tanh, sigmoid, hard_sigmoid, linear relu
Number of neurons HL2 20, 30, 50, 100, 150 100
Actuation function HL2 softmax, softplus, softsign, relu, tanh, sigmoid, hard_sigmoid, linear relu

Number of neurons output-layer 2 (for binary classification)
Activation function output-layer softmax softmax

4.2. Decisision Trees

A Decision Tree is a highly interpretable classifier that assigns a class to a data point
based on the series of questions (conditions) posed about the features belonging to the data
item. Decision Trees are also able to work with nonlinear data [11] (p. 5).

Very much similar to a real tree, a Decision Tree has a root, branches, and leaves. A
root node is the parent of all others, and it expresses the condition for the very first feature.
At this node, the very first binary split happens, leading to the next questions. Each node
represents a feature (attribute), each link creates a branch and leads to a decision (rule)
and finally leads to an outcome (leaf node) [12] (p. 74). Figure 3 shows an example of a
generic Decision Tree. The way nodes are defined and created is based on the node purity
score. A 100% pure node is the one whose data belong to a single class, and a 100% impure
one has its data split evenly between two classes. The impurity can be measured using
entropy (classification), mean squared errors (regression), and Gini index [13] (p. 25). The
idea behind this algorithm is to mimic the human way of thinking and decision making
for a high interpretability [12] (p. 74). However, this comes with a price of Decision
Trees being sensitive to changes in the features that can negatively affect their predictive
performance [13] (p. 25).

Sensors 2021, 21, 5896 11 of 19

Figure 3. Generic Decision Tree (adapted from [11] (p. 5)).

In the MATLAB implementation, these trees were called a fine tree, a medium tree,
and a coarse tree (see Section 2). The main difference between them was the parameter
responsible for the maximum number of splits, which in scikit-learn is called
“max_leaf_nodes”. Replicating these Decision Trees in scikit-learn yielded the following
results (see Table 6):

Table 6. The settings of the Decision Trees in MATLAB and their performance in Python.

Tree Name Max Number of Leaf Nodes Python Accuracy
Fine tree 100 93.4

Medium tree 20 92.8
Coarse tree 4 90.3

Based on this previous work, three Decision Trees were created for the two-phase,
five-phase, and 21-phase approaches, respectively with scikit-learn’s
DecisionTreeClassifier using standard hyperparameters [14]. The standard setting for
“max_leaf_nodes” is “none”, which means an unlimited number of leaf nodes. Detailed
results can be found in Table 8 in the later article.

4.3. Support Vector Machine
The Support Vector Machine (SVM) is a maximum-margin classification algorithm,

which is able to separate nonlinear data by learning a hyperplane, which separates the
data. If the data are nonlinear, the kernel trick is used to calculate similarities in a higher-
dimensional space, which aims to make the data linear and separable. The goal is to learn
support vectors that maximize the space between the two classes. The SVM is a binary
classifier, which can be adapted to multiclass problems by using the one-vs.-the-rest
approach [15] (pp. 326–339).

For the usage in the setup, the C parameter for the binary classification task was
tuned. The parameter controls the strength of the regularization, which is inverse
proportional to C, which resulted in C = 10,000 using the scikit-learn implementation [7].

For the implementation in Python, scikit-learn’s Support Vector Classification (SVC)
was used [16].

4.4. (Balanced) Random Forest
The Random Forest (RF) is an algorithm from the field of supervised learning and

can be used for classification and regression. Unlike the Decision Tree algorithm, the RF
trains an entire ensemble of trees instead of one [17] (p. 157 f.). This approach has the

Figure 3. Generic Decision Tree (adapted from [11] (p. 5)).

Sensors 2021, 21, 5896 10 of 17

In the MATLAB implementation, these trees were called a fine tree, a medium tree, and
a coarse tree (see Section 2). The main difference between them was the parameter respon-
sible for the maximum number of splits, which in scikit-learn is called “max_leaf_nodes”.
Replicating these Decision Trees in scikit-learn yielded the following results (see Table 6):

Table 6. The settings of the Decision Trees in MATLAB and their performance in Python.

Tree Name Max Number of Leaf Nodes Python Accuracy

Fine tree 100 93.4
Medium tree 20 92.8
Coarse tree 4 90.3

Based on this previous work, three Decision Trees were created for the two-phase,
five-phase, and 21-phase approaches, respectively with scikit-learn’s DecisionTreeClassifier
using standard hyperparameters [14]. The standard setting for “max_leaf_nodes” is “none”,
which means an unlimited number of leaf nodes. Detailed results can be found in Table 8
in the later article.

4.3. Support Vector Machine

The Support Vector Machine (SVM) is a maximum-margin classification algorithm,
which is able to separate nonlinear data by learning a hyperplane, which separates the
data. If the data are nonlinear, the kernel trick is used to calculate similarities in a higher-
dimensional space, which aims to make the data linear and separable. The goal is to
learn support vectors that maximize the space between the two classes. The SVM is a
binary classifier, which can be adapted to multiclass problems by using the one-vs.-the-rest
approach [15] (pp. 326–339).

For the usage in the setup, the C parameter for the binary classification task was tuned.
The parameter controls the strength of the regularization, which is inverse proportional to
C, which resulted in C = 10,000 using the scikit-learn implementation [7].

For the implementation in Python, scikit-learn’s Support Vector Classification (SVC)
was used [16].

4.4. (Balanced) Random Forest

The Random Forest (RF) is an algorithm from the field of supervised learning and can
be used for classification and regression. Unlike the Decision Tree algorithm, the RF trains
an entire ensemble of trees instead of one [17] (p. 157 f.). This approach has the advantage
that the model is less susceptible to changes in the dataset [18] (p. 467), and overfitting is
avoided [19] (p. 124).

During the training process, a separate prediction is made for each tree in the forest.
Then, the different results of the classifications are evaluated by majority vote. In this
way, wrong predictions are omitted and correct ones are summed up. This results in an
improvement of the model [19] (p. 123).

To achieve the highest possible accuracy of the RF, the correlations among the trees
of the ensemble must be minimized. This can be achieved with the so-called Bootstrap
Aggregation or Bagging [20] (p. 10 f.). The Random Forest is created using the Python
library of scikit-learn, which provides the “RandomForestClassifier” package.

As in the case of the neural network, the hyperparameters are optimized with the grid
search. Table 7 shows the tested parameters and the best possible combination of them:

Sensors 2021, 21, 5896 11 of 17

Table 7. Parameters for Random Forest and Balanced Random Forest classification.

Hyperparameter Tested Variables Best Result

Max. depth of the trees 4, 10, 15, 30, 35 30
Bootstrap Aggregation (Balanced RF) True, False False

Number of Trees 40, 44, 48, 53, 57,
62, 66, 71, 75, 80 48

Number of features per split ‘auto’ = sqrt(n_features)
‘log2’ = log2(n_features) auto

Min. number of data for internal node formation 2, 5 2
Min. number of samples at a leaf node 1, 2 1

Additionally, Balanced RF [21] was utilized, which is a version of RF using a boot-
strapping technique to improve the performance on imbalanced data. At each iteration, the
algorithm draws a bootstrap sample from the minority class and randomly draws the same
number of cases from the majority class. Thus, the number of processed cases is equally
distributed. In the experiments, the Balanced RF was configured to use 100 trees. The
following table shows the tested parameters and the best possible combination of them.

5. Discussion

In this section, an in-depth look into the evaluation of independent variables and
the techniques that were applied is provided. Furthermore, the comparison between the
different ML algorithms in regard to the performance will be emphasized.

5.1. Evaluation of the Independent Variables

In this section, details on the independent variables are provided. For this purpose, the
features in a two-dimensional space by using projection as well as embedding techniques
are visualized. Furthermore, the correlation matrix is presented to show how the features
influence each decision of the model.

Figure 4 shows the data projected into a two-dimensional space by performing a Prin-
cipal Component Analysis (PCA) on the preprocessed data. All columns are normalized to
a mean of 0 and a standard deviation of 1 to work well with the PCA [22]. However, it can
be seen that the PCA did not separate the data according to their class labels. This led to
the assumption that the data may not be linearly separable. Thus, in the following step,
t-Distributed Stochastic Neighbor Embedding (t-SNE) is applied to perform a nonlinear
neighbor embedding into two dimensions.

Sensors 2021, 21, 5896 13 of 19

Figure 4. PCA showing the data projected on the eigenvectors corresponding to the two largest
eigenvalues.

Figure 5 visualizes the data using t-SNE with perplexity parameters between five and
50, as proposed in [23]; additionally, the learning rate of the algorithm was varied. The
learning rate (LR) should be chosen between 10 and 1000 according to [23]. Different
learning rates are applied in Figure 5. Additionally, learning rates between 10 and 500
were applied; however, this did not lead to visually better results. To speed up the
computation of t-SNE on such a large dataset, the Barnes Hut method proposed in [24]
instead of the original t-SNE [23] was used. As shown in Figure 5, it was not possible to
distinguish the two classes clearly via t-SNE. Hence, it can be assumed that the data are
not intrinsically low dimensional.

Figure 5. t-SNE plots of the data using different perplexity values and learning rates (LR). Red data
points are representing the class “Production” and blue data points are representing the class
“Changeover”.

Figure 4. PCA showing the data projected on the eigenvectors corresponding to the two largest
eigenvalues.

Sensors 2021, 21, 5896 12 of 17

Figure 5 visualizes the data using t-SNE with perplexity parameters between five
and 50, as proposed in [23]; additionally, the learning rate of the algorithm was varied.
The learning rate (LR) should be chosen between 10 and 1000 according to [23]. Different
learning rates are applied in Figure 5. Additionally, learning rates between 10 and 500 were
applied; however, this did not lead to visually better results. To speed up the computation
of t-SNE on such a large dataset, the Barnes Hut method proposed in [24] instead of the
original t-SNE [23] was used. As shown in Figure 5, it was not possible to distinguish the
two classes clearly via t-SNE. Hence, it can be assumed that the data are not intrinsically
low dimensional.

Sensors 2021, 21, 5896 13 of 19

Figure 4. PCA showing the data projected on the eigenvectors corresponding to the two largest
eigenvalues.

Figure 5 visualizes the data using t-SNE with perplexity parameters between five and
50, as proposed in [23]; additionally, the learning rate of the algorithm was varied. The
learning rate (LR) should be chosen between 10 and 1000 according to [23]. Different
learning rates are applied in Figure 5. Additionally, learning rates between 10 and 500
were applied; however, this did not lead to visually better results. To speed up the
computation of t-SNE on such a large dataset, the Barnes Hut method proposed in [24]
instead of the original t-SNE [23] was used. As shown in Figure 5, it was not possible to
distinguish the two classes clearly via t-SNE. Hence, it can be assumed that the data are
not intrinsically low dimensional.

Figure 5. t-SNE plots of the data using different perplexity values and learning rates (LR). Red data
points are representing the class “Production” and blue data points are representing the class
“Changeover”.

Figure 5. t-SNE plots of the data using different perplexity values and learning rates (LR). Red
data points are representing the class “Production” and blue data points are representing the
class “Changeover”.

Classical dendrograms as visualization techniques also provided no further insights,
having around ten thousand rows of data, leading to a big and tangled dendrogram tree.
Instead, a simple confusion matrix was created to analyze how and which features are
correlated. As it can be seen from Figure 6, all the sensors have a considerable contribution
to the decision-making process of the machine learning models.

Sensors 2021, 21, 5896 14 of 19

Classical dendrograms as visualization techniques also provided no further insights,
having around ten thousand rows of data, leading to a big and tangled dendrogram tree.
Instead, a simple confusion matrix was created to analyze how and which features are
correlated. As it can be seen from Figure 6, all the sensors have a considerable contribution
to the decision-making process of the machine learning models.

Figure 6. Correlation matrix of currently used in OBerA features (0.00: no correlation, ±1.00: high
correlation).

All features show correlation coefficients in the range [−53.79%; 56.76%] which is
indicating an average correlation. The distance door sensor (door status tool holder, see
Figure 2) shows only one changing state over the complete changeover period, which
results in a very low correlation in the range of [−9.00%; 7.59%].

In summary, all the described analyses show that the data belong to a higher
dimensional problem and cannot be reduced on a subset of the independent variables.

5.2. Performance Metrics
The methods used to evaluate how well algorithms for classification are performing

are divided into two categories: graphical and numerical. Graphical methods are plots
that are interpretable by humans, while numerical methods present a single number to
describe the performance of a classifier [25] (p. 462).

The most commonly used evaluator in machine learning nowadays is accuracy, as it
shows the overall performance of an algorithm by presenting the probability of the true
value of the class label [26] (p. 1018). The closer accuracy is to a value of 1 (or 100%), the
better the algorithm is performing in general.

However, for imbalanced datasets, accuracy proved to be a rather misleading
performance indicator due to the fact that the minority of classes have less weight than
those of the majority. This negatively affects the classifier when performing on rare
classes. Skewed data lead to skewed results [27] (p. 8).

Two other known metrics are precision and recall (sensitivity). Precision evaluates
how good the predictive power of the algorithm is, while recall gives information on how
effective the algorithm is on a single class [26] (p. 1018). Precision tells how correct the
classifier was when classifying samples as positives, while recall shows how well the
samples that needed to be classified as positive were classified as such [25] (p. 467).

Neither precision nor recall are better metrics for an imbalanced dataset than
accuracy due to their specific focus on the respective aspects. However, there is another
metric called the F1 score, which is a weighted average of precision and recall. Both
precision and recall have an equal relative contribution to the F1 score. Regarding
accuracy, the F1 score scales from 0 to 1 (100%) [28].

In the upcoming performance comparison of the algorithms, the AUC indicator is
also applied (AUC = 0: not suited; AUC = 1: ideal: 1). It was used in the previous research

Figure 6. Correlation matrix of currently used in OBerA features (0.00: no correlation, ±1.00:
high correlation).

Sensors 2021, 21, 5896 13 of 17

All features show correlation coefficients in the range [−53.79%; 56.76%] which is
indicating an average correlation. The distance door sensor (door status tool holder, see
Figure 2) shows only one changing state over the complete changeover period, which
results in a very low correlation in the range of [−9.00%; 7.59%].

In summary, all the described analyses show that the data belong to a higher dimen-
sional problem and cannot be reduced on a subset of the independent variables.

5.2. Performance Metrics

The methods used to evaluate how well algorithms for classification are performing
are divided into two categories: graphical and numerical. Graphical methods are plots that
are interpretable by humans, while numerical methods present a single number to describe
the performance of a classifier [25] (p. 462).

The most commonly used evaluator in machine learning nowadays is accuracy, as it
shows the overall performance of an algorithm by presenting the probability of the true
value of the class label [26] (p. 1018). The closer accuracy is to a value of 1 (or 100%), the
better the algorithm is performing in general.

However, for imbalanced datasets, accuracy proved to be a rather misleading perfor-
mance indicator due to the fact that the minority of classes have less weight than those of
the majority. This negatively affects the classifier when performing on rare classes. Skewed
data lead to skewed results [27] (p. 8).

Two other known metrics are precision and recall (sensitivity). Precision evaluates
how good the predictive power of the algorithm is, while recall gives information on
how effective the algorithm is on a single class [26] (p. 1018). Precision tells how correct
the classifier was when classifying samples as positives, while recall shows how well the
samples that needed to be classified as positive were classified as such [25] (p. 467).

Neither precision nor recall are better metrics for an imbalanced dataset than accuracy
due to their specific focus on the respective aspects. However, there is another metric called
the F1 score, which is a weighted average of precision and recall. Both precision and recall
have an equal relative contribution to the F1 score. Regarding accuracy, the F1 score scales
from 0 to 1 (100%) [28].

In the upcoming performance comparison of the algorithms, the AUC indicator is
also applied (AUC = 0: not suited; AUC = 1: ideal: 1). It was used in the previous research
work and was introduced in Section 2. Furthermore, the confusion matrix technique, which
shows the classification performances, is applied. Details for this technique can be found
in [3].

5.3. Comparison of the Results

Table 8 compares the performance of the algorithms Neural Network, Decision Tree,
SVM, Balanced Random Forest, and Random Forest on the classification of two phases,
five phases, and 21 phases. It can be seen from Table 8 that binary classification (two
phases) yields the best results. With additional phases, the performance of all algorithms
decreases. Balanced RF shows a loss of 64% and Neural Networks show a loss of 35% from
two-phase classification to 21 phases. Random Forest shows superior results for all phases
classification, losing only 4% from two-phase to 21-phase classification. As an overall
conclusion, it can be derived that Decision Trees and (Balanced) Random Forest yield the
leading results.

Table 8. Performance of algorithms measured in terms of macro average F1 score.

Algorithm F1 Score Two Phases F1 Score Five Phases F1 Score 21 Phases

Neural Network 86% 70% 51%
Decision Trees 95% 92% 88%

SVM 87% 81% 70%
Balanced RF 96% 70% 32%

Random Forest 97% 96% 93%

Sensors 2021, 21, 5896 14 of 17

For further comparison, Figure 7 presents the classical confusion matrices for all
algorithms as well as the Area Under the Curve (AUC) performance indicator.

Sensors 2021, 21, 5896 15 of 19

work and was introduced in Section 2. Furthermore, the confusion matrix technique,
which shows the classification performances, is applied. Details for this technique can be
found in [3].
5.3. Comparison of the Results

Table 8 compares the performance of the algorithms Neural Network, Decision Tree,
SVM, Balanced Random Forest, and Random Forest on the classification of two phases,
five phases, and 21 phases. It can be seen from table 8 that binary classification (two
phases) yields the best results. With additional phases, the performance of all algorithms
decreases. Balanced RF shows a loss of 64% and Neural Networks show a loss of 35% from
two-phase classification to 21 phases. Random Forest shows superior results for all phases
classification, losing only 4% from two-phase to 21-phase classification. As an overall
conclusion, it can be derived that Decision Trees and (Balanced) Random Forest yield the
leading results.

Table 8. Performance of algorithms measured in terms of macro average F1 score.

Algorithm F1 Score Two Phases F1 Score Five Phases F1 Score 21 Phases
Neural Network 86% 70% 51%
Decision Trees 95% 92% 88%

SVM 87% 81% 70%
Balanced RF 96% 70% 32%

Random Forest 97% 96% 93%

For further comparison, Figure 7 presents the classical confusion matrices for all
algorithms as well as the Area Under the Curve (AUC) performance indicator.

Figure 7. Detailed performance of each OBerA model.

From the figure 7, it can be seen that despite the relatively high AUC score (94.21%),
the Neural Network performed with 86% F1 score. The confusion matrix provides a better
overview by showing that the Neural Network misclassified 718 production samples as
changeover.

On the other hand, SVM/SVC performed better in terms of F1 score, but the AUC is
11% lower compared to the Neural Network and is actually the lowest among all models.
The confusion matrix shows the same issue with production phase misclassification (690).

Figure 7. Detailed performance of each OBerA model.

From the Figure 7, it can be seen that despite the relatively high AUC score (94.21%),
the Neural Network performed with 86% F1 score. The confusion matrix provides a
better overview by showing that the Neural Network misclassified 718 production samples
as changeover.

On the other hand, SVM/SVC performed better in terms of F1 score, but the AUC is
11% lower compared to the Neural Network and is actually the lowest among all models.
The confusion matrix shows the same issue with production phase misclassification (690).

The standard Decision Tree proved to be rather effective by achieving a 95% F1 score.
In addition, there were fewer problems with misclassification despite the imbalanced
dataset (186).

The Balanced Random Forest from the imblearn library shows even better results with
slightly less production-phase misclassification (105) but slightly higher changeover-phase
misclassification (173).

Lastly, the standard Random Forest ensemble algorithm has the best performance on
the OBerA dataset, scoring 97%, and the lowest rate on changeover misclassification (129).
A few more production labels are wrongly classified as changeover compared to Balanced
Random Forest. However, the AUC score is very good with a value of 99.72%.

Finally, it can be concluded that the Decision Trees/(Balanced) Random Forest algo-
rithms are performing very well on the underlying OBerA dataset.

6. Summary, Conclusions and Further Research

After an introduction in Section 1, the preceding research work was summarized in
Section 2: The ML model that was created in the former work showed a general feasibility
for modeling changeover detection. Nevertheless, the model performance showed potential
for improvements. In Section 3, all adjustments to the original approach were described.
The complete ML project was transferred from MATLAB to Python to increase the flexibility
in data processing. At the same time, the choice of ML algorithms was extended by Neural
Networks. While in the former research work, only two phases were classified by the ML
methods, the technique was broadened by five-phase and twenty-one-phase approaches
(Section 3.1). Furthermore, the sensor setup was enhanced by an indoor GPS tracking
system (Section 3.2). While applying the same data-handling concept as in the former
research work (Section 3.3), the data preparation was adjusted (Section 3.4). To avoid a
loss in training data, missing values were interpolated instead of dropping entire rows
of data. In addition, the data for all the doors were converted into binary data (status
open/close), outliers were eliminated, and scaling was applied. In Section 4, all the used
ML methods were briefly explained, and the main hyperparameters for each ML method

Sensors 2021, 21, 5896 15 of 17

were introduced. At last, in Section 5, the research results were presented. In Section 5.1,
it was shown that the set of chosen independent variables for the ML models cannot be
reduced any further and represent the underlying problem completely. In Section 5.2, the
chosen performance metrics for ML methods were explained and applied in Section 5.3.
The Random Forest ML method showed the best performance of all applied ML models
(97% for two phases, 93% for 21 phases). While many other ML methods showed weaker
performances the greater the number of changeover phases classified, the Random Forest
ML method only showed small performance reductions. Similarly, the Decision Tree
showed a very good performance (95% 2 Phases, 88% 21 Phases).

For the operational application of ML for the changeover detection, it can be concluded
from the results that only the two-phase approach guarantees a high quality of detection.
To derive general strategies for a company’s changeover process, this might be sufficient,
e.g., for product calculations, totals for changeover times and production times are used.
To support detailed ergonomic improvement techniques, an automatic detection system
for a maximum of phases e.g., the twenty-one-phase approach, might be better suited. It
needs to be clarified in future research work if the present state of the results is sufficient
for this task.

To further validate the results of the presented work, the detection system needs
to be used on different machines with the same manufacturing technologies (milling).
When a validation is achieved, the transfer of the shown technique to other manufacturing
technologies such as turning can be considered.

In the performance analysis of the different ML methods, the F1 score was utilized for
the underlying imbalanced classification problem. As the supporting metrics, AUC score
was chosen in place of MSE and RMSE, which do not provide the trade-off information
between class data and can lead to suboptimal solutions in cases where class weights are
not properly determined [29] (p. 5). There are further improved methods to use with
imbalanced datasets, which are discussed in the paper of Chicco and Jurman [30] (p. 10),
as well as in Akosa’s work [31]. Namely, the Matthews correlation coefficient (MCC) shall
be used in the future research for model evaluation in case of imbalanced data.

Finally, it needs to be pointed out that the shown technique is based on an external
sensor setup. No data from machine controls were used so far. Neither were more
sophisticated approaches such as AI or Human Action Recognition applied yet [32]. This
approach was chosen as in SMEs, often old and heterogeneous machine landscapes are
found, and machine controls often do not offer data interfaces. Figure 8 shows multiple
signals from an UpToDate internal machine control data interface, which is established
with the SIEMENS AMP interface (AMP: Analyze My Performance). In future research, the
existing model shall be enriched by the usage of machine control data e.g., the configured
override status, to further increase the performance of the changeover detection task.

Sensors 2021, 21, 5896 17 of 19

not properly determined [29] (p. 5). There are further improved methods to use with
imbalanced datasets, which are discussed in the paper of Chicco and Jurman [30] (p. 10), as
well as in Akosa’s work [31]. Namely, the Matthews correlation coefficient (MCC) shall be
used in the future research for model evaluation in case of imbalanced data.

Finally, it needs to be pointed out that the shown technique is based on an external
sensor setup. No data from machine controls were used so far. Neither were more
sophisticated approaches such as AI or Human Action Recognition applied yet [32]. This
approach was chosen as in SMEs, often old and heterogeneous machine landscapes are
found, and machine controls often do not offer data interfaces. Figure 8 shows multiple
signals from an UpToDate internal machine control data interface, which is established
with the SIEMENS AMP interface (AMP: Analyze My Performance). In future research,
the existing model shall be enriched by the usage of machine control data e.g., the
configured override status, to further increase the performance of the changeover
detection task.

Figure 8. Signals from the internal machine control interface with SIEMENS AMP.

Author Contributions: Conceptualization, B.E.; methodology, B.E.; software, V.B., M.H. and N.N.;
hardware, E.M. and V.B.; validation, V.B., M.H. and N.N.; formal analysis, B.E. and J.S.;
investigation, all authors; resources, B.E. and J.S.; data curation, all authors; writing—original draft
preparation, all authors; writing—review and editing, all authors; visualization, all authors;
supervision, B.E. and J.S.; project administration, B.E.; funding acquisition, B.E. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the funding support of the OBerA project by the state
of Bavaria (Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie, Grant
no. IUK 530/10).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The underlying dataset as well as the Python source code are available
under https://github.com/ValdsteiN/OBerA-Enhanced-Changeover-Detection-in-Industry-4.0-
environments-with-Machine-Learning.

Acknowledgments: The authors gratefully thank the Pabst GmbH for their contribution in the
research.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 8. Signals from the internal machine control interface with SIEMENS AMP.

Sensors 2021, 21, 5896 16 of 17

Author Contributions: Conceptualization, B.E.; methodology, B.E.; software, V.B., M.H. and N.N.;
hardware, E.M. and V.B.; validation, V.B., M.H. and N.N.; formal analysis, B.E. and J.S.; investigation,
all authors; resources, B.E. and J.S.; data curation, all authors; writing—original draft preparation, all
authors; writing—review and editing, all authors; visualization, all authors; supervision, B.E. and
J.S.; project administration, B.E.; funding acquisition, B.E. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors gratefully acknowledge the funding support of the OBerA project by the state
of Bavaria (Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie, Grant
no. IUK 530/10).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The underlying dataset as well as the Python source code are available
under https://github.com/ValdsteiN/OBerA-Enhanced-Changeover-Detection-in-Industry-4.0-
environments-with-Machine-Learning.

Acknowledgments: The authors gratefully thank the Pabst GmbH for their contribution in the research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Europäische Kommission—Empfehlung der Kommission Vom 6. Mai 2003 Betreffend Die Definition der Kleinstunternehmen

Sowie der Kleinen und Mittleren Unternehmen. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=
CELEX:32003H0361&from=DE (accessed on 29 July 2021).

2. Digitalisierung im Mittelstand: Status Quo, Aktuelle Entwicklungen und Herausforderungen. Available online: https://www.
econstor.eu/bitstream/10419/145963/1/866079378.pdf (accessed on 29 July 2021).

3. Engelmann, B.; Schmitt, S.; Miller, E.; Bräutigam, V.; Schmitt, J. Advances in Machine Learning Detecting Changeover Processes
in Cyber Physical Production Systems. J. Manuf. Mater. Process. 2020, 4, 108. [CrossRef]

4. Tran, T.A.; Ruppert, T.; Abonyi, J. Indoor Positioning Systems Can Revolutionise Digital Lean. Appl. Sci. 2021, 11, 5291. [CrossRef]
5. Vojdani, N.; Erichsen, B. Anwendungspotenziale von maschinellem Lernen in der Produktion und Logistik. Logist. J. Proc.

2020, 12. [CrossRef]
6. VDI-Richtlinien—Verfügbarkeit von Maschinen und Anlagen. Available online: https://www.vdi.de/fileadmin/pages/vdi_de/

redakteure/richtlinien/inhaltsverzeichnisse/1739582.pdf (accessed on 29 July 2021).
7. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
8. Lämmel, U.; Cleve, J. Künstliche Intelligenz: Wissensverarbeitung–Neuronale Netze, 5th ed.; Carl Hanser: München, Germany, 2020.
9. Backhaus, K.; Erichson, B.; Weiber, R. Fortgeschrittene Multivariate Analysemethoden, 3rd ed.; Springer Gabler: Wiesbaden,

Germany, 2015.
10. Shihab, K. A backpropagation neural network for computer network security. J. Comput. Sci. 2006, 2, 710–715. [CrossRef]
11. Gupta, S.; Bagga, S.; Sharma, D.K. Intelligent Data Analysis: Black Box Versus White Box Modeling. In Intelligent Data Analysis:

From Data Gathering to Data Comprehension, 1st ed.; Gupta, D., Bhattacharyya, S., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2020;
pp. 1–14.

12. Patel, H.; Prajapati, P. Study and Analysis of Decision Tree Based Classification Algorithms. Int. J. Comput. Sci. Eng. 2018, 6, 74–78.
[CrossRef]

13. Bargagli-Stoffi, F.J.; Niederreiter, J.; Riccaboni, M. Supervised Learning for the Prediction of Firm Dynamics. In Data Science for
Economics and Finance, 1st ed.; Consoli, S., Recupero, D.R., Saisana, M., Eds.; Springer Nature: Cham, Switzerland, 2021.

14. Scikit-Learn—Decision Tree Classifier. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html (accessed on 30 July 2021).

15. Bishop, C.M. Pattern recognition and machine learning. In Information Science and Statistics, 2nd ed.; Jordan, M.I., Nowak, R.,
Schoelkopf, B., Eds.; Springer: New York, NY, USA, 2012; Volume 1, p. 738.

16. Scicit-Learn—SVC. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html (accessed on
3 August 2021).

17. Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. In Ensemble Machine Learning: Methods and Applications; Zhang, C., Ma,
Y., Eds.; Springer: New York, NY, USA, 2012.

18. Azar, A.T.; Elshazly, H.I.; Hassanien, A.E.; Elkorany, A.M. A random forest classifier for lymph diseases. Comput. Methods
Programs. Biomed. 2014, 113, 465–473. [CrossRef] [PubMed]

19. Ng, A.; Soo, K. Random Forests. In Data Science—Was Ist das Eigentlich?!; Ng, A., Soo, K., Eds.; Springer: Berlin/Heidelberg,
Germany, 2018.

20. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

https://github.com/ValdsteiN/OBerA-Enhanced-Changeover-Detection-in-Industry-4.0-environments-with-Machine-Learning
https://github.com/ValdsteiN/OBerA-Enhanced-Changeover-Detection-in-Industry-4.0-environments-with-Machine-Learning
https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32003H0361&from=DE
https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32003H0361&from=DE
https://www.econstor.eu/bitstream/10419/145963/1/866079378.pdf
https://www.econstor.eu/bitstream/10419/145963/1/866079378.pdf
http://doi.org/10.3390/jmmp4040108
http://doi.org/10.3390/app11115291
http://doi.org/10.2195/lj_Proc_erichsen_de_202012_01
https://www.vdi.de/fileadmin/pages/vdi_de/redakteure/richtlinien/inhaltsverzeichnisse/1739582.pdf
https://www.vdi.de/fileadmin/pages/vdi_de/redakteure/richtlinien/inhaltsverzeichnisse/1739582.pdf
http://doi.org/10.3844/jcssp.2006.710.715
http://doi.org/10.26438/ijcse/v6i10.7478
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://doi.org/10.1016/j.cmpb.2013.11.004
http://www.ncbi.nlm.nih.gov/pubmed/24290902
http://doi.org/10.1023/A:1010933404324

Sensors 2021, 21, 5896 17 of 17

21. Using Random Forest to Learn Imbalanced Data. Available online: https://statistics.berkeley.edu/sites/default/files/tech-
reports/666.pdf (accessed on 29 July 2021).

22. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]
23. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
24. Van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3211–3245.
25. Gu, Q.; Zhu, L.; Cai, Z. Evaluation Measures of the Classification Performance of Imbalanced Datasets. In Communications in

Computer and Information Science, 1st ed.; Cai, Z., Li, Z., Kang, Z., Liu, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2009;
Volume 51, pp. 461–471. [CrossRef]

26. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for
Performance Evaluation. In AI 2006: Advances in Artificial Intelligence, 1st ed.; Sattar, A., Kang, B., Eds.; Springer: Berlin/Heidelberg,
Germany, 2006; Volume 4304, pp. 1015–1021. [CrossRef]

27. Weiss, G. Mining with rarity: A unifying framework. SIGKDD Explor. 2004, 6, 7–19. [CrossRef]
28. Scikit-Learn—F1_Score. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

(accessed on 30 July 2021).
29. Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag.

Process. 2015, 5, 1–11.
30. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef] [PubMed]
31. Akosa, J. Predictive Accuracy: A Misleading Performance Measure for Highly Imbalanced Data. In Proceedings of the SAS

Global Forum, Orlando, FA, USA, 2–5 April 2017; pp. 1–12.
32. Chenarlogh, V.A.; Razzazi, F.; Mohammadyahya, N. A Multi-View Human Action Recognition System in Limited Data Case using

Multi-Stream CNN. In Proceedings of the 2019 5th Iranian Conference on Signal Processing and Intelligent Systems, Shahrood,
Iran, 18–19 December 2019; pp. 1–11.

https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
http://doi.org/10.1002/wics.101
http://doi.org/10.1007/978-3-642-04962-0_55
http://doi.org/10.1007/11941439_114
http://doi.org/10.1145/1007730.1007734
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
http://doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477

	Introduction
	Summary of Preceding Research Work
	Setup and Enhancement of the Research Technique
	Changeover Phases
	Adjusted Sensor Concept
	Data Handling Concept
	Adjusted Data Preparation

	Application of Machine Learning for Changeover Detection
	Neural Networks
	Decisision Trees
	Support Vector Machine
	(Balanced) Random Forest

	Discussion
	Evaluation of the Independent Variables
	Performance Metrics
	Comparison of the Results

	Summary, Conclusions and Further Research
	References

