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Abstract: This study aims to solve the problems of poor exploration ability, single strategy, and high
training cost in autonomous underwater vehicle (AUV) motion planning tasks and to overcome
certain difficulties, such as multiple constraints and a sparse reward environment. In this research,
an end-to-end motion planning system based on deep reinforcement learning is proposed to solve the
motion planning problem of an underactuated AUV. The system directly maps the state information
of the AUV and the environment into the control instructions of the AUV. The system is based on
the soft actor–critic (SAC) algorithm, which enhances the exploration ability and robustness to the
AUV environment. We also use the method of generative adversarial imitation learning (GAIL)
to assist its training to overcome the problem that learning a policy for the first time is difficult
and time-consuming in reinforcement learning. A comprehensive external reward function is then
designed to help the AUV smoothly reach the target point, and the distance and time are optimized
as much as possible. Finally, the end-to-end motion planning algorithm proposed in this research is
tested and compared on the basis of the Unity simulation platform. Results show that the algorithm
has an optimal decision-making ability during navigation, a shorter route, less time consumption,
and a smoother trajectory. Moreover, GAIL can speed up the AUV training speed and minimize the
training time without affecting the planning effect of the SAC algorithm.

Keywords: autonomous underwater vehicle (AUV); deep reinforcement learning (DRL);
soft actor–critic (SAC); generative adversarial imitation learning (GAIL); motion planning

1. Introduction

Autonomous underwater vehicles (AUVs) with their autonomy and flexibility play an
important role in seabed surveying and mapping, ocean monitoring, underwater structure
survey, information collection, and other aspects with the continuous advancement of com-
puter software and hardware and the artificial intelligence (AI) technology in modern times.
Intelligence is the overall development trend of the AUV technology, and motion planning
technology is the basis for AUV to autonomously navigate and complete various tasks.

1.1. Background

Motion planning is guided by global path planning, using local environment infor-
mation obtained online by sensing devices and generating discrete or continuous spatial
path points or control information at the bottom of the robot, allowing the planning of the
position, speed, and acceleration of the AUV during its motion. This task needs to satisfy
two conditions. (1) Completeness: when all types of constraints are satisfied, the system
can successfully plan a collision-free route to the target point. (2) Optimality: the shortest
route must be taken, and the least time or energy consumption must be expended while
completing the basic planning tasks.

In the actual process, the AUV motion planning task has the following difficulties:
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• AUV motion planning becomes a difficult problem in navigation due to the uncertainty
of the marine environment, the system dynamic constraints of the AUV itself, and the
limitations of obstacle avoidance sonar and other sensor devices in the perception of
the marine environment.

• In many early methods, the motion planning task is divided into two parts, namely,
path planning and following, and the design process is complicated. These two
modules depend on the characteristics of the environment and the dynamic constraints
of the system, resulting in a sensitive system. Therefore, the robot can only obtain
strategies in a single environment and lacks adaptability to the environment.

• Most existing methods have low exploration ability, easily fall into the local optimum,
and cannot achieve the goal of the AUV motion planning task under the condition of
multiple constraints.

RL is a research hotspot in the field of machine learning. In recent years, RL has
been successfully applied to the fields of robot planning, control, and navigation. This
field aims to make the agent continuously learn in the process of interaction with the
environment and judge the rationality of action selection by calculating the cumulative
expected return value after executing the action in the current state. End-to-end learning
can be achieved by combining with deep learning (DL). Specifically, the input-to-output
mapping relationship can be directly constructed through the model, which can save a
substantial amount of time. The application of deep reinforcement learning (DRL) [1]
technology in AUV motion planning research can give full play to the advantages of
reinforcement learning. A series of decision sequences that consider long-term effects can
be generated through self-interactive training, which can greatly improve the robustness
and adaptability of the AUV to complex environments.

However, the application of DRL in AUV motion planning tasks is still in early
development, and the following difficulties have been encountered:

• DRL is an unsupervised method. Some algorithms require tens of millions of inter-
actions with the environment to learn a successful strategy. The training speed is
considerably slow, and the cost is high. This problem is also aggravated by the large
number of hyperparameters that need to be adjusted.

• The reward function is difficult to set, and the quality of the design directly affects the
training success. However, the reward function at this stage is only independently
formulated by the researcher according to the research problem, and no guiding rule
has been established. Furthermore, AUV motion planning is a sparse reward task.
In the initial stage of the training process, the robot cannot easily obtain a positive
reward value, resulting in a complicated training.

1.2. Related Work

The following are the categories of AUV motion planning algorithms in the process
of continual development. (1) Methods based on geometric model search (visualization,
Dijkstra, A*, D* algorithm, etc.) [2,3]: we need to build a geometric model of the planning
environment to use this type of method. The trajectory planned by this method is not
smooth and cannot meet the maneuverability of the AUV. Every new plan must be cal-
culated from scratch, and there is a lack of intelligent understanding of motion planning.
(2) Sampling-based method (rapidly exploring random tree) [4]: the method can search
high-dimensional space quickly and effectively, but it also has disadvantages, such as
the planning result not being optimal and the planned path not being smooth enough.
(3) Artificial potential field method [5]: this method requires less environmental informa-
tion and is convenient to operate; however, it easily falls into the local optimum problem.
(4) Curve interpolation method (Bezier curve, polynomial curve, B-spline curve, Dubins
curve, etc.) [6,7]: this type of algorithm is relatively intuitive, the planned trajectory is
also very smooth, and the curvature changes continuously. The disadvantage is that the
calculation is large, the real-time performance is not good, and it is difficult to find the best
evaluation function. (5) Method based on AI: this mainly includes ant colony algorithm,
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genetic algorithm, and reinforcement learning methods (RL) [8–10]. The main advantages
of these algorithms are that we do not need to build a complicated environmental obstacle
model. AUV can perform random or specific search in the space of the environment and
deal with various complex problems under multiple constraints.

At present, a large amount of literature has studied motion planning based on AI.
Bai et al. [11,12] proposed a co-evolutionary multi-population genetic algorithm and several
clustering-based algorithms, which solves the problem of time optimality in multi-vehicle
task assignment in the drift field by combining with optimal control theory. Li et al. [13] pro-
posed an improved ant colony algorithm. The improved method sets the initial pheromone
concentration based on the location information of the current feasible target point and the
end point, which solves the problem of AUV path planning, accelerates the convergence
speed of training, and reduces the generation of local optimal solutions. Camci [14] pro-
posed an end-to-end motion planning system based on DRL for quadrotor. This system
uses the original depth image obtained from the front camera and directly generates a local
motion plan in the form of smooth motion primitives while avoiding obstacles and moving
to the target. However, the camera cannot easily capture a clear image in the underwater
complex environment. The image is difficult to map to the control policy of the AUV.
Doukhi [15] designed an end-to-end local motion planning system for autonomous aerial
robots based on RL, which directly maps the noisy robot’s own state and laser scanning
measurement to continuous motion control to complete the navigation task to reach the
target point. The obtained policy can perform collision-free flight in the real world. Cheng
et al. [16] used convolutional neural networks to extract the characteristics of sensor infor-
mation and designed a comprehensive reward function related to obstacle avoidance, target
approach, speed correction, and attitude correction. The obstacle avoidance problem of
underactuated unmanned marine vessels was realized on the basis of the deep Q-network
(DQN) architecture. Then Sun et al. [17] proposed an AUV path planning method in a
three-dimensional environment based on the DQN framework and combined with the
prioritized experience replay. Sun et al. [18] realized multi-constraint motion planning
of AUV in an unknown environment based on the proximal policy optimization (PPO)
algorithm. This mechanism can realize a single-step update and can face discrete and
continuous controls compared with the traditional policy gradient method. However, PPO
is an on-policy algorithm that requires considerable sampling to learn, resulting in low
sample efficiency. Butyrev et al. [19] proposed a mobile robot motion planning method
based on the Deep Deterministic Policy Gradient (DDPG) algorithm. The system takes
the position, speed, and direction of the robot as inputs and considers the kinematic and
dynamic constraints of the robot. Moreover, the system randomly generates the target state
and outputs the actual motion speed and steering angle, thereby solving the problem of
motion planning in the continuous state and motion space. However, DDPG is a determin-
istic policy algorithm because only the optimal action is considered in each state, and the
robot will only find an optimal path.

Haarnoja [20,21] released the soft actor–critic (SAC), which is suitable for the real-
world robot skill learning and can be highly consistent with the requirements of robot
experiments. In recent years, SAC has been widely used in autonomous decision-making,
intelligent planning, and motion control of mobile robots, UAVs, and manipulators.
Prianto et al. [22] presented a deep reinforcement learning-based path planning algorithm
for the multi-arm manipulator. To solve the problem of high-dimensional path planning,
SAC is used to enhance the exploration performance of the robotic arm. The experiments
show that the algorithm can find the shortest path at any starting and target positions,
and the generated path is shorter and smoother than the existing results. Wong et al. [23]
designed a SAC-based motion planning method for a dual-arm robot with two seven-
degrees-of-freedom manipulator arms, which enables the robot to effectively prevent
self-collision while avoiding the joint limits and singularities of the manipulator arm.
Liu et al. [24] proposed a mobile robot planning and navigation method through deep
reinforcement learning in a dense pedestrian environment. First, the A* algorithm is
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used for global path planning. Subsequently, the SAC algorithm is used to make ac-
tion decisions along the nodes generated on the global path. Cheng [25] successfully
solved the autonomous decision-making problem of drones based on the SAC algorithm.
The experimental results show that the drone can learn to change the trajectory in a short
time through the SAC algorithm to avoid being intercepted and adjust the trajectory to suc-
cessfully land to the target point. In the field of autonomous driving of automobiles,
the SAC-based deep-enhanced planning system can handle various complex scenar-
ios [26,27]. However, SAC is rarely used in the field of underwater vehicles at present.

The pros and cons of various algorithms for AUV motion planning are shown in
Table 1. SAC has the following advantages compared with other algorithms: (1) SAC is
an off-policy algorithm; (2) the performance of this algorithm is less sensitive to different
hyperparameter values than other RL algorithms, thereby greatly reducing the time spent
in adjusting hyperparameters; (3) SAC is a DRL algorithm based on maximum entropy,
which can greatly enhance the exploration ability of AUV. In a complex and changeable
environment, such as underwater, SAC can also find the optimal solution of the planning
and complete the specified task under multiple constraints [28].

Table 1. The pros and cons of several algorithms.

Algorithm Pros Cons

Geometric model search Simple and easy to implement
Low flexibility, poor real-time

performance, lack of intelligent
understanding

Rapidly exploring random tree Search in high-dimensional space quickly
and efficiently The planning result is not optimal

Artificial potential field method Simple operation and high real-time
performance Local optimal problem

Curve interpolation The algorithm is intuitive, and the
planned trajectory is also very flat

A large amount of calculation and low
real-time performance

Genetic algorithm Good robustness and easy to combine
with other methods Slow convergence speed

RL

DQN
Solve the problem of dimension disaster

when the state and action space is too
large

Single-step update, only applicable to
discrete spaces and actions

DDPG Solve the motion problem in the
continuous action space

The randomness of the strategy is low,
and the convergence effect is poor

PPO It can face both discrete control and
continuous control On policy, low sample efficiency

SAC
Off policy, less sensitive to different

hyperparameter values, strong
exploration ability and high robustness

Learning a policy from scratch is difficult
and time-consuming

Imitation learning Fast convergence speed with expert
guidance

Good expert samples are difficult to
obtain

We often encounter a problem in the process of using reinforcement learning to train
agents. Learning a policy from scratch is difficult and time-consuming [29]. A good
solution is imitation learning (IL). This method enables the agent to learn the expert’s
policy from the expert’s demonstration. The following are two main ways to solve the
imitation problem: the first way is behavioral cloning (BC) [30], which takes the policy as a
supervised learning problem to learn state-action pairs from expert trajectories. The BC
method has been used to successfully learn many different missions, such as quadrotor
navigation [31] and autonomous ground vehicle navigation [32]. The operation of BC is
simple; however, it will only succeed in the case of a large amount of data [33,34] due to
the compound error caused by the covariate shift [35]; hence, there are certain limitations.
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The second method is inverse reinforcement learning (IRL) [36]. IRL essentially learns
a cost function under which the expert policy is the only optimal one, which can avoid
the covariate shift problem in BC. In recent years, IRL has been applied in a range of
fields, from predicting the behavior of taxi drivers [37] to planning the steps of quadruped
robots [38]. However, IRL are typically computationally expensive in the recovery of expert
cost function.

Generative adversarial networks (GAN) have been successful in image generation [39,40]
and have inspired similar methods of imitating behavior. Generative adversarial imitation
learning (GAIL) [41] introduces the GAN into IRL and imitates the behavior of experts
through direct policy optimization rather than learning the cost function first [42]. GAIL
consists of a generator that generates the distribution of state-action pairs and a discrimi-
nator that distinguishes the generated distribution from the target constructed by expert
demonstration samples. The reward function of GAIL encourages the generator to confuse
the discriminator and aims to learn close-to-optimal behaviors directly from expert demon-
strations and self-exploration [43,44]. The discriminator network is trained to distinguish
agent and expert behavior through observation and used as a reward function. GAIL al-
lows agents to overcome exploration challenges through the use of expert demonstrations,
while also making it possible to achieve high asymptotic performance. GAIL has been
applied in the certain fields, such as autonomous driving, mobile robot map coverage,
robot motion planning, and joint control, and has achieved good results [45,46].

1.3. Proposed Solution

The main contributions of this research are as follows. This research designs an end-
to-end AUV motion planning method based on the SAC algorithm to solve the problems
of poor exploration ability, single strategy, and high training cost in AUV motion planning
task in the background and overcome certain difficulties, such as multiple constraints and
a sparse reward environment. Furthermore, the GAIL method is used to assist its training,
and the AUV is directed by experts, which reduces the cost of interaction between the AUV
and the environment and solves the difficult and time-consuming problem of learning
strategies from scratch in reinforcement learning. Therefore, the proposed SAC-GAIL
algorithm not only exerts the high exploratory nature of SAC but also has the characteristics
of rapid convergence of GAIL. Finally, a comprehensive reward function related to speed,
distance, and heading angle is designed to avoid the problem of sparse reward.

In addition to the facts described above, the research process also has the following difficulties:

• Useful samples and expert demonstrations for AUV are difficult to collect in IL.
The quality of the demo also has a greater impact on the training effect.

• GAIL introduces a survivor bias in the learning process, which encourages the agent
to live as long as possible by giving positive rewards based on the similarity with the
expert, which directly conflicts with goal-oriented tasks. In this case, the proportions
of GAIL signals and external rewards are difficult to coordinate.

The rest of this paper is organized as follows. Section 2 constructs the maneuverability
model of AUV and formulates the motion planning problem. This study directly maps
the state information of the AUV and the environment into the control instructions of the
AUV based on the DRL method, realizing the end-to-end processing of the information.
Section 3 determines the state and action spaces of the AUV. GAIL is used to guide the AUV
to imitate the behavior of experts based on the deep reinforcement learning framework
of SAC, and an AUV motion planning system based on SAC-GAIL is proposed. Finally,
the setting of reward function is introduced in detail. A simulation experimental platform is
built to verify the end-to-end motion planning system proposed in this paper and analyze
the experimental results in Section 4. Section 5 presents the conclusions.
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2. AUV Model and System Description
2.1. Preliminaries

Experiments were performed using a small AUV (Figure 1). The length of the AUV
was 1.46 m, and its mass was 45 kg. The AUV was mainly equipped with underwater
detection sensors, such as a doppler velocity log (DVL) and an obstacle avoidance sonar
(OAS), to detect the environment based on its own information. DVL can obtain the speed
information of AUV, and OAS can acquire the position information of the obstacle and
target point. The parameter information of AUV and sensor is shown in Tables 2 and 3.

Figure 1. Major components of the AUV.

Table 2. AUV parameters.

Parameter Value

m 45 kg
L 1.46 m

X .
u

1 −1.5777 × 10−3

Y .
v −3.0753 × 10−2

Y.
r 9.4196 × 10−4

N .
r −1.012 × 10−1

Xu|u| −5.9 × 10−3

Yv|v| −1.6687 × 10−1

Yv|r| 0
Yr|v| 0
Yr|r| 1.258 × 10−1

Nv|v| 0
Nv|r| 0
Nr|v| 0
Nr|r| −1.2432 × 10−1

1 X∗, Y∗, N∗ denotes the hydrodynamic coefficient.

Table 3. Sensor parameters.

Sensors Parameter Value

DVL
Frequency 600 kHz
Accuracy 1% ± 1 mm/s

Maximum Velocity ±20 knots

OAS
Sharp Angle 17◦ ± 2◦

Range 0.6~120 m
Reliable Range 1~20 m
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Only the horizontal motion of AUV is considered in this work. The horizontal motion
of the AUV is composed of three parts: surge, sway, and yaw. The main definitions of
motion symbols in this research adopt the symbols recommended by the International
Towing Tank Conference, as shown in the figure. The state of the AUV can be represented
by vector υ = [u, v, r]T and η = [x, y, ψ], which represent the speed information and
position information of the AUV, respectively. ψ is the heading angle of the AUV, and [x, y]
is the position in the earth-fixed inertial frame. The linear velocities [u, v, r]T correspond to
surge and sway, and yaw in the body-fixed frame of the AUV. Only the horizontal motion
is considered in this research, which means that the vertical velocity, roll velocity, and pitch
velocity of the AUV are ignored. In this case, the nonlinear motion equation of AUV can be
described as follows [47]:

.
η = R(ψ)υ, (1)

M
.
v = τ − C(v)v− D(v)v− g(η) + τw, (2)

where R(ψ) is the three degree of freedom coordinate transformation matrix of AUV
horizontal motion, which has the following properties: R(ψ)T R(ψ) = I, and for all ψ:
‖R(ψ)‖ = 1. In general, d

dt{R(ψ)} =
.
ψR(ψ)S, where

R(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

, S 3DOF
=

 0 −1 0
1 0 0
0 0 0

. (3)

The system inertia matrix M = MA + MRB > 0 is the combination of added mass
matrix MA and rigid-body matrix MRB. The surge, sway, and yaw motions are decoupled
because of the symmetry of the inertia matrix of the system. The added mass matrix of
AUV can be obtained as follows:

MA =

 −X .
u 0 0

0 −Y .
v −Y.

r
0 −Y.

r −Nr

. (4)

AUV is commonly assumed to have a homogeneous mass distribution and an xz-plane
symmetry; hence, Ixy = Iyz = 0. Let the body-fixed frame coordinate origin be set in the
centerline of the AUV in the point; accordingly, yg = 0. Let xg = 0 to simplify the process.
Based on the above assumption, the matrix related to rigid body motion is simplified
as follows:

MRB =

 m 0 0
0 m 0
0 0 Iz

. (5)

After merging, we the following results are obtained:

M =

 m− X .
u 0 0

0 m−Y .
v −Y.

r
0 −Y.

r Iz − N.
r

, (6)

where I∗ is the moment of inertia of the AUV.
C(v) represents the Coriolis centripetal force matrix and has the following properties:

C(v) = −C(v)T . The anti-symmetric matrix is also composed of two parts:

C(v) = CA(v) + CRB(v), (7)

where:

CA(v) =

 0 0 Y .
vv + Y.

rr
0 0 −X .

uu
−Y .

vv−Y.
rr X .

uu 0

, (8)
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CRB(v) =

 0 0 −mv
0 0 mu

mv −mu 0

, (9)

where M = MT , CRB(v) = −CRB(v)
T , and CA(v) = −CA(v)

T . D(v) is the hydrodynamic
damping matrix of AUV, which can be expressed as follows:

D(v) = −

 Xu|u||u| 0 0
0 Yv|v||v|+ Yv|r||r| Yr|v||v|+ Yr|r||r|
0 Nv|v||v|+ Nv|r||r| Nr|v||v|+ Nr|r||r|

, (10)

where gη is the force and moment produced by gravity and buoyancy; however, it is
ignored because only the plane motion of AUV is considered in this research.

τ denotes the vector of the control input. The AUV studied in this research is un-
deractuated, and the number of system inputs is less than that of motion degrees of
freedom. Specifically,

τ =
[

τu 0 τr
]
, (11)

where τu and τr represent the surge force and yaw moment, respectively.

2.2. Problem Formulation

The motion planning of AUV is a complex multi-constraint problem, and its basic
task is to avoid obstacles while reaching the target point. In the actual movement process,
the sensor is required to transmit information, st ∈ S34, about the environment and its own
state to the AUV and output the planning policy. According to the dynamic equation of
the AUV, the propeller outputs surge force and yaw moment to control the motion of the
underactuated AUV. Therefore, the end-to-end AUV motion planning system proposed in
this research directly maps the state information st to the AUV’s actions at = (τu, τr) ∈ A2

at each moment. Therefore,

at = (τu, τr) = f (st) ∈ A2. (12)

st = (xt, vt, ot). (13)

The input information st for AUV motion planning includes the position information
xt of the target point and AUV, the actual velocity information vt of AUV, and the obstacle
information ot detected through the obstacle avoidance sonar. In this research, sensor
information fusion and filtering are not discussed.

In Figure 2, the planning system based on the RL algorithm gives the AUV a certain
reward value rt according to the quality of the behavior to adjust the probability of per-
forming each action, and the AUV will be in the next state. DRL is employed to update
the strategy πθ by adjusting the weight of the neural network wi. The above process is
repeated, and the AUV will continue to interact with the environment until the optimal
policy π∗θ is obtained, which is a complete Markov decision process (MDP) [48]. AUV can
obtain a complete smooth trajectory Trajectory = (s0, a0, s1, a1, . . . . . . , send) through a series
of state action sequences, where send is the terminal state.

Figure 2. Markov decision process.
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3. Method
3.1. State Space and Action Space of AUV

The AUV acquires the observation vector according to the state space it is in, takes it as
the input value of the neural network, and makes the corresponding decision through the
motion planning system. The AUV needs to be provided with the right information for it to
successfully learn the task. A good rule of thumb for deciding what information to gather
is to consider all the data needed to arrive at a solution to the task. However, the size of the
observation vector should also be limited to a certain range because the input of the neural
network becomes larger with the increase in the AUV state space dimension. Moreover,
the algorithm needs a larger neural network structure to fully extract its features, resulting
in the increase in the training time. The irrelevant information selected will interfere with
the training process and even lead to training failure. As presented in the previous chapter,
state information st = (xt, vt, ot) ∈ S34 includes the position information xt of the target
point and AUV, the actual velocity information vt of AUV, and the obstacle information ot
detected through the obstacle avoidance sonar.

First, xt = (xd, xr) ∈ R3 should include not only the distance information xd between
the AUV and the target point, but also their relative position information xr. xd is helpful
for the AUV to approach the target point. In the experimental process of this research,
the position of the target point is random; hence, it is not enough to obtain the distance
between them. The position information xr of the AUV and the target point in the world
coordinate system must also be obtained.

xr =
(

xgoal − xAUV , ygoal − yAUV

)
∈ R2, (14)

where (xAUV , yAUV) and
(

xgoal , ygoal

)
represent the coordinates of the AUV and the target

point in the world coordinate system, respectively. According to the AUV motion planning
task, we do not need to know all the position information of either of them. We just need
to know the relative position of the AUV and the target point. Thus, xt ∈ R3.

Second, the velocity information of the AUV vt =
(
vs, vψ

)
∈ R4 should include the

size of the AUV speed vs and the direction of the movement vψ. In the maneuverability
equation of the AUV, the trajectory planned by AUV is greatly related to its own speed,
which is introduced into the neural network as an observation vector. vs can be obtained
by DVL combined with the inertial navigation system. vs = (u, v, r) ∈ R3. However,
this factor only includes the magnitude of the velocity. The direction of the velocity will
also affect the success of the AUV motion planning task. A vector (x, y) to represent the
direction of the surge velocity u requires two values, which increases the dimension of the
state space; hence, it can be expressed by the following formula:

vψ = Angle(u, xr), (15)

where u represents the vector of the surge velocity of the AUV, xr represents the vector
of the AUV position pointing to the target position, and Angle(u, xr) denotes the angle
between two vectors. Based on this method, a numerical value can be used to express the
direction of the velocity, and vψ can train the ability of the AUV to point to the target point
in the speed direction and reduce the distance of the trajectory.

Finally, an obstacle avoidance sonar must be used to obtain obstacle position infor-
mation ot to help AUV avoid obstacles in real time. The maximum detection distance of
sonar is 20 m. Figure 3 shows the AUV sonar model. The AUV is equipped with a total of
10 obstacle avoidance sonars; accordingly, it can detect obstacle distance information in
ten directions; hence, ot ∈ R10 is a 10-dimensional state space.



Sensors 2021, 21, 5893 10 of 31

Figure 3. AUV sonar model.

In the actual process, we normalize the value of the observation vector to the range
[−1, +1] or [0, 1]. This normalization processing is based on the mean value and variance
of the observation vector. In this way, the convergence rate of the neural network is faster
in most cases.

AUV will inevitably encounter certain situations, such as unclear target locations,
detection equipment failure, and loss of tracking targets, due to the uncertainty of the
underwater environment. This situation is a big challenge for motion planning tasks. Part
of the observations received by the planning system often includes incomplete information.
To overcome this problem, we use a memory enhancement method. A limited “memory”
can be provided to an agent via a stacked approach without the complexity of adding a
recurrent neural network. Stack means repeating the observations from the previous step
as a larger observation vector as input to the neural network. For example, when the agent
performs four steps, Table 4 shows the effect of stack:

Table 4. Effect of stack.

Steps Observation Vector Observation Vector After Stacking 1

Step 1 [0.6] [0.6, 0.0, 0.0]
Step 2 [0.4] [0.6, 0.4, 0.0]
Step 3 [0.9] [0.9, 0.4, 0.6]
Step 4 [0.2] [0.2, 0.9, 0.4]

1 We set the size of the stack to three here.

In this way, the neural network can compare the behavior of the AUV and the changes
in the reward value in several observations before and after. Accordingly, the neural
network can better extract the characteristics of the observation vector. For example,
the size of the stack in this experiment is set to two; hence, the state space of the AUV in
this research is 17× 2 = 34 dimensions, and the observed vector values available are also 34.
The neural network can better update its parameters and achieve the training goal through
the difference of the reward value when the information, such as the distance difference
and speed difference between the two steps before and after the AUV, changes. However,
the size of the stack should be limited to a certain range according to the different tasks of
its own, because a simple change of its value will cause the dimension of the observation
vector to exponentially increase or decrease, which will affect the training result.

The two types of action space are discrete and continuous. The discrete action space
simplifies the AUV’s motion model, which can effectively reduce the difficulty of the task
and improve the efficiency of exploration. The training time of the continuous motion
space is longer, but the convergence effect is better. The planned trajectory is smoother in
the robot motion planning task, and it is closer to its real motion state than discrete motions.
However, the probability of each action cannot be directly calculated because of the infinite
actions. We can only obtain the probability distribution of actions in a certain action space.
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Next, we want to parameterize a policy that expresses the distribution of actions. The most
commonly used distribution is the Gaussian distribution:

π(a|s, f ) =
1

σ(s, f )
√

2π
exp

(
− (a− µ(s, f ))2

2σ(s, f )2

)
. (16)

According to Equation (11), the external force output by the propeller only includes
the surge force τu and yaw moment τr and does not include the transverse thrust. These
factors can control the surge velocity and yaw angular velocity of AUV and change its
trajectory. Therefore, the motion space of the motion planning problem described in this
research is a 2D motion space. In this research, the output value of the neural network is
controlled between (−1,1), and a simple linear transformation is carried out:

τu = clip(−1, 1)× 201 + 10, (17)

τr = clip(−1, 1)× 30. (18)

The action vectors τu ∈ (−10, 30) and τr ∈ (−30, 30) are two floating-point numbers,
the sign indicates the direction of force, and the absolute value denotes the magnitude of
force and moment. The purpose of the transformation is to select an appropriate action
boundary based on the actual physical model, avoid missing actions, and remove irrelevant
actions. The purpose of τu ∈ (−10, 30) is to impose a certain limit on the deceleration on
the action output and reduce the movement state of the AUV backward.

3.2. SAC

SAC is an off-policy actor–critic model following the reinforcement learning frame-
work. This model incorporates the entropy measure of the policy into the reward to
encourage exploration. The purpose of training is not only to maximize the sum of ex-
pected returns but also to maximize the entropy of the policy. The objective function [49]
is defined as follows:

J(π) =
T

∑
t=0

E(st ,at)∼ρπ
[r(st, at) + αH(π(·|st ))], (19)

H(π(·|st )) = −∑
at

π(at|st) log π(at|st), (20)

where π is the policy, H(π(·|st )) is the entropy term, and α denotes the temperature parameter,
which can control the proportion of this entropy term in the total reward. The larger the value
of α, the stronger the randomness of the strategy. ρπ(s) and ρπ(s, a) denote the state and
state-action marginals of the state distribution induced by the policy π(at|st).

According to the soft Bellman equation [50,51], the soft action value function Qso f t(st, at)
and soft state value function Vso f t(st) are defined as follows:

Qso f t(st, at) = r(st, at) + γEst+1∼ρ

[
Vso f t(st+1)

]
. (21)

Vso f t(st) = Eat∼π

[
Qso f t(st, at)− α log π(at|st)

]
. (22)

SAC is committed to learning three functions:

1. πφ(st|at) with the neural network parameter φ
2. Soft action value function Qθ(st, at) with the neural network parameter θ
3. Soft state value function Vψ parameterized by ψ. In principle, there is no need to set a

separate function approximator for the state value, because Vψ can be derived from Q
and π, according to Equation (22).
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The soft Q-function is trained to minimize the soft Bellman residual:

JQ(θ) = E(st ,at)∼D[
1
2
(
Qθ(st, at)−

(
r(st, at) + γEst+1∼ρ

[
Vθ(st+1)

]))2
], (23)

where D denotes the replay buffer. According to Equation (22), Vθ can be replaced by
Qθ(st+1, at+1), and Equation (23) is optimized by stochastic gradients:

∇̂θ JQθ
= ∇θQθ(st, at)

[
Qθ(st, at)−

(
r(st, at) + γ

(
Qθ(st+1, at+1)− α log

(
πφ(at+1|st+1)

)))]
, (24)

where target soft Q-function with parameters θ is obtained from θ through exponentially
moving average (EMA). The specific update method of θ is as follows:

θ = τθ + (1− τ)θ, (25)

where τ ∈ [0, 1] determines the magnitude of the update.
The objective function of the policy network is to minimize the KL-divergence between

two distributions:

Jπ(φ) = DKL

(
πφ(·|st) ‖ exp

(
1
α Qθ(st, ·)− log Z(st)

))
= Est∼D,at∼πφ

[
log
(

πφ(at |st)

exp( 1
α Qθ(st ,·)−log Z(st))

)]
= Est∼D,at∼πφ

[
log πφ(at|st)− 1

α Qθ(st, at) + log Z(st)
] , (26)

where Z(st) denotes the partition function. Then, we need to obtain the gradient of Jπ(φ).
However, Equation (26) needs to be simplified before this. We can get (multiplied by α and
ignore the log-partition function log Z(st), because it does not affect the gradient of Jπ(φ)
to φ:

Jπ(φ) = Est∼D
[
Est ,at∼D

(
α log πφ(at|st)−Qθ(st, at)

)]
, (27)

where πφ(at|st) is not differentiable. Hence, we use the reparameterization trick to get the
action here.

at = fφ(εt; st) = f u
φ (st) + εt � f σ

φ (st). (28)

The f function outputs the mean and variance, and the ε is noise, sampling from the
standard Gaussian distribution. The whole process is completely differentiable using this
trick. Equation (27) can be rewritten as follows:

Jπ(φ) = Est∼D,εt∼N
[
α log πφ

(
fφ(εt; st)

∣∣st
)
−Qθ

(
st, fφ(εt; st)

)]
. (29)

Then, the gradient of Jπ(φ) is:

∇̂θ Jπ(φ) = ∇φα log
(
πφ(at|st)

)
+
(
∇at α log πφ(at|st)−∇at Q(st, at)

)
∇φ fφ(εt; st). (30)

In most cases, temperature parameter α, which determines the success of training,
is difficult to set. However, using a fixed α is unreasonable due to the constant change
in reward, which will make the whole training unstable and lose the advantage of SAC’s
low dependence on hyperparameters. Therefore, we hope that the neural network can
automatically adjust the size of α to ensure that it can be adjusted to different values in
various states. When an AUV explores a new area, α is increased to encourage it to explore
more possibilities. When an optimal policy has been achieved in a certain state, α is reduced
to gradually converge.

Theorem 1. We can use entropy as a constraint to solve the optimization problem of policy and α:

max
π0:T

Eρπ

[
T

∑
t=0

r(st, at)

]
s.t.∀t, H(πt) ≥ H0, (31)
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where H0 is a minimum entropy threshold. Based on the above constrained optimization problem,
the objective function of temperature parameter α can be obtained as follows:

J(α) = Eat∼πt [−α log πt(at|st)− αH0]. (32)

Proof of Theorem 1. See Appendix A. �

We will use stochastic gradient descent methods to ensure that the system will auto-
matically select the appropriate temperature coefficient α to keep the entropy of the policy
in a dynamic balance suitable for training.

Figure 4 shows the neural network structure of the SAC algorithm designed in this
research. The structure is the same as the general actor–critic framework. The actor
is responsible for executing decisions. Meanwhile, the critic is responsible for guiding
whether the actor’s decision is correct. The actor is composed of a policy network, and
the mean and variance of the Gaussian distribution are outputted in the actual process.
The critic borrows the idea of DDQN to reduce the positive bias in the policy improvement
step. In the actual design process, two soft Q-function networks are used, with parameters
θ1 and θ2. The minimum value min

k=1,2
Qθk (st, at) between these factors is used to train

the policy network. Two target Q-function networks are used to update the Q-function
network, and their own parameters, θ1,2, are updated using Equation (25) in a small amount.
In addition to training the soft Q function and policy, we also learn α by minimizing the
objective function in Equation (32). Afterwards, the experience is collected through the
continuous interaction between the AUV and the environment, the transition (st, at, rt, st+1)
is stored in the replay buffer D, and mini-batch experience is sampled from the replay
buffer each time. Finally, we use the method of stochastic gradient descent to train the
neural network parameters.

Figure 4. Neural network structure of the SAC algorithm.

The algorithm flow of this article based on SAC shown in Algorithm 1.
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Algorithm 1: SAC

1: Input: θ1, θ2, φ BInitial parameters
2: θ1 ← θ1 , θ2 ← θ2 BInitialize target network weights
3: D ← ∅ BInitialize replay buffer
4: for each iteration do
5: for each environment step do
6: at ∼ π f (at|st) BSample action from the policy
7: st+1 ∼ p(st+1, st, at) BSample transition from the environment
8: D ← D ∪ {(st, at, rt, st+1)} BStore the transition in the replay buffer
9: end for
10: for each gradient step do
11: θi ← θi − λQ∇̂θi JQ(θi) f or i ∈ {1, 2} BUpdate the Q-function parameters
12: φ← φ− λπ∇̂ f Jπ(φ) BUpdate policy weights
13: α← α− λ∇̂α J(α) BAdjust temperature
14: θi = τθi + (1− τ)θi f or i ∈ {1, 2} BUpdate target network weights
15: end for
16: end for
17: Output: θ1, θ2, φ BOptimized parameters

3.3. GAIL

A problem is often encountered in the process of using reinforcement learning to
train agents. In some environments with sparse rewards or only end rewards, the initial
reward in the environment for the policy obtained by the random initialization of the
neural network is difficult to obtain. Therefore, a good solution is to obtain a pre-trained
neural network with expert characteristics through IL to help the agent better explore
the environment. In most cases, IL can be used to obtain a policy from behavioral data
generated by the expert. A common method of IL is based on IRL, which first learns the
cost function of expert data and uses RL methods to learn the expert policy.

The objective function of maximum entropy inverse reinforcement learning is
introduced [52]:

IRLψ(πE) = argmax
c∈C

− ψ(c) +
(

min
π∈Π
− H(π) + Eπc(s, a)

)
− EπE [c(s, a)]. (33)

The problem is not fully constrained because many policies may lead to the same trajec-
tory; hence, the entropy term H(π) is added to the original IRL formula. c ∈ C : S× A→ R
denotes the cost function. ψ : C → R is the regularizer of the cost function, which will
assign a value to each cost function c to solve the problem of easy overfitting under small
data sets. ∏ contains all stationary stochastic policies that take actions in A given states
in S. πE is the expert policy. The output here is the desired cost function. The second
step of this framework is to input the learned cost function into a standard reinforcement
learning problem. We use the state–action occupancy distribution ρ to express the above
the problem. ρπ(s, a) represents the state–action distribution encountered when the agent
uses the policy to interact with the environment.

Define ρπ(s, a) = π(a|s)∑∞
t=0 γtP(st = s|π), where st+1 ∼ P(st+1|st, at).

For any cost function c,

Eπ [c(s, a)] = E

(
∑
s,a

ρπ(s, a)c(s, a)

)
. (34)

Then, an entropy-regularized version of RL can be described as follows:

RL ◦ IRLψ(πE) = argmin
π∈Π

− H(π) + ψ∗(ρπ − ρπE), (35)
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where ψ∗(ρπ − ρπE) = supc∈C(ρπ − ρπE)
Tc − ψ(c) denotes the convex conjugate of ψ,

which represents a measure of similarity between the occupancy measures of the expert
policy πE and the agent policy π. The purpose of training is achieved by maximizing
entropy and minimizing the occupancy distribution of the two policies.

Different regularizers ψ(c) represent various IL algorithms. We define GAIL as fol-
lows [41]:

ψGA(c) ,
{

EπE [g(c(s, a))] i f c < 0
+∞ otherwise

, where g(x) =
{
−x− log(1− ex) i f x < 0

+∞ otherwise
, (36)

where ψGA is derived from the idea of binary classification. The regularizer has a lower
penalty to the cost function c, which assigns a certain amount of negative cost to the expert
state action pairs. However, if c allocates large costs (close to zero) to experts, then ψGA
will severely punish.

Then, we can obtain:

ψ∗GA(ρπ − ρπE) = max
D∈(0,1)S×A

Eπ [log D(s, a)] + EπE [log(1− D(s, a))], (37)

where D : S× A→ (0, 1) denotes the discriminator. Equation (37) is equivalent to using a
negative log loss function to distinguish between π and πE. The expression of the convex
conjugate of the cost regularizer is substituted into objective Equation (37). We can obtain
the objective function of GAIL [53]:

min
π∈∏

max
D∈(0,1)

Eπ [log D(s, a)] + EπE [log(1− D(s, a))]− λH(π). (38)

The optimal loss in Equation (37) is equal to the Jensen–Shannon divergence of
two distributions, namely,

ψ∗GA(ρπ − ρπE) = DJS(ρπ , ρπE) , DKL(ρπ ||(ρπ + ρπE)/2) + DKL(ρπE ||(ρπ + ρπE)/2).
(39)

Then, we can obtain:

minimize
π

ψ∗GA(ρπ − ρπE)− λH(π) = DJS(ρπ , ρπE)− λH(π). (40)

Figure 5 shows the neural network structure of GAIL. GAIL’s network settings refer
to the idea of GAN, and the structure includes a generator G, which is the policy network
here, denoted by πφ(a|s), with weights φ. The structure also contains a discriminator Dω

with weights ω. The discriminator tries to distinguish whether the samples are generated
by experts or by the policy π. We use an Adam gradient algorithm to make Equation (38)
increase for ω. The purpose of generator G is to confuse discriminant classifier D to ensure
that it cannot distinguish whether the trajectory is from the expert or policy. Specifically,
the Jensen–Shannon divergence between the occupancy measure of the policy ρπ and the
occupancy measure of the expert policy ρπE is minimized. The discriminator can be used
to obtain a reward function, which, in our case, is simply rGAIL = − log D(s, a). In the
original GAIL algorithm, we use trust region policy optimization (TRPO) to update the
policy π with the internal reward function.

In this research, the SAC algorithm is used in the policy network, and GAIL plays an
auxiliary role in training. When the expert samples in the demonstration are ineffective,
the optimal policy cannot be obtained by only relying on the method of IL. The idea of
maximum entropy in GAIL is consistent with the purpose of SAC and can be combined
well. Furthermore, SAC is off-policy, which improves the sample efficiency compared
with the original GAIL algorithm using TRPO to train the network. The combination of
GAIL and SAC enhances the agent’s exploration performance compared with using the
GAIL algorithm alone, and GAIL can assist it in accelerating training. However, GAIL
introduces a survivor bias in the learning process, which encourages the agent to live as
long as possible by giving positive rewards based on the similarity with the expert. This
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notion is in direct conflict with goal-oriented tasks (such as the AUV motion planning task
in this research, encouraging the AUV to reach the target point as soon as possible, thereby
ending the episode as quickly as possible). In this case, we should use low strength GAIL
reward signals when the AUV completes the task and guide the learning process of the
AUV by mixing the GAIL reward signal and the external reward signal. In this way, the
GAIL reward signal will guide the AUV in navigating until it finds the reward value signal
of the external environment.

Figure 5. Neural network structure of the GAIL algorithm.

3.4. Reward Function

In this research, a motion planning algorithm based on maximum entropy deep rein-
forcement learning is proposed to solve the motion planning problem of an underactuated
AUV in an unknown environment. The reward function is a key component of the plan-
ning system, which implicitly specifies the goal of the task to be solved. This function
serves as the only feedback system using a scalar signal to evaluate the performance of the
control behavior. In comparison with the supervised learning algorithm, the signal is more
evaluative than guiding [54]. The setting of the reward function is related to the quality
of the execution strategy and determines the speed and degree of the convergence of the
reinforcement learning algorithm.

In this research, the flow chart of obtaining rewards is shown in Figure 6. When the
AUV reaches the target point, it achieves a positive reward value, and the episode ends;
when the AUV collides with an obstacle, it achieves a negative reward value, and the
episode ends. These rewards are regarded as terminal reward item rend:

rend =

{
r1 i f achieve goal
r2 i f collision

. (41)
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Figure 6. Flow chart of obtaining rewards.

In other cases, the AUV continues to move. However, the motion planning itself is a
task with sparse reward value because the number of times the target point can be reached
is only a handful in the sample. It is not enough to rely on termination reward. The task
objective should be decomposed, and the design of the reward value should be closely
related to the state input. The distance reward item is designed as follows to encourage the
AUV to approach the target point:

rdis tan ce =

{
k1(dold − dnew) i f dold − dnew ≤ 0
k2(dold − dnew) i f dold − dnew > 0

, (42)

where dold and dnew represent the distance between the AUV and the target point at the
last and the current times, respectively; and k1 and k2 denote the weight of the reward
value, respectively. When the distance between the last time and the target point is greater
than the current time, the AUV is constantly close to the target point and will receive a
positive reward; otherwise, it will receive punishment. During the experiment, k1 > k2,
which is used to avoid abnormal behavior of AUV in the training process. If k1 ≤ k2, then
the agent will become “greedy”. The best profitable choice for AUV is not to arrive at
the target position as soon as possible, but to constantly repeat the “close-away” actions.
In this way, the profit far exceeds that of directly reaching the target point. Therefore,
the purpose of k1 > k2 is to urge the AUV to reach the target point as soon as possible.

The AUV motion planning task must satisfy not only the goal of completeness but
also the constraints of optimality. When the task of reaching the target point and avoiding
obstacles is completed, the distance s should be as short as possible, or the time t is as short
as possible, and the movement trajectory is smoother. However, making all these factors in
the actual process optimal is difficult due to the constraints in environmental conditions
and considering the factors of AUV system dynamics. Therefore, the motion state of AUV
is constrained as follows: we hope that, when there is no obstacle in front of the AUV,
the heading direction of the AUV can point to the target point and sail along a straight line.
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When the sailing direction is accurate and fixed, the velocity u can be as large as possible
to ensure that it can reach the target point quickly. Therefore, the reward items related to
surge velocity u and heading angle are set as follows:

rs = k3 · |u| · cos(Angle(u, xr)), (43)

where k3 is the weight of reward value, and Angle(u, xr) ∈ [0, π] denotes the angle
between u and xr. The definitions of u and xr are the same as the state space. When
Angle(u, xr) ∈

[
0, π

2
]
, rs ≥ 0. When the angle is zero, i.e., the direction of surge velocity of

AUV points to the target point, the reward is the largest and increases with the increase
in surge velocity u. When Angle(u, xr) ∈

(
π
2 , π

]
, rs < 0. Specifically, the AUV will be

punished when it is far from the target point.
Performing a backward movement for a long time is discouraged in the actual plan-

ning process of AUV. Given the difficulty of control of AUV, high navigation resistance,
and low propeller efficiency at this time, a penalty item must be set to limit the form of
movement. However, a short-term backward process can sometimes increase the flexibility
of the AUV and make its navigation route shorter; hence, the value of this reward item
should be coordinated with the above problems, not only to prevent the AUV from retreat-
ing for a long time, but also to avoid losing this state of motion. Therefore, reward item ru
limited by velocity u is expressed as follows:

ru = r3 i f u < 0. (44)

Accordingly, the total reward function is set as follows:

r =



r1 i f achieve goal
r2 i f collision
k1(dold − dnew) i f dold − dnew ≤ 0
k2(dold − dnew) i f dold − dnew > 0
k3 · |u| · cos(Angle(u, xr)) every step
r3 i f u < 0

. (45)

4. Simulation and Results

In this section, simulation experiments are conducted to verify the effectiveness of the
end-to-end AUV motion planning system, designed, in this research, based on the above
AUV model and the proposed GAIL-SAC algorithm. Unity software is used for visual
simulation, the program is written based on C # and python languages, the neural network
is built by torch, and the model is trained by GPU. The experiment uses a NVIDIA Titan V
graphics card with i9-7980XE processor and 32 GB of RAM.

Figure 7 shows the experimental environment of the AUV. The environment size is
set to 100 × 100 m, and the origin of the coordinate system is at the geometric center of
the map. The motion planning task requires the AUV to reach the position of the green
cylinder, which is the target position, while avoiding yellow and orange obstacles during
the navigation. In comparison with other regular-shaped obstacles, such as rectangles,
cross-shaped obstacles’ shapes and sizes are more difficult for sonar to detect in unknown
environments. Therefore, this aspect is a challenge to the intelligent level of AUV.

During the training, the positions of the AUV and the target point are reset at the
beginning of each episode. The initial position of the AUV is always at the origin of the co-
ordinate system and the heading points to the positive direction of the x-axis. To avoid such
a scenario, the AUV only learns the policy in a single environment, but it can complete the
task in a variety of environments. The position of the target point is not fixed, but randomly
appears on a circle with a radius of 35 centered on the origin of the coordinates. In addition
to the termination of the episode caused by the AUV reaching the target point or colliding
with obstacles, the experiment also limits the maximum number of training steps per
episode to speed up the training and avoid the AUV from falling into a dead zone in a
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local position. When this value is exceeded, the episode will also end. Table 5 shows the
position and shape size (collision size) of each element in the environment. The vertical
position coordinates and height of each object in the environment are ignored because this
research only considers the motion of the AUV in the plane.

Figure 7. Experimental environment.

Table 5. Position and collision size of each element in the environment.

Element Position Collision Size

AUV (0,0) Same size as actual model

Goal

(
xgoal , k

√
352 − x2

goal

)
xgoal ∈

random(−1, 1) ∗ 35 k =
random(+1/− 1)

Radius = 1

/ Length Width

Cruciform Obstacle 1 (16.5, 16.5) 9 0.6
Cruciform Obstacle 2 (16.5, −16.5) 9 0.6
Cruciform Obstacle 3 (−16.5, −16.5) 9 0.6
Cruciform Obstacle 4 (−16.5, 16.5) 9 0.6

Rectangular Obstacle 1 (15, 45) 8 1
Rectangular Obstacle 2 (45, 15) 8 1
Rectangular Obstacle 3 (45, −15) 8 1
Rectangular Obstacle 4 (15, −45) 8 1
Rectangular Obstacle 5 (−15, −45) 8 1
Rectangular Obstacle 6 (−45, −15) 8 1
Rectangular Obstacle 7 (−45, 15) 8 1
Rectangular Obstacle 8 (−15, 45) 8 1

After considerable experimental adjustment, the parameter settings of the reward
value are shown in Table 6.

Table 6. Parameters of the reward value.

Reward Parameter Value

r1 +20
r2 −20
k1 10 × 10−1

k2 10 × 10−2

k3 π/(180 × 25,000)
r3 −10 × 10−5
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In this research, three methods, namely, PPO, SAC, and SAC-GAIL, are used for
experimental comparison to explore the effect of AUV’s motion planning under their
guidance. The specific experimental parameter are shown in Table 7.

Table 7. Specific experimental parameters.

Parameters PPO SAC

batch_size (number of experiences in each iteration of gradient descent) 2048 256

buffer_size (number of experiences to collect before updating the policy model) 20,480 1,000,000

learning rate 0.0003 0.0003

learning_rate_schedule (determines how the learning rate changes over time) Linear decay Fixed constant

β (strength of the entropy regularization in PPO) 0.001 /

ε (influences how rapidly the policy can evolve during training in PPO) 0.2 /

λ (regularization parameter used when calculating the Generalized Advantage Estimate
in PPO) 0.95 /

num_epoch (number of passes to make through the experience buffer when performing
gradient descent optimization in PPO) 3 /

tau (how aggressively to update the target network used for bootstrapping value
estimation in SAC) / 0.005

steps_per_update (average ratio of actions taken to updates made of the agent’s policy in
SAC) / 10.0

reward_signal_steps_per_update (number of steps per mini batch sampled and used for
updating the reward signals in SAC) / 10.0

hidden_units (number of units in the hidden layers of the neural network) 256 256

num_layers (the number of hidden layers in the neural network) 2 2

γ (discount factor for future rewards) 0.99 0.99

max_steps/per episode 16,000 16,000

max_steps 8,000,000 8,000,000

Multiple identical environments are present in the Unity interface in the actual training
process (Figure 8). In these environments, each AUV is an independent agent, but it is
equipped with the same planning system. The purpose of this condition is to speed up
the training. The 15 AUVs in the scene participate in the training and share the training
results, which exponentially saves the training time. Nonetheless, we cannot indefinitely
copy the scene because it will take up a considerable amount of computer memory. Finally,
the whole training takes approximately 10 h.

Figure 8. Real training environment in the Unity interface.



Sensors 2021, 21, 5893 21 of 31

During the training, the Unity script is called every 0.02 s, and the AUV makes de-
cisions every 0.1 s to select the appropriate action in the current state; hence, the time
consumption per unit step of the AUV is 0.1 s. We record the mean and variance of the re-
ward value every 20,000 steps and the number of steps required for each episode (episode
length). Figures 9 and 10 represent the relationship curve of the cumulative discount
reward value, the episode length, and the total number of steps in the training process.
The curves of three colors in the figure represent the training results of AUV motion plan-
ning under the guidance of PPO, SAC, and SAC-GAIL algorithms. In Figure 9, the reward
value of the three algorithms was in a low range at the beginning of the training because
AUV was still in the process of exploration at this time and did not obtain a good policy.
Accordingly, the probability of collision with obstacles was high, resulting in a low reward
value. Then, the curve gradually rose until it converged at approximately 20, which is
consistent with the terminal reward when the AUV reaches the target point. At this time,
the AUV learned an excellent policy and could successfully complete the assigned task.
The curve demonstrates that the SAC-GAIL algorithm has the fastest convergence speed
and ultimately reaches convergence at 100 W steps, which proves that GAIL speeds up the
training process of AUV and guides the AUV route in the form of experts. SAC and PPO
began to gradually converge in the 300 W steps. However, the reward value curve of the
SAC algorithm rose significantly faster than that of PPO. The curve of episode length shows
that the training result curves of the three algorithms all experienced a process of rising
first and then falling, and the rising process represents the exploration process of AUV.
The SAC-GAIL algorithm takes less exploration process and has the fastest convergence
speed compared with SAC and PPO algorithms, which is consistent with the result of the
reward value curve. The SAC and PPO algorithms sometimes even reached 10,000 steps
in the initial stage of training. However, SAC’s episode length is generally smaller than
that of the PPO algorithm. This notion means that the total number of training episodes
of SAC in the case of the same total steps is higher than that of PPO, and SAC has more
successful times during the training. Therefore, the exploration efficiency of AUV is higher.
When the total steps of SAC reached 300 W, the episode length was stable at approxi-
mately 250, roughly the same as that of SAC-GAIL. When the total steps of PPO reached
500 W, the episode length converged to approximately 500. The episode length size means
the time required for the AUV to complete the motion planning task, and the planned
trajectory is longer at the same speed. Therefore, the PPO algorithm is far inferior to the
SAC and SAC-GAIL algorithms in terms of time and distance optimality and does not find
the optimal decision sequence.

Figure 9. Curve of the reward value.
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Figure 10. Curve of the episode length.

After the training, the trained neural network model was saved to test the effectiveness
of the motion planning system. Figure 11 shows the result of testing after the AUV model
under the guidance of SAC-GAIL successfully completed training. The target position
was randomly generated, and 20 experiments were successively conducted. Curves of
different colors represented the actual sailing path of AUV for each time. AUV could suc-
cessfully arrive at the target point from the initial position without colliding with obstacles,
the trajectory was smooth, and the success rate of motion planning was 100%.

Figure 11. AUV motion trajectory.

We select one of the experiments for a brief analysis. Figure 12 shows the local
trajectory of the AUV. At this time, the position of the target point randomly appears at
coordinates (20.5, 28.4), and the initial direction of the AUV is the positive direction of
the x-axis. The local trajectory exhibits that the AUV accurately avoided the cross-shaped
obstacles. The heading successfully pointed to the green target point when the front was
unobstructed, the navigation distance was short, the trajectory was smooth, and the motion
planning task was successfully completed.
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Figure 12. AUV local trajectory.

The effectiveness and completeness of the motion planning system in this work is
impossible to judge with only the reward value and episode length curve in the training
process. Based on the above test process, the following is to verify the differences in the
route, planning time, and movement selection planned by AUV under the guidance of
PPO, SAC, and SAC-GAIL. The specific rules of the test process are the same as those in
the training process. The center position of the green cylinder goal is 35 m away from the
AUV’s center of gravity. After considering the radius of the cylinder goal and the AUV’s
own length, the shortest distance for the AUV to reach the target position is 33.27 m.

Figure 13 shows the six groups of actual planned trajectory routes. Table 8 records
the distance and time information of the trajectory planned by the three algorithms.
The table illustrates that the PPO algorithm is not as good as SAC and SAC-GAIL in
terms of distance or time, which can also be seen from Figure 13. During the voyage,
the AUV heading angle under the guidance of the PPO algorithm more sharply changes,
and the planned trajectory is not smooth enough. This difference is even more obvious
when the target points randomly appear to the left of the environment. At the same time,
according to the test results, it can be concluded that the difference in planning performance
between SAC and SAC-GAIL is very small. Therefore, the amount of data increased, and
30 sets of experiments were carried out. In the experiment of 30 groups, GAIL performed
better in 10 groups, and SAC performed better in seven groups. In the remaining 13 groups,
10 groups of data show that SAC-GAIL is better at planning distance, but the planning
time is slightly worse than that of the SAC algorithm. Only three sets of data show that
SAC-GAIL is better at planning time. I think the above results are mainly due to the
following reasons:

1. The instability of reinforcement learning training affects the results of the experiment.
Even when the number of training steps and other variables are consistent, the
strategies obtained after multiple trainings are not the same, resulting in different
training results. In some locations where there are more random generations and the
AUV is reached earlier, the obtained strategy is more complete, and the planned route
and time are better;

2. According to the reward curve and the episode length curve, SAC and SAC-GAIL
have completely reached convergence for 800 W training steps; however, the conver-
gence speed of SAC-GAIL is significantly faster. When the number of trainings is
sufficient, and the reward function is properly set, the AUV can explore the terminal
reward during the training process, and SAC can still play its advantages. If the total
number of training steps is limited to a smaller range, the planning effect of SAC will
be inferior to the SAC-GAIL algorithm;



Sensors 2021, 21, 5893 24 of 31

3. The quality of the samples in the demo used in the IL will also greatly affect the
effect of SAC-GAIL. The demo recorded in the model learning in this experiment is
recorded on the basis of the strategy obtained after the SAC algorithm training. Hence,
the planning effect is not much different from the SAC algorithm. The proportion of
the GAIL signal and the external rewards will also change the total rewards received
by the AUV in each episode, which will affect the strategies obtained;

4. In most cases, SAC-GAIL is superior to SAC in only one aspect of the planned
trajectory distance and planning time. The reason for this phenomenon is that AUV
motion planning can efficiently optimize time and distance at the same time. When
the AUV sails at a higher speed, there will be a larger turning radius and a longer
distance traveled per unit time. When the AUV wants to quickly reach the target point,
the distance limit must be discarded, and vice versa. GAIL introduces a survivor
bias in the learning process, which encourages the agent to live as long as possible
by giving positive rewards based on the similarity with the expert. This notion is in
direct conflict with goal-oriented tasks Therefore, the planned trajectory route based
on the SAC-GAIL algorithm is shorter in most cases; however, the planning time is
longer than that of the SAC algorithm.
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Table 8. Distance and time information of the trajectory planned.

Target Coordinates Index PPO SAC SAC-GAIL

(−15.4, 31.4)
Distance (m) 68.48 39.10 38.01

Time (s) 42.34 25.50 26.42

(16.8, 30.7)
Distance (m) 49.27 35.65 35.55

Time (s) 27.90 20.52 20.32

(25.0, 24.5)
Distance (m) 51.30 40.30 40.76

Time (s) 28.72 21.72 22.08

(−29.2, −19.3)
Distance (m) 75.10 39.96 37.60

Time (s) 50.16 31.56 32.40

(−11.6, −33.0)
Distance (m) 46.04 38.71 38.20

Time (s) 26.04 23.76 23.78

(23.1, −26.3)
Distance (m) 64.00 41.03 40.92

Time (s) 43.72 22.56 22.04
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Let us take the target point appearing at coordinates (−11.6, −33.0) as an exam-
ple, corresponding to the fifth picture in Figure 13. The specific decision-making pro-
cess of the AUV is analyzed from the direction of the dynamics and kinematics model.
Figures 14 and 15 show the variation curves of surge velocity and surge force with respect
to the steps in the episode, where the unit step time is 0.02 s, and the AUV makes decisions
every 0.1 s. The curves of surge velocity and force illustrate that the initial velocity of PPO
u0 > 0, while the other two algorithms choose to output the reverse thrust in the initial state
of the AUV and perform a short backward movement, so u0 < 0. We do not encourage the
AUV to perform long-term backward motion, but it does not mean that this motion state
is prohibited. In combination with Figure 13, this study concluded that the AUV under
the guidance of the PPO algorithm traveled a larger distance to change the heading angle
at the beginning of the episode. In the later stage of sailing, the velocity of AUV is stable
approximately 2.0 m/s, which is in line with the AUV dynamic model. When the surge
force remains unchanged, the hydrodynamic resistance of the AUV will increase with
the increase in velocity, allowing the AUV to maintain a stable velocity. The surge force
curve illustrates that the AUV under the guidance of PPO outputs 30 N thrust near the
initial state, which is the maximum force output by the propeller specified in this research.
The thrust output of the AUV under the guidance of SAC and SAC-GAIL gradually
changes, which is more in line with the actual situation of the actuators in the real world.
Figure 15 shows that the thrust output of the propeller is stable near the boundary action
when the AUV reaches a stable sailing state, which enables the AUV to quickly reach the
target position and meet the planning goal of time optimality.

Figure 14. Curve of surge velocity.

Figure 15. Curve of surge force.
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Figures 16 and 17 represent the curves of the yaw moment and angular velocity
in yaw output by AUV with respect to the number of steps in the episode, respectively.
The decision-making process of AUV cannot be seen directly from the yaw moment
curve, and the curve is oscillating because the AUV dynamic model is complex, and the
mapping from force to velocity requires a cumbersome calculation process. Therefore,
the effect can be shown by the change in the angular velocity in yaw and heading angle.
After 700 steps, the AUV angular velocity, under the guidance of SAC and SAC-GAIL,
changed within 0.1 rad/s. This notion means that the forward direction of AUV slowly
changed at this time, and the sailing trajectory was inclined to a straight line. However,
after 700 steps, the AUV guided by PPO moves in the opposite direction, and the angular
velocity in yaw gradually increases, which is the same as the trajectory effect in Figure 13.
Accordingly, the route planned by the AUV under the guidance of PPO is “S”, while the
trajectory of the AUV under the guidance of SAC and SAC-GAIL is a smooth arc and tends
to a straight line in the second half of the trajectory.

Figure 16. Curve of yaw moment output by AUV.

Figure 17. Curve of angular velocity in the yaw output by AUV.

In Figure 18, the curve of the change of the included angle between the navigation
direction of AUV and the target position relative to the number of steps in the episode is
shown. Here, the angle in the reward function is chosen to replace the heading angle in the
vertical axis of the coordinate system to reflect the selection of the navigation route of the
AUV better. The smaller the angle is, the smaller the included angle between the navigation
direction and the target position is. The curve demonstrates that the angle of AUV under
the guidance of PPO changes to 0◦ when the number of steps reaches approximately 480.
At this time, the navigation direction is optimal, and there is no obstacle in front of the
route; however, the curve of angle has a large lifting movement; hence, AUV does not sail
straight as we expected. In comparison with the other two algorithms, the heading angle
of AUV more sharply changes, and the navigation path is longer. The angle between the
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heading of the AUV and the target position under the guidance of SAC and SAC-GAIL
is gradually reduced and is finally maintained within 10◦. Therefore, the planned path is
shorter, which conforms to the rules of reward value setting.

Figure 18. Angle curve of AUV.

In summary, the decision-making process of AUV directly reflects the demand of the
reward function. The reason for the short backward movement is to complete the turn-
ing action at low velocity, reduce the angle between the heading and the target position,
and increase the discount reward value. However, this type of motion cannot be performed
for a long time because we give a penalty to the backward movement, and the time and
distance are also required to be as short as possible. Therefore, the system outputs the
boundary action as much as possible to obtain a larger acceleration and obtain a greater
sailing velocity and angular velocity in yaw. Under the constraints of such motion planning,
AUV seeks for a path that maximizes the accumulative discount reward value, that is,
a complete action decision sequence. In terms of planning results, SAC introduces max-
imum entropy; thus, it increases the exploration ability of AUV. In the motion planning
task, multiple routes can be utilized to avoid obstacles and reach the target point, and the
best route and control instruction among them should be chosen. When facing the same
task, especially in the case of more constraints, SAC can give full play to its advantages;
therefore, it is better than other algorithms. GAIL can also speed up the AUV training speed
and reduce the training time without affecting the planning effect of the SAC algorithm.

5. Conclusions

This research proposes an end-to-end AUV motion planning method based on the
SAC algorithm to solve the problems of poor exploration ability, single strategy, and high
training cost in AUV motion planning task and overcome certain difficulties, such as
multiple constraints and sparse reward environment. The system directly maps the state
information of the AUV and the environment into the control instructions of the AUV,
which realizes the end-to-end processing of the information. The method of GAIL is also
used to assist its training, and the AUV is guided in the form of experts, reducing the
cost of interaction between the AUV and the environment and solving the difficult and
time-consuming problem of learning strategies from scratch in reinforcement learning. We
also design a comprehensive reward function related to various factors, such as velocity,
distance, and heading angle, to encourage the AUV to smoothly reach the target position
and make the distance and time as optimal as possible. Finally, the motion planning
effects of the PPO, SAC, and SAC-GAIL algorithms are compared on the basis of the
Unity simulation platform. The results show that the end-to-end motion planning system
proposed in this research has better decision-making ability in the process of navigation,
shorter route, less time consumption, and smoother trajectory. After the introduction of
GAIL, the convergence speed of training has been greatly improved, although the effect of
AUV motion planning has not been greatly enhanced.
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The motion planning method proposed in this work still has some shortcomings.
GAIL improves the convergence speed of SAC, but does not significantly enhance the
motion planning effect of SAC. Even when the target point randomly appears in some
positions, the planning time and distance are not as good as the SAC algorithm. First,
the training under the same number of training steps and hardware conditions takes a
substantial amount of time to complete because the neural network structure becomes
more complex. Second, expert samples are difficult to obtain in many tasks. On the basis
of introducing a survivor bias, how to shorten the voyage distance and voyage time at
the same time and to coordinate the proportion of GAIL signal and external rewards is a
problem to be addressed in the future.
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Appendix A

Proof of Theorem A1. We can decompose the expected return maxEρπ

[
T
∑

t=0
r(st, at)

]
using

the idea of Dynamic Programming. We can maximize the return at different steps backward
in time because the policy πt at time t has no effect on the policy at the earlier time step πt−1

max
π0


E[r(s0, a0)] + max

π1
(E[. . .]) + max

πT
E[r(sT , aT)]︸ ︷︷ ︸

f irst︸ ︷︷ ︸
second last


︸ ︷︷ ︸

last

, (A1)

where we assume that γ = 1 for the convenience of calculation. Now, we start the
optimization from the last timestep T:

maxE(sT ,aT)∼ρπ
[r(sT , aT)] s.t.∀t, H(πT) ≥ H0. (A2)

We can choose the Lagrangian multiplier method to solve extreme value problems
with constraints. Now, we need to construct a Lagrangian expression:

L(πT , αT) = Eρπ

[
T

∑
t=0

r(st, at)

]
+ αT [H(πT)− H0], (A3)

where αT is the Lagrangian multiplier. We can limit α ≥ 0 to maximize L(πT , αT). If the
constraint is satisfied (i.e., H(πt) ≥ H0), then we can set αT = 0 because we have no

https://youtu.be/E7ncKYGgNCc
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control over the value of H(πT)− H0. Therefore, we can convert the problem of (A2) into
a dual problem:

maxE(sT ,aT)∼ρπ
[r(sT , aT)] s.t.∀t, H(πT) ≥ H0

⇓
min
αT≥0

max
πT

L(πT , αT)
. (A4)

Furthermore, we replace L(πT , αT) with Equation (A3):

max
πT

E(sT ,aT)∼ρπ
[r(sT , aT)] = min

αT≥0
max

πT
E(sT ,aT)∼ρπ

[r(sT , aT) + αT H(πT)]− αT H0. (A5)

In Equation (A5), given a fixed value of αT , we can get the optimal policy π∗T to
maximize L(π∗T , αT). Then, we plug in π∗T and compute α∗T that minimizes L(π∗T , αT).

Hence,
π∗T = argmax

πT

E(sT ,aT)∼ρπ
[r(sT , aT) + αT H(πT)− αT H0], (A6)

α∗T = argmin
αT≥0

E(sT ,aT)∼ρπ∗
[αH(π∗T)− αT H0]. (A7)

Then, according to soft Q value Equation (21):

QT−1(sT−1, aT−1) = r(sT−1, aT−1) + Eρπ [Q(sT , aT)− αT log πt(aT |sT)]. (A8)

Variable T is the last moment; hence, Q(sT , aT) = r(sT , aT). The previous expression
will be transformed to:

QT−1(sT−1, aT−1) = r(sT−1, aT−1) + Eρπ [r(sT , aT) + αT H(πT)], (A9)

Q∗T−1(sT−1, aT−1) = r(sT−1, aT−1) + max
πT

[r(sT , aT) + α∗T H(π∗T)]. (A10)

We take one step further back to the time step T−1, γ = 1, according to Equation (A10):

max
πT−1

(
E[r(sT−1, aT−1)] + max

πT
r(sT , aT)

)
= max

πT−1

[
Q∗T−1(sT−1, aT−1)− α∗T H(π∗T)

]
s.t. H(πT−1)− H0 ≥ 0

= min
αT−1≥0

max
πT−1

[
Q∗T−1(sT−1, aT−1) + αT−1H(πT−1)− αT−1H0

]
− α∗T H(π∗T)

. (A11)

At this time, we can get the optimal policy π∗T−1 and the optimal dual parameter α∗T−1
at T−1 time:

π∗T−1 = argmax
πT−1

E(sT−1,aT−1)∼ρπ

[
Q∗T−1(sT−1, aT−1) + αT−1H(πT−1)− αT−1H0

]
, (A12)

α∗T−1 = argmin
αT−1≥0

E(sT−1,aT−1)∼ρπ∗

[
αT−1H

(
π∗T−1

)
− αT−1H0

]
. (A13)

Finally, we can obtain the objective function of temperature parameter α by repeating
formulas (A12) and (A13):

J(α) = Eat∼πt [−α log πt(at|st)− αH0]. (A14)

�
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