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Abstract: Grain moisture content (GMC) is a key indicator of the appropriate harvest period of rice. 

Conventional testing is time-consuming and laborious, thus not to be implemented over vast areas 

and to enable the estimation of future changes for revealing optimal harvesting. Images of single 

panicles were shot with smartphones and corrected using a spectral–geometric correction board. In 

total, 86 panicle samples were obtained each time and then dried at 80 °C for 7 days to acquire the 

wet-basis GMC. In total, 517 valid samples were obtained, in which 80% was randomly used for 

training and 20% was used for testing to construct the image-based GMC assessment model. In total, 

17 GMC surveys from a total of 201 samples were also performed from an area of 1 m2 representing 

on-site GMC, which enabled a multi-day GMC prediction. Eight color indices were selected using 

principal component analysis for building four machine learning models, including random forest, 

multilayer perceptron, support vector regression (SVR), and multivariate linear regression. The SVR 

model with a MAE of 1.23% was the most suitable for GMC of less than 40%. This study provides a 

real-time and cost-effective non-destructive GMC measurement using smartphones that enables on-

farm prediction of harvest dates and facilitates the harvesting scheduling of agricultural machinery. 

Keywords: machine learning; grain moisture content; smart phone; optimal harvest timing; random 

forest; support vector regression; feature extraction; smart agriculture 

 

1. Introduction 

Grain moisture content (GMC), which represents the maturity of rice [1], is a key 

indicator for determining the paddy rice harvest period, which could effectively stabilize 

rice products and further increase farmers’ income. The harvest moisture content (HMC) 

and rice harvest date determine the green immature grains rate (GIGR), degree of milling 

whiteness, head rice recovery, bran weight rate, and cracked grains rate, which affect 

grain quality. In addition, the HMC of diverse varieties affect the quality of different ex-

tents [2]. In general, the optimal harvest date (OHD) coincides with a GMC of 25% [3] and 

head rice recovery is the highest when HMC ranges from 24% to 26% [4]. When grains are 

mature, the GMC of a quarter of the top of the rice ear is lower but still higher than that 

of other parts. Considering the quality of dried rice, the OHD occurs when the average 

GMC reaches 25% [5]. In Taiwan, only HMCs below 32% meet the Standards for the In-

spection of Public Stock Paddy and the lower the HMC, the higher the purchase price. 

Table 1 lists the purchase price of paddy rice for the second crop of 2019, as proposed by 
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the Wufeng Farmers’ Association; for every 1% decrease in HMC, the purchase price in-

creases 2%. High HMC increases the cost and time for drying grains, the damage to grains, 

and carbon emissions, as well as considerably increases the rate of cracked dried rice, thus 

decreasing the rice quality [6,7]. In addition, a high HMC is likely to result in a high green 

immature grain rate. The GMC of the same seed lot can vary considerably; for drying 

grains with high GMC, grains with a low GMC are overdried until the moisture content 

is below 14%, causing rates of cracks in the rice, decreasing the quality of the rice, and 

vastly affecting rice products, revenue, and barn storage.  

Table 1. Price reference of public stockholding programs by WuFeng Farmers’ Association. 

HMC (%) Purchase Price (TWD/600 g) Note 

>32% ineligible 
Volume weight > 560 (g/L) 

(non-weather abnormality, ineligible) 

31–31.9% 997 

Volume weight > 550 (g/L) 

(GIGR > 17%, ineligible)  

30–30.9% 1025 

29–29.9% 1046 

28–28.9% 1067 

27–27.9% 1081 
Volume weight > 540 (g/L) 

(GIGR > 17%, ineligible) 
26–26.9% 1095 

<25.9% 1109 

Farmers often estimate and judge HMC according to their experience, which is sus-

ceptible to psychological factors or the status of neighboring farms. However, growth con-

ditions (e.g., rice variety, time of planting, and farming method) vary among paddy fields; 

a single appropriate standard for judgment by experience is therefore difficult to establish. 

Moreover, managers of vast paddy fields, such as agricultural contractors or farmers’ as-

sociations, must spend considerable amounts of time and human resources to complete 

surveys on the growth status of each field. This study employed smartphones to measure 

the GMC and predict the optimal HMC to help farmers plan the order and time of harvest, 

which may increase their income and decrease their costs. 

Grain maturity initiates with heading: the grain color gradually turns from green to 

golden yellow. During this period, carbohydrates fill the grains following photosynthesis 

reactions; this process includes the four stages of milk, soft dough, hard dough, and ma-

turity [8]. During the milk stage, the grains are growing and the inner kernels are filled 

with milky juice. Grains in the soft dough stage are fuller, although soft. Grains in the 

hard dough stage turn from green to yellow; they are fully filled and gradually dried, and 

the average GMC ranges from 25% to 30% as the OHD approaches. At maturity, the grains 

are mostly filled and dried but late-maturing grains remain in the fill stage; the green on 

the leaves and clumps gradually fades, the GMC in the main stem is approximately 15–

18%, and the average GMC is between 18% and 21%. Rajanna and Andrews (1970) found 

that in the 8 days following anthesis, GMC gradually increased from 50% to 60%; the pro-

portion of the dry weight of the grains during the fill process was lower and this period 

was in the milk stage [9]. Subsequently, GMC gradually declined, and the dry weight 

considerably increased, entering the soft dough stage. Lin et al. (2014) found that grains 

of the rice variety TNG67 began to swell on the 14th day after heading, with the dry weight 

accumulating rapidly and entering the soft dough stage; on the 28th day after heading, 

the grain color turned from green to yellow, entering the hard dough stage [10].  

During the soft dough stage, GMC varies greatly, ranging from 13% to 43% approx-

imately; the average difference in GMC between the wettest and driest grains was 21% to 

29%, with the greatest difference being 46% [4]. As the grains matured, the GMC variation 

decreased alongside the decrease in the average GMC [11]. Thus, the variation of GMC 

with high HMC is greater, which leads to uneven drying of grains, increasing the risk of 

insufficient or excessive drying. The variation of early GMC is greater, affecting the har-

vested grain’s milling quality. However, in such cases, the environmental risk increases 
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because of the extended waiting period for all the grains on the farmland to be completely 

filled. Thus, farmers generally harvest during the hard dough stage [12] but determination 

of the OHD still requires surveys on the actual GMC and consideration of the weather. 

Thus, repeated on-site measurements of individual GMC is a crucial factor in rice harvest-

ing. 

GMC measurements can be either direct or indirect. In direct measurement, moisture 

in the grains is removed by hot air in an oven. The GMC is obtained by deducting the 

dried grain weight from the weight of the harvested wet grain; this highly accurate 

method is the standard for GMC measurement [13]. However, much time is required to 

complete the test; therefore, the test cannot be implemented immediately and widely to 

serve as a reference for OHD.  

This study used the direct measurement method to obtain the dry weight. The oven 

settings of temperature and duration depended on the experience, cultivar, and the state 

of the crops [13]. The direct measurement method is often used to inspect other methods’ 

accuracy, such as microwave methods and electronic supplements [14]. The grain pre-

process types of the direct measurement method can be divided into broken grains and 

whole grains by using 2 g grains roasted at 130 °C to obtain the dry weight according to 

the Association of Official Analytical Chemists’ methods. The cracked grains are prone to 

evaporating grain moisture, which affects the accuracy of measurement. Therefore, the 

whole grain method was used in this study, though it took longer. 

The GMC range of samples is from 10% to 60%. To ensure the sample stayed in a dry 

state stably, the sample was placed in an oven until the dry weight value remained con-

stant [15,16]. The high moisture content grains (>50% w.b.) were dried at 80 °C [17] in the 

oven for 7 days until they reached a constant weight.  

Indirect measurements (such as resistance type and capacitance type) are more con-

venient [5]. Resistance-type GMC-measuring instruments crush grains with a metal board 

and measure changes in electric currents under certain voltages, which are then converted 

into GMC. This method relies on resistance as the basis of measurement; when the GMC 

exceeds a certain level, the resistance inevitably remains fixed. Thus, when the GMC is 

above 22%, many errors remained despite correction. The system, therefore, has its draw-

backs despite advantages such as portability and both simple and rapid operation. With 

excessively high GMC, the measurement accuracy became inferior. In addition, the de-

structive sampling procedure used to measure GMC precludes repeated verification and 

the method might also be affected by temperature and other environmental conditions 

during measurement [18,19]. Capacitance-type GMC measurement instruments function 

by placing grains of certain weights and volumes in a high-frequency environment and 

obtaining the GMC through conversion of the energy absorbed by the hydrogen bonds of 

water molecules. However, the relationship is non-linear, making it susceptible to varia-

tions in temperature and sample density. In general, measurement accuracy is lost with 

GMC above 25% [20], which suggests this method is unsuitable for grains with GMC 

above 25%.  

In terms of convenience, smartphone camera functions are highly useful for collect-

ing and using images. In addition to its wide prevalence, relevant data can be rapidly 

transmitted through the Internet. Related examples include using smartphone images and 

an external thermal imager for reconstructing three-dimensional thermal images of build-

ings to determine the buildings’ hotspots or deficiencies on exterior walls [21]; using 

smartphone images to design an automatic estimation system of calories in food [22]; and 

using smartphone images to monitor air quality [23]. These studies have highlighted the 

applicability of smartphones in image analysis. A smartphone functions both as a digital 

camera and a processor, enabling the user to take images and analyze them. Color analysis 

of smartphone images can serve as a convenient and portable detector in the field of agri-

culture. Related applications include the following: simulating the leaf color chart com-

monly used by rice farmers with images of rice leaves to estimate the required nitrogen 

fertilizer application rate [24]; using traits of apple diseases to build image recognition 
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systems [25,26]; and estimating the chlorophyll content in the plant according to the colors 

in the images of paddy rice leaves [27]. The leaf angle can also be quantified using 

smartphone images [28] to measure fruit size [29]; to estimate apple yield [30]; to auto-

matically measure the leaf area index of crops such as corn, soybeans, and sorghum [31]; 

to detect the added formaldehyde and residue in milk [32]; to estimate the chlorophyll 

content and nitrogen content in tea plantations as well as for disease classification; to es-

timate the chlorophyll content in citrus leaves; to assess the chlorophyll content in corn 

[33]; to analyze the number of grapevine berries [34]; and to analyze coffee tree branches, 

estimate its fruit yield, and record information on the geographic locations of coffee trees 

[35]. Busemeyer [36] published a set of plant phenotyping sensors and proved the feasi-

bility of evaluating plant water content with plant phenotypic spectral information. The 

PlantTalk in AgriTalk used smart phones to efficiently monitor the growth of plants, such 

as light-emitting diode lighting, water sprays, and water pumps [37]. 

Crop appearance is a crucial trait for estimating yield and quality. As an improve-

ment over naked-eye observations, image processing techniques could be applied to the 

recognition of varieties and surveys on morphological changes. Such techniques could 

further facilitate the non-destructive evaluation of qualitative traits in terms of the mor-

phological traits, including the size, shape, color, and texture of crops, which may contrib-

ute to the determination of the variety, degree of damage, and quality [38]. Yang et al. 

(2017, 2020) estimated plant height through drone images to assess the rice lodging area 

and efficiency of variable irrigation management [39,40]. Artificial neural networks were 

trained to assess 44 formal traits and nine color traits of images in order to discriminate 

the variety of paddy rice grains; the prediction accuracy of using the three modes (i.e., 

shape, color, and shape–color) reached 88%, 74%, and 89%, respectively [41]. Magalhães 

et al. (2021) applied an object detection model to visually detect tomatoes’ ripeness in 

greenhouses and emphasized that the YOLOv4 Tiny model obtained reliable accuracy by 

taking only 5 ms of inference time [42] Sanaeifar et al. (2016) used support vector regres-

sion (SVR) to establish non-destructive quality inspection of agricultural products accord-

ing to color traits; the results revealed a significant correlation between color traits and 

quality [43]. Jimenez-Sierra et al. (2021) used aerial multispectral images through SVR and 

non-linear autoregressive analysis exogenous model to rice biomass regressors with cor-

relation coefficients of 0.963 and 0.995, respectively [44]. Shinde et al. (2018) used hyper-

spectral imaging and red, green, and blue (RBG) images to classify naturally ripened ba-

nanas and artificially ripened ones [45]; the classification accuracy of the models that were 

trained using RGB images through random forest (RF) and multilayer perceptron (MLP) 

reached 98.74% and 89.49%, respectively. To ensure images are suitable for agricultural 

image analysis, the shooting process should incorporate references on color calibration to 

avoid errors in image analysis caused by the outdoor environment. The aforementioned 

studies have revealed the feasibility and advantages of applying smartphone image data 

analysis to agriculture. In addition, smartphone image analysis enables the non-destruc-

tive measurement of GMC; advantages of such techniques, such as correctability and re-

peated verification, enables users to obtain more information on the grains’ appearance 

and reduce the cost of measurements. However, limited or no research has been con-

ducted on smartphone-based GMC measurement. 

To simplify the data, decrease image noise, and enhance the efficiency of calculation, 

the most influential elements from the data should be determined before performing the 

analysis [46]. Yang et al. (2020) used RGB images with color indices’ (CIs) features, such 

as ExG, to effectively enhance the model accuracy of rice lodging identification [47,48]. 

Five varieties of white, yellow, and mixed corn were discriminated through outward ap-

pearance only; the images yielded 28 color indices (YCbCr, HSV, and HLS) through RGB 

color space transformation; five CIs (RGB computational statistic) were progressively se-

lected according to the mean and standard deviation of the color components to discrim-

inate three varieties of yellow corn [49]. For principal component analysis (PCA), the max-
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imum data variance after vector projection was determined through feature space projec-

tion; the principal components with eigenvalues above 1 were retained according to the 

Kaiser principle [50]; the principal components with the largest explained variances were 

determined using the screen plot of principal components; and the minimal important 

factors were used to explain the maximum variance. The plant canopy radius was ana-

lyzed using PCA; the number of crown roots and the stem radius better represented the 

morphological trait of lodging. The effect of seeding rate on lodging-related traits of Gra-

mineae and the yield was also tested [51]. 

Combined with an on-site survey, this study selected the major CIs by using PCA 

and compared the four GMC assessment models, including RF, MLP, SVR, and MLR. Pre-

dicting GMC using smartphone images served as a non-destructive and convenient ap-

proach for GMC measurement that can be applied to large areas and in high frequencies 

for predicting OHD. The objectives of this research include: 

 Designing a wide range GMC measurement process applicable for the duration of 

grain maturity based on machine learning technology. 

 Practicing the non-destructive GMC measurement process on smartphones to collect 

real-time, low-cost, and large-area GMC data in the field. 

 Establishing a multi-day GMC prediction model to predict the future GMC variation 

for scheduling a suitable harvest time. 

2. Materials and Methods 

This study involved the creation of GMC and OHD assessment models using 

smartphones in combination with a simple spectral–geometric correction board (SSCB) in 

rice paddy imaging. The panicle samples whose images were taken were dried to deter-

mine the GMC of single panicles. Figure 1 presents the research process and scenario. An 

image-based GMC assessment model was constructed. The analysis procedures, which 

include three parts, namely site survey, image processing, and data analysis, are illus-

trated in Figure 2.  

 

Figure 1. Research process and scenarios. 
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Figure 2. Study Framework. 

2.1. Field Survey 

In this study, the Tainung No. 71 (TNG71) variety of the second crop of 2019 was 

adopted as the experimental subject for determining changes in GMC of the whole rice 

paddy over time. According to the Taiwan Good Agricultural Practice, the mean growth 

days of TNG71 is 104. In this field, spiking was completed on the 71st day; thus, sampling 

was performed between the 79th and 101st day, with intervals of 1 or 2 days for determin-

ing the true value of the on-farm GMC. The sampling was conducted randomly and in-

cluded spot sampling (single panicle sampling) and area sampling (1 m2); GMC measure-

ment and smartphone imaging were implemented for both. Smartphone image data were 

first preprocessed; the preprocessing included lighting correction, background removal, 

and CIs calculation to construct an image-based GMC dataset. For single panicle sam-

pling, GMC data with a greater range of variation was collected to increase the prediction 

accuracy of assessment models for diverse GMCs. Area sampling represented the actual 

on-farm GMC situation at the time. A multiday GMC prediction model was devised to 

predict future changes in multiday GMC.  

2.1.1. Field Sampling 

The sampling site of this research was located in Farm 24 of the Taiwan Agricultural 

Research Institute (24°01′48.0″ N, 120°41′34.4″ E) in the Wufeng District, Taichung City 

(central Taiwan), as presented in Figure 3. The surface of the paddy field was 0.5 ha, the 

rice variety was TNG71, and the farm employed conventional farming practices. Seed-

lings were planted on the experimental paddy field on 22 July 2019. Eighteen days before 

planting, a solution was prepared with 25% tebuconazole, diluted at a ratio of 1:2000 [52], 

in which the seeds were immersed and sterilized for 24 h. During the nursery period, a 

solution, prepared with 25% etridiazole diluted at a ratio of 1:2000 [53], was applied again 

for sterilization; during the first 7 days, the compound fertilizer Taifer #43 was applied as 

the base fertilizer. The seedling density was 18 cm × 30 cm and both 70% niclosamide and 
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32% butachlor were applied to prevent golden apple snails and weeds after the seedlings 

were planted.  

 

Figure 3. The study site at the Taiwan Agricultural Research Institute. 

Farm management included managing weeds (once), top dressing (twice), and pest 

control (twice). Weeds control was conducted between July 23 and August 20 using a so-

lution consisting of bentazon diluted at a ratio of 1:200; fertilizers, including 160 kg/ha of 

NO.1 instant water soluble fertilizer and NO.4 instant water soluble fertilizer, were ap-

plied on August 22 and September 10, respectively. To prevent rice blast, sheath blight, 

Cnaphalocrocis medinalis, and bacterial leaf blight, drugs including 10% teclotalam, 10% 

hexaconazole, 25% buprofezin, and 18.2% imidacloprid were applied on September 1 and 

October 1. 

In this study, the survey, conducted through on-farm random sampling, began 2 

weeks after the heading stage (October 1). Surveys employing single panicle sampling 

were performed six times over 2 weeks, on October 14, 17, 19, 21, 23, and 25. The sample 

sizes for the six surveys were 122, 71, 76, 70, 100, and 95 (total = 534). To obtain the GMC 

changes over time, collections were performed between October 7 and 29 with intervals 

of 1 to 2 days; 12 samples of 1 m2 were collected each time. The GMC of 201 samples were 

recorded for 17 days. The ground truth GMC of the aforementioned panicle samples and 

1-m2 samples were obtained through drying. 

2.1.2. Image Devices 

The smartphone model used in this study was an iPhone 8; its camera parameters are 

listed in Table 2. During image shooting, the rice panicle was fixed to the center of the 

SSCB. The dimension of the board for shooting rice panicle images was 30 cm × 10 cm; it 

was made of black velvet to reduce reflection. Taking pictures under direct sunlight was 

avoided and quick-response (QR) codes were attached to the four corners for capturing 

the region of interest (ROI); the sampling date and sample code were also annotated. A 

color calibration chart (Spyder Checkr 24, Datacolor®, Lawrenceville, NJ, US) was added 

to the board for shooting rice panicle images; white, black, and gray pixels (Figure 4a) 

were used to facilitate image contrast correction and gamma correction. After shooting 

images of the grain (Figure 4b), the researcher packed the rice panicles in a plastic zipper 

bag (Figure 4c) to avoid moisture loss during the survey period. 
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(a) (b) (c) 

Figure 4. Smart phone images with SSCB (a, b) and bagged sample (c). 

Table 2. Smart phone and camera parameters. 

Parameters Values 

Smart phone Apple iPhone 8 

Camera resolution 4032 × 3024 (12.1M pixel) 

ISO value 25 

f/number f/1.8 

Shutter Speed 1/400 s 

Still image aspect ratio 4:3 

Spectral bands 3 (Red, Green, Blue) 

Output formats JPEG 

Distance from lens to rice panicle 27.5 cm 

During the outdoor imaging, changes in the lighting conditions might lead to differ-

ences in the images and affect the grains’ color in the images. To minimize such lighting-

related factors, the smartphone camera parameters were fixed along with an SSCB to fa-

cilitate the subsequent gamma correction.  

2.1.3. GMC Measurement 

In this study, GMC was measured using the direct drying method; the Denver In-

strument SI-234 Summit Series Analytical Balance (Figure 5a) was used to measure the 

weight of the harvested rice panicle sample (including the bag) and the 1 m2 sample was 

weighed using a JADEVER scale (model: LPWN-1530; Figure 5b). The rice panicle was 

then placed in an oven at 80 °C to dry for 7 days (Figure 5c). The weight of the dried rice 

panicle (Wdry) was measured. The wet weight (Wwet) was obtained by deducting the bag 

weight with the dried panicle from the original rice panicle weight; HMC (%) was repre-

sented with the wet basis GMC (w.b.). The calculation for w.b. is as follows:  

�. �. =
���������

����
 ×  100% (1)
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(a) (b) (c) 

Figure 5. Multi-day GMC dataset grain weight was measured by JADEVER LPWN-1530 (a) and 

image-based GMC dataset grain weight was measured by the Denver Instrument SI-234 Summit 

Series Analytical Balance (b). These samples were all dried in an oven at 80 °C for 7 days (c). 

The results of surveys by Rajanna (1970) [8] and Chau and Kunze (1982) [4] revealed 

that the valid range of the GMC is 13–60%; thus, 17 samples of the present study were 

excluded. A total of 517 valid samples were obtained. Figure 6 illustrates the correspond-

ing GMC. The color of the rice panicle changed from green to yellow. 

 

 
(a) (b) (c) (d) (e) (f) 

Figure 6. The phenotype transformation of single panicles from green to yellow with moisture con-

tent (% w.b.): (a) 51, (b) 44, (c) 35, (d) 31, (e) 29, and (f) 24. 

2.2. Image Processing 

The outdoor lighting conditions were highly variable because of the weather condi-

tions. Each image had to be corrected to reduce the effect of lighting conditions. Image 

processing was conducted in three stages involving color calibration, ROI cropping, and 

background removal. The color calibration used in this study included three steps: con-

trast correction, gamma correction, and halation removal.  

2.2.1. Contrast Correction 

When the lighting condition changed, gamma correction was conducted according 

to the color calibration chart to maximize uniformity when comparing diverse images. 

This study used histogram stretching to adjust the color balance on images with differ-

ences caused by different luminosities. White and black color calibration charts were used 

as the maximum and minimum, respectively, of the image to calibrate the pixel value. �� 

was calculated as follows: 

�� = 255 ×
� − ���

�� − ���

 (2)
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where �� is the pixel value after calibration, I is the pixel value before calibration (R, G, 

and B), and �� and ���  are the pixel values of the white calibration chart and black cali-

bration chart, respectively, before calibration.  

2.2.2. Gamma Correction 

Image luminosity was corrected through non-linear gamma correction. A gray cali-

bration chart with a reflectance of 18% was used as the standard for the entire image to 

adjust each pixel value [54]. The process can be represented as follows:  

��� = 255 × �
��

255
�

�

 (3)

where ��� is the pixel value after calibration and �� is the pixel value after contrast cali-

bration. The gray calibration chart with a reflectance of 18% in the L*a*b* color space is 

(50, 0, 0) or (119, 119, 119), represented with (R, G, B). Thus, the value of γ should conform 

to Equation (4). �� is the pixel value of the gray calibration chart:  

��
�

= 119 (4)

2.2.3. Halation Removal 

Halation might be produced around rice panicles as a result of reflections from sun-

light, leading to some excessively high pixel values. Referring to Ishii et al. (2018) [55], 

pixels with σ below 35 were considered to have excessively high halation; the standard 

deviation of the R, G, and B of each pixel was calculated as follows: 

� = �
1

3
{(�� − ����)� + (�� − ����)� + (�� − ����)�} (5)

��, ��, and �� are the R, G, and B values of the pixel. ���� is the mean of ��, ��, and 

��, and � is the standard deviation value of ��, ��, and ��. An image after halation re-

moval is depicted on the right of Figure 7.  

(a) (b) (c) 

Figure 7. Image color calibration including contrast correction (a), gamma correction (b), and hala-

tion removal (c). 

2.2.4. ROI Cropping 

QR codes were placed on the four corners of the board used for taking rice panicle 

images to enable the automatic and consistent capture of the ROI (Figure 8). Code was 

written using Python 3.7 to enable the detection of the QR codes in the images. The upper 

left corner provided the origin of the coordinates of the cropped image; the length and the 

width were fixed according to the range of the sample of the entire panicle length; and the 

dimension of the cropped area was limited to exclude objects other than the sample and 

environment background.  
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Figure 8. ROI cropped display. Corrected image (a), QR code detection (b), and ROI area (c). 

2.2.5. Background Removal 

Extraction of the grains required the removal of background images beyond the 

grains. This study first adopted the ExG value (150) of ROI images as the threshold and 

then removed the pixels of the rubber band (Figure 9a). Subsequently, the hue values 

above 60 (Figure 9b), as well as the paper card in the image, were removed. Next, the 

image in Figure 9c was converted to grayscale, pixels with grayscale values above 150 

were removed, and the shadow produced by the light source was eliminated. Finally, the 

rice panicle stem was removed through the hue value and the threshold was modified 

according to grain color, ranging from 25 to 35. The selection and treatment processes are 

revealed in Figure 9. HSV, Gray, and ExG [56–58] were calculated as follows.  

���� = 0.299 × � + 0.587 × � + 0.114 × �     (6)

��� = 2� − � − �   (7)

� = max(�, �, �)   (8)

� = min(�, �, �)    (9)

�� =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0°,            �� � = �    

60° ×
� − �

� − �
+ 0°,      �� � = � ��� � ≥ �

60° ×
� − �

� − �
+ 360°,     �� � = � ��� � < �

60° ×
� − �

� − �
+ 120°,     �� � = �     

60° ×
� − �

� − �
+ 240°,     �� � = �     

 (10)

�� = �
0,              �� � = 0    
� − �

�
= 1 −

�

�
,         ��ℎ������  

 (11)

�� = �  (12)
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Figure 9. Background removal process included the (a) ROI image, (b) ROI image with ribbon removal, (c) sample card 

removal from image (b), (d) shadow removal from image (c), and (e) stem removal from image (d). 

2.2.6. CI Extraction 

This study tested 18 CIs, including R, G, B, H, S, V, H, L, S, L*, a*, b*, Y, Cr, Cb, nor-

malized difference index (NDI), green index (GI), and red–green ratio index (RGRI). HSV 

was represented by H1, S1, and V1, and HLS by H2, L2, and S2 [46]. The CI of each pixel in 

the sample was calculated and the mean was adopted to represent the CI of the sample. 

This was followed by correlation analysis between the obtained value and the GMC meas-

ured through direct drying. H2, L2, S2, L*, a*, b*, Y, Cr, Cb, NDI, GI, and RGRI were calcu-

lated as follows. 

�� = �� (13)

�� =
� + �

2
  (14)

�� =

⎩
⎪
⎨

⎪
⎧

0°,          �� �� = 0 �� � = �  
� − �

� + �
=

� − �

2��

,     �� 0 < �� < 0.5    

� − �

2 − (� + �)
=

� − �

2 − 2��

,  �� �� > 0.5      

 (15)

� = 0.008856 (16)

� = 0.607 × � + 0.174 × � + 0.200 × � (17)

� = 0.299 × � + 0.587 × � + 0.114 × � (18)

� = 0.066 × � + 1.116 × �  (19)

(a) 

(b) 

(a)-(b) 

(c) 

(d) 

(e) 

(b)-(c) 

(c)-(d) 

(d)-(e) 
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�∗ = �116 × �
�
� − 16,         �� � > �    

903.3 × �          ��ℎ������   
 (20)

�∗ = 500 × ��(�) − �(�)� (21)

�∗ = 200 × ��(�) − �(�)� (22)

���ℎ  �(�) = � �
�
�  �� � > �         

7.787� + 0.1379  �� � ≤ �
 (23)

�� = (� − �) × 0.713 + 128   (24)

�� = (� − �) × 0.564 + 128  (25)

All CIs were computed using the OpenCV library of programming functions in Py-

thon (version 3.7). In addition, NDI, GI, and RGRI were integrated as predictor variables 

and both green and red were adopted as the parameters of the NDI. Considering the green 

value of the plant pixels was higher than the red value, vegetal and non-vegetal traits were 

further foregrounded. GI and RGRI were used to compare the proportions of red wave-

band reflection and green waveband reflection [59]:  

��� =
� − �

� + �
 (26)

�� =
�

�
 (27)

���� =
�

�
 (28)

2.3. Image-Based GMC Assessment Model 

To construct the GMC assessment model, CIs contributing more to GMC assessment 

were first selected using PCA. These CIs were then connected with the GMC to design the 

image-based GMC assessment model. To avoid bias of the testing result, all data pro-

cessing used K-fold (K = 5) to obtain objective evaluation. The analysis method involved 

RF, MLP, SVR, and MLR. The model assessment indicators were mean absolute percent-

age error (MAPE), mean absolute error (MAE), and root mean square error (RMSE).  

2.3.1. Principal Component Analysis 

PCA was used to extract the most representative indicators [60]. The principal com-

ponents with an eigenvalue above 1 or whose cumulative explained variance was above 

90% were retained, or indicators with greater eigenvectors were selected for the subse-

quent analysis. This study standardized 18 CIs, calculated the eigenvalue of their relevant 

matrixes to eliminate the effects among the assessment indicators, simplified many bulky 

datasets, and decreased the calculated amount and the complexity of the problem.  

2.3.2. Random Forest 

RF is a composite learning algorithm based on decision tree classifiers. A combina-

tion of mutually independent decision trees was built randomly. When the sample data 

were introduced into the RF, judgments could be made at individual decision trees; the 

one selected most frequently was adopted as the predicted value to construct the RF pro-

cess. The samples of the bootstrap loading procedure of the ntree were delineated from 

the raw data. An uncut decision (or regression) tree was constructed for each loaded sam-

ple. Rather than selecting the optimal predicted value, each node randomly sampled and 



Sensors 2021, 21, 5875 14 of 30 
 

 

selected the predicted values, from which the best splitting variable was selected. Through 

the prediction of the ntree, the final result was obtained by overall judgment (the results 

supported by the majority or the mean of regression).  

Considering the decision trees were generated randomly, most of them were irrele-

vant to the prediction of the original observed value. However, the best prediction path 

could be determined by observing many prediction results and repeated error correction 

procedures. The advantage of RF concerns the capability of its fundamental algorithm to 

process categorical data in continuous data (such as GMC in this study). Moreover, the 

accuracy of RF is high for most types of data. With a high tolerance for noise, it can be 

used to calculate the similarity of variable data and estimate the importance of predictor 

variables. A total of 1000 decision trees were used in this study.  

2.3.3. Multiple Layer Perceptron 

MLP repeatedly adjusts the weight and minimizes the difference between the actual 

output and the predicted output through back propagation. MLP consists of an input 

layer, a decision (or prediction) output layer, and a hidden layer. The hidden layer has 

any number of nodes of neurons between the input layer and the output layer. MLP has 

been widely applied as a prediction model because it enables more complex calculations 

through its computation structure and mode.  

The advantages of MLP center on its ability to obtain models and trends from abun-

dant, complicated data and its superiority in terms of non-linear data compared with 

other analytical techniques. Figure 10 illustrates the MLP structure of this study. Eight 

main CIs were adopted as the input and each of the two hidden layers had 30 neurons. 

The output was GMC, the activation function was sigmoid, the loss functions were the 

RMSE and MAE, the optimizer was RMSProp, and the learning rate was η = 0.001.  

 

Figure 10. MLP structure of Image-GMC assessment model. 

2.3.4. Support Vector Regression 

SVR is a machine learning method used in classification and regression predictions. 

A support vector machine (SVM) identifies a high-dimensional feature space from non-

linear data; the feature space is highly correlated with the output data. SVM constructs 

the optimal hyper plane for classification in the feature space. The SVR operates by input-

ting the insensitive loss function (ε) into an SVM, which is expanded to solve assessment 

through non-linear regression. By contrast, SVM inputs the map function φ into a non-

linear function, maps the originally non-linear data to a high-dimensional feature space 



Sensors 2021, 21, 5875 15 of 30 
 

 

to facilitate data classification in the high-dimensional space, and performs predictions in 

a high-dimensional feature space. Assume that the training samples are (x1, y1), … (xn, yn); 

xi is input vector and yi is directed to the output value of xi; the SVR obtained the function 

of ε (error maximization) from the training samples.  

The parameter combination of kernel, cost, and ε set by the user determines the com-

plexity of the prediction; the kernel determines the feature space including linearity, pol-

ynomiality, radial basis function (RBF), and sigmoid, which are used to verify the robust-

ness of the regression model. RBF is widely used in diverse situations, as well as in this 

study, whereas other kernel functions are more applicable to specific situations.  

2.3.5. Multiple Linear Regression 

MLR is a model used to predict single variance through multiple explained variances. 

On the basis of the linear relation that exists between the explained variance and the pre-

dictor variable, the samples of the predictor variable (yi) are random and independent 

from one another; the correlation among explained variances is non-significant; the mean 

of the residual is 0; and a normal distribution is present. The variance σ is calculated as 

follows [61]: 

�� =
∑ (�� − �)��

���

n
 (29)

The coefficient of determination (R2) is the ratio of the total yi variance that could be 

explained by the prediction model and ranges from 0 to 1; 0 indicates the impossibility of 

predicting results by any variance and 1 represents the absence of error in the prediction 

of the explained variance. However, R2 could not recognize the explained variances con-

tained in the model. Furthermore, R2 increased as the explained variance increased, alt-

hough these explained variances were not correlated with the predicted variation. This 

study integrated the extracted CIs in the MLR model as explanatory variables and 

adopted GMC as the predictor variable to construct prediction models.  

2.4. Multiday GMC Prediction Model 

To obtain the OHD, a multiday GMC prediction model was devised. The actual 

GMC0 was obtained using smartphones and added to the variance i days later (∆����). 

The GMCi of the �th day could be predicted as follows: 

���� = ���� + ∆����. (30)

∆����  could be as assessed in several ways, such as through the decline of the daily 

average GMC, the decline rate of the daily average GMC, and the GMC modified equation 

of the growth period.  

2.5. Performance Evaluation 

This study used the RMSE, MAE, and MAPE to estimate the model performance and 

their values were calculated as follows. 

��� = �
1

�
�(�� − ��)�

�

���

 (31)

��� =
1

�
�|�� − ��|

�

���

 (32)

���� =
100%

�
� �

�� − ��

��
�

�

���

 (33)
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The RMSE represents the standard deviation of the difference between the predicted 

value and the observed value, and indicates the capability of prediction. MAE is the mean 

of the absolute value of the difference between all the predicted values and the observed 

values. The MAE averts mutual cancelation of errors and provides an accurate reflection 

of the magnitude of the actual prediction error. The MAPE, in percentage, represents the 

ratio of the difference between the predicted value and the observed value, avoiding the 

effect of the magnitude of cardinality. 

3. Results 

3.1. Image-Based GMC Dataset 

Single panicles were sampled randomly with intervals of 2 to 3 days. In total, 517 

valid samples were obtained. The distribution of GMC measured using the drying method 

is revealed in Figure 11. The mean of the total sample was 29.32%, standard deviation was 

6.98%, median was 27.33%, maximum was 57.43%, minimum was 13.86%, kurtosis was 

3.13%, and skewness was 1.81%, revealing that the sample set was concentrated in the 

GMC range between 22% and 32%; the GMC interval also matched that of the purchased 

rice (Table 1). To obtain the on-farm GMC spatial variation of the experimental paddy 

field, paddy rice in 12 lots of 1 m2 (approximately nine thickets) were sampled each time.  

 

Figure 11. The distribution of the GMC among single panicle samples (N = 517, [ ]: closed interval, and ( ): open interval). 

GMC was obtained using the drying method. A total of 201 samples were collected 

during the 17-day sampling period (including three invalid samples). The distribution is 

illustrated in Figure 12. The distribution of the average GMC of the experimental paddy 

field ranged between 20.06% and 37.67%; the mean of the total sample was 27.15%; stand-

ard deviation was 4.29%; median was 26.45%; kurtosis was −0.39%; and skewness was 

0.57%. In contrast to the single panicle sampling, the GMC of samples from the area of 

sampling followed a uniform distribution; however, the majority of samples were concen-

trated in the GMC interval between 21% and 28%.  
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Figure 12. GMC distribution of the decline mode (N = 201). 

3.2. Image-Based GMC Assessment Model 

Figure 13 demonstrates the distribution of the GMC and CIs of the panicle samples. 

A high correlation was observed between some CIs and GMC such as H, a*, NDI, GI, and 

RGRI; their R values were 0.89, 0.86, 0.86, 0.86, and 0.84, respectively. H represented hue; 

0 represented red, 60 represented yellow, and 120 represented green. The H values of the 

current samples ranged between 35 and 65, indicating that when GMC decreased, the hue 

turned from yellow to reddish. The value range of a* was ± 127, suggesting that the color 

components ranged from green to red. Negative values represented a greenish color and 

positive values represented a reddish color. The distribution of a* in the current samples 

ranged from −14.66 to 8.58, indicating a range from greenish to reddish, which is con-

sistent with the trend of change in grains’ surface color. In addition, R and G were adopted 

as the operation parameters for NDI, GI, and RGRI. A summary of the aforementioned 

findings indicated that, as the grain maturity increased, GMC changes were more sensi-

tive to CIs, related to green and red wavebands. 
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Figure 13. The distribution of color index and different GMC (x-axis: % w.b. and y-axis: value of 

CIs). 

To extract the main explanatory variable of the assessment model, PCA was used to 

extract multivariate traits (Table 3 and Figure 14). The explained variance of PC1, PC2, 

and PC3 was 44.7%, 30.4%, and 24.3%, respectively. It was demonstrated that the greater 

the cumulative explained variance, the greater the importance of the principal component. 

This study selected eight CIs, namely H1, a*, G, S2, L*, B, S1, and b*, to build the assessment 

models. 

Table 3. Result of the principal component analysis by color index. 

Factor Comp.1 Comp.2 Comp.3 

R −0.246 0.303 0.050 

G 0.126 0.392 −0.084 

B −0.098 0.057 −0.454 

H1 0.337 0.118 0.008 

S1 −0.016 0.100 0.464 

V1 −0.234 0.316 0.049 

H2 0.337 0.118 0.008 

L2 −0.211 0.234 −0.278 
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S2 −0.187 0.323 0.176 

L* 0.025 0.421 −0.074 

a* −0.338 −0.117 0.030 

b* 0.096 0.226 0.384 

Y −0.292 0.185 −0.141 

Cr −0.082 −0.251 −0.370 

Cb 0.039 0.307 −0.326 

NDI 0.334 0.086 −0.117 

GI 0.335 0.087 −0.111 

RGRI −0.333 −0.086 0.124 

Component Eigenvalues Cumulative Proportion (%) 

Comp.1 8.049 44.71 

Comp.2 5.466 75.08 

Comp.3 4.381 99.42 

 

 

Figure 14. Screen plot of principal components. 

Four GMC assessment models were devised; the distributions of their assessed val-

ues and actual values are revealed in Figure 15. Regarding the RF and MLP models, 80% 

of the 517 samples were adopted as the training data, with the remaining samples serving 

as the testing data. The same testing samples were adopted for the SVR and MLR models. 

The R2 of the four models, namely RF, MLP, SVR, and MLR, were 0.88, 0.90, 0.91, and 0.91, 

respectively. The resultant GMC obtained by the four models and the measured values 

were all highly correlated, and the explained variance of the SVR and MLR were greater. 

Table 4 presents the model efficacy assessment results. The testing data included all the 

samples, samples with a GMC below 40%, and samples with a GMC below 32%, with 

sample sizes of 103, 86, and 77, respectively. Globally, the RMSE of the four models was 
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between 2.49% and 2.98%, and the RMSE of the MLR model was the lowest (2.49%). Re-

garding the MAE assessment, the lowest value was observed in the MLR model (1.71%). 

The MAPE ranged from 5.24% to 6.28%, with that of the SVR being the most favorable. 

The model prediction error for samples with a GMC below 32% was less than that for all 

the samples and for samples with a GMC below 40%. The RMSE ranged from 1.53% to 

1.80%; the RMSE of the SVR model was the lowest and that of RF was the greatest. The 

MAE ranged from 1.08% to 1.41%. The MAE of the SVR model was the lowest and that of 

RF was the greatest.  

 

Figure 15. GMC distribution of prediction versus actual data. 

Table 4. Performance comparison between RF, MLP, SVR, and MLR in different GMC intervals. 

GMC Interval Statistics Value RF MLP SVR MLR 

All 

(n = 103) 

RMSE 2.98 2.69 2.86 2.49 

MAE 2.04 1.77 1.79 1.71 

MAPE 6.28% 5.36% 5.24% 5.39% 

Below 40 (%) 

(n = 86) 

RMSE 2.15 1.82 1.74 1.90 

MAE 1.63 1.29 1.23 1.38 

MAPE 5.87% 4.71% 4.41% 5.04% 

Below 32 (%) RMSE 1.80 1.66 1.53 1.73 
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(n = 77) MAE 1.41 1.20 1.08 1.31 

MAPE 5.37% 4.55% 4.10% 4.96% 

3.3. Image-Based GMC Prediction Model 

To predict the OHD of rice, multiday GMC prediction models were required. The 

current on-farm ���� was represented by the average GMC of the 12 samples collected 

through daily area sampling to predict the future ����. Multiday ���� was predicted 

by calculating the modified equation of the average daily variation, the average daily 

change rate, and the number of growth days. This study tested the linear model, the in-

dexical model, and the logarithmic model as follows. 

The variation of daily GMC is assumed to be a fixed value. The calculated average 

daily variation is −0.66%, enabling the calculation of the decline of daily GMC. The ∆���� 

of the �th day is determined as follows:  

∆���� = −0.66% × �. (34)

The daily change rate of the GMC is assumed to be a fixed value. The calculated av-

erage daily change rate is 0.969%, enabling the calculation of the decline rate of daily GMC 

to predict ∆���� of the �th day as follows:  

∆���� = 0.969�. (35)

In addition, as demonstrated in Figure 16, the growth days and GMC were highly 

correlated logarithmically, enabling the construction of a logarithmic model (Equation 

(36)) between them, with R2 being 0.85. Following the estimation by the image-based GMC 

assessment model, GMC did not contain information on the growth days. This model was 

thus used to calculate the growth days (GD) corresponding to the ����.  

�� = −40.78 ln(����) + 36.02 (36)

 

 
Figure 16. Data distribution and logistic regression of the GMC and growth days. 

Equation (37) and Figure 17 demonstrate the logarithmic formula through the regres-

sion of the growth days and GMC; R2 was 0.84. The formula for predicting the ���� i 

days later, according to this model, can be represented as follows: 

y = -40.78ln(x) + 36.02
R² = 0.85
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���� = −0.514 ln(�� + �) + 2.58 (37)

 
Figure 17. Data distribution and logistic regression of the growth days and GMC. 

3.4. Model Performance 

To verify the efficacy of the decline of daily GMC (Equation (34)), decline rate of daily 

GMC (Equation (35)), and the GD-based GMC prediction model (Equation (37)), the har-

vest date assessment model predicted the daily GMC of the subsequent 1 to 8 days (1 ≤ i 

≤ 8) according to the multiday GMC assessment dataset, followed by a comparison with 

the actual GMC. The results indicated that the variation in the MAE of the decline of daily 

GMC ranged from 0.67% to 2.23%; the decline rate of daily GMC ranged from 0.56% to 

2.08%; and the GD-based GMC prediction model ranged from 0.83% to 1.21%. Despite the 

minimal error in the decline rate of daily GMC on the second day, the MAE trends of the 

decline of daily GMC and decline rate of daily GMC increased over time, whereas the 

trend of the GD-based GMC prediction model was more stable, relative to the aforemen-

tioned two models, and its average MAE over the 8 days was the lowest.  

4. Discussion 

4.1. Performance of the Image-Based GMC Assessment Model 

This study used changes in the phenotypic spectrum of grains to assess the GMC and 

applied the threshold of CIs to the extraction of grains from images of single panicles. Shei 

and Lin (2012) [62] used the hue (also referred to as HLS) values between 40 and 90 de-

grees to extract brown rice stems. The current study performed the image calibration pro-

cedure and applied a hue value of between 25 and 35 degrees to remove paddy rice stems; 

however, the range of color change varied among rice grains of different varieties. 

In this study, an image-based GMC dataset was constructed using smartphone im-

aging and on-site sampling of single panicles. The range of GMC distribution was con-

sistent with that of prior research results, indicating that GMC at maturity followed a left-

skewed distribution, with the difference between the highest and lowest on-farm GMC 

being as high as 43.57%. The GMC of the samples in this study were mainly concentrated 

between 22% and 32%, accounting for 78% of the total sample size, whereas the resultant 

GMC of single panicle sampling effectively reflected the difference regarding the actual 

on-farm GMC.  

Linear analysis and PCA on the 18 CIs revealed that H1 (R2 = 0.89) and a* (R2 = 0.88) 

were the most relevant components in PC1, with the greatest explained variance (44.17%), 

and could be used to construct GMC assessment models; this result is similar to that of 

y = -0.51ln(x) + 2.58
R² = 0.84
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Ishii et al. (2018). Most grains in the soft dough stage are immature; when the rate of green 

immature grains is high, the GMC variation increases and the grain quality becomes infe-

rior. This is likely to increase the time and cost for drying and decrease the price as well 

as grain merchants’ willingness to purchase. The current analysis revealed that a* re-

mained in the greenish range when GMC > 32% and in the reddish range when GMC < 

32%. Thus, the current researchers inferred that the growth stage progressed from the soft 

dough stage to the hard dough stage as the GMC gradually decreased to 32%, entering 

the GMC range of grains purchase. The OHD prediction also yielded better outcomes. 

In a general estimation, the MAE ranged between 1.71% and 2.04%. The global dif-

ferences among the models could be attributed to the following two factors. First, grains 

with a high GMC varied to a larger extent; grains with a GMC above 32% were in the soft 

dough stage, leading to the larger variation range of GMC and greater difference. Second, 

the current sampling time was performed randomly 2 weeks after spiking; the GMC value 

distribution was skewed to the left. Thus, the number of samples with a high GMC ac-

counted for a lower proportion.  

The GMC sensor, based on the portable resistance, was used for measuring in situ 

GMC, while the capacitance to sample more than 200 g grains is generally needed. Table 

5 shows the comparison of different operation principle GMC sensors. The specifications 

of the GMC sensors refer to the official product specifications. 

The suitable range of GMC sensors is below 20% w.b., which is much less than the 

harvest moisture content, and the process must be conducted by a destructive approach. 

The Image-GMC assessment model proposed in this study is applicable to measure the 

range of between 40% to 20% GMC, which is flexible, universal, and non-destructive, and 

allows for in situ measuring repeatedly. The model can also assess the current GMC and 

predict the future trends in advance to realize the optimal harvesting time and proper 

scheduling of agricultural machinery. 

Table 5. Comparison of GMC sensors with various operation principles. 

Operation Principle Portable Resistance Resistance Capacitance Smartphone Image 

Model 

Kett Electric Labor-

atory 

FQ-527 

Kett Electric 

Laboratory 

PQ-520 

Kett Electric 

Laboratory 

PM-450 

Apple Inc.  

iPhone 8 

Recommended range <20% w.b. <20% w.b. <20% w.b. 40–20% w.b. 

Applicable scenarios outdoor indoor indoor outdoor 

Weight 450 g >9000 g 1300 g 148 g 

Testing method Destructive Destructive Destructive Non-destructive 

Sampling condition Threshing Threshing Threshing Directly shooting 

In testing, when GMC was above 20%, the error rate of the GMC measured using 

resistance grain moisture meters was above 4%. The four prediction models in the current 

study yielded their optimal performance with GMC below 40%, with the assessment MAE 

between 1.23% and 1.63%; below 32%, with the assessment MAE between 1.08% to 1.41%, 

enabled the prediction of a wider range of GMC. Considering a GMC of 32% indicates the 

crop is already in the harvestable stage, GMC prediction could be improved if the trend 

of GMC variation is determined earlier in the actual application. In the future, immature 

rice panicles with greenish color could be adopted as the training samples to overcome 

the aforementioned concerns that might affect model prediction errors at high GMCs.  

To verify the applicability of the proposed model, samples of different growing con-

ditions and rice varieties were tested. Another dataset was taken in the first crop season 

in 2020 with different growth conditions from the training dataset (the second crop season 
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in 2019). The Image-GMC assessment model has been preliminarily confirmed as its prac-

tical extension to different growth conditions and varieties of rice (see Table 6). Based on 

the Image-GMC dataset, the SVR model has the best inference result (MAE = 3.31%). 

The images of different rice varieties as test samples, which contain early maturity 

rice (TNG71) and a middle-late maturity rice (Tainan No.11, TN11). The Image-GMC as-

sessment model was established on the basis of the TNG71 dataset to infer the images of 

TN11. The preliminary result shows that the SVR model had the best performance, with 

a MAE of 3.66%. 

Table 6. Extended testing result. 

Testing Samples Image-based GMC Dataset 
Samples of Different Growing 

Conditions 

Samples of Different Varie-

ties 

Year 2019 2020 2020 

Crop season II I II 

Variety TNG71 TNG71 TN11 

Characteristics Middle-late maturity Middle-late maturity Early maturity  

Assessment model Image-GMC assessment model 

Testing MAE(% w.b.) 1.71 3.31 3.66 

Comparing the test results in Table 6, the testing MAE was doubled for different 

growing conditions and different varieties, indicating an improvement of the inference 

model needed in the future work. Importing common features between training data and 

unknown data by integrating feature transfer methods or self-adaptive learning methods 

could strengthen the model applicability.  

Furthermore, rice growth and grain development are affected by the weather and 

environment. A future study should include meteorological prediction, such as solar ra-

diation, temperature, air pressure, humidity, and wind speed, for better establishing a 

GMC prediction model with environmental interactions. 

4.2. Performance of the Moltiday GMC Prediction Model 

Considering the substantial GMC variation in single panicles, the main difference 

between the multiday GMC dataset sampling and the single panicle sampling was that 

the multiday sampling was performed according to the average grain GMC value per 

square meter. Compared with the GMC sampling, employing the image-based GMC da-

taset, the range of distribution of the average GMC per square meter in the multiday GMC 

dataset was smaller and the variation was less, with the lower kurtosis indicating a more 

uniform distribution. The multiday GMC dataset was similarly skewed to the left, which 

could reflect the difference in the GMC distribution of diverse sampling methods (Table 

7). Thus, this dataset was used to further train the multiday GMC prediction model for 

predicting multiday GMC and harvest time.  

Table 7. Comparison of two on-site sampling methods. 

 Image-based GMC Dataset Multi-Day GMC Dataset 

Target model Image-GMC assessment model Multi-day GMC prediction model 

Sampling scope Single panicle 1 m*1 m paddy 

Feature High variation GMC data Homogeneous GMC data 

Sampling frequency 2–3 days 1–2 days 

Sampling (each time) 70–122 12 

GMC distribution 60–13% w.b. 37.5–20.2% w.b. 

Method Drying Drying 

Drying spec 80 °C 7 days/each sample 80 °C 7 days/each sample 

Labor costs Three person/each day Four person/each day 
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The more accurate prediction results for GMC in the subsequent 3 days was related 

to the declining rate of daily GMC, whereas the modified equation of the growth period 

of the GMC after 3 days or more was better (Figure 18). The main difference was that the 

prediction results of the decline of daily average GMC and the decline rate of daily aver-

age GMC during the training stage were affected by the accumulation of multiday errors, 

whereas the GD-based GMC prediction model was not affected by such errors. This study 

adopted the GMC of the second crop of 2019 as the testing data and verified the applica-

bility of the three models with novel data from actual fields. The MAE of the testing data 

is revealed in Figure 19; the GD-based GMC model prediction yielded favorable results in 

the subsequent 2 days and after.  

 

Figure 18. Multi-day validation data for ���� MAE evaluation. 

 

Figure 19. Multi-day testing data for ���� MAE evaluation. 

In the GMC model sampled per square meter and based on the growth days, the 

average GMC revealed a gradual daily decline. The CIs of images shot with smartphones 
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were adopted as estimation indicators for grain HMC. Compared with current grain mois-

ture meters, the present method yielded more favorable estimation results when GMC 

was below 32%, enabling diverse users such as farmers’ associations or agricultural man-

agement units to estimate grain drying cost and rice quality. Combining single-day GMC 

assessment models and multiday GMC prediction models by employing smartphone im-

ages might serve as a valuable reference for OHD-related decision-making. 

4.3. Futrue Work 

In the future, the image segmentation of convolutional neural networks, such as U-

Net and SegNet, could be employed for removing background images beyond the grains, 

which would hopefully decrease the interference of background noise more efficiently. 

GMC changes over time and is affected by weather factors such as sunlight, wind, and 

rain. In future studies, historical weather data and short-term weather forecasts can be 

employed to revise the GMC predictions, followed by chronological analysis. For exam-

ple, recurrent neural networks might use long short-term memory to predict long-term 

GMC changes and OHD by using historical data. This could help users manage farm har-

vest work and contribute to the quality and quantity of harvested grains, in addition to 

helping farmers track changes in farm production over time. 

The leaf color chart produced by the International Rice Research Institute, as the 

standard of comparison, found that the nitrogen content in plants was highly correlated 

with paddy rice leaf color indices and could serve as a tool for judging the nitrogen ferti-

lizer application rate. However, a corresponding panicle color board for GMC measure-

ment is not available. Thus, in addition to assessing GMC through smartphone image 

data, future research could consider a panicle color board as a simple tool for measuring 

GMC; adopt the average of samples with ± 1% GMC to represent color changes by using 

H1, S1, and V1values; and design a panicle color board as shown in Figure 20.  

 

Figure 20. The schematic diagram of a panicle color board in term of HSV. 

GMC prediction procedures employing mobile devices could also use App to adapt 

to large-scale GMC surveys. The Global Navigation Satellite System coordinates of each 

image could be connected and recorded through cloud servers, and the results of the 

measurement could be saved in a database. In this manner, the coordinates of the images 

and the resultant GMC from the prediction analysis can be presented using a geographic 

information system. To enable farmers to determine the OHD with GMC information, the 

results can be presented in the form of action proposals with three categories: inappropri-

ate for harvest (GMC ≥ 32%), appropriate for harvest (32% > GMC ≥ 28%), and “the most 

appropriate for harvest” (GMC < 28%). Such a system would help farmers determine the 

OHD. Users with numerous contracting farmers, such as large-scale agricultural contrac-

tors and farmers’ associations, could rapidly determine the HMC of individual paddy 

fields, schedule harvester dispatch, and plan harvest priority, which could vastly decrease 

the cost of grain drying and increase rice quality and farmer income.  
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5. Conclusions 

The difference between the GMC of the wettest and driest grains reached 46% in spot 

sampling and 18% in area sampling, and the average GMC followed the daily decline, 

revealing that GMC measurements with single panicles as the unit accurately reflect the 

difference of actual on-farm GMC. Therefore, the smartphone-based GMC measurement 

proposed in this study assessed GMC0 and was implemented using an image-based GMC 

assessment model. GMCi, i days later, was predicted using a multiday GMC prediction 

model, which rendered GMC measurement more rapid and convenient, and effectively 

increased the sample size. Moreover, the measurement was non-destructive, avoiding 

misjudgment of the average GMC due to on-farm differences. 

This study used images of paddy rice panicles shot under visible light and adopted 

their R, G, and B values as GMC estimation indicators. Color space transformation re-

vealed that CIs related to red and green wavebands (such as H and a*) were highly corre-

lated with HMC and suitable for GMC assessment. The R, G, and B values of images shot 

outdoors were susceptible to sunshine variation. Thus, this study produced an SSCB as 

the basis for gamma correction, which facilitated actual farmland application. Although 

the assessment accuracy of the models varied for diverse GMC intervals, CIs could accu-

rately reflect the grain GMC when the GMC was below 32%, remedying the limits of port-

able resistance grain moisture meters in terms of the range of application. Measuring 

GMC was conducted through machine learning, including random forest, multilayer per-

ceptron, support vector regression, and multivariate linear regression, in which the SVR 

model with a MAE of 1.23% was the most suitable for a GMC of less than 40%. The 

smartphone imaging method greatly reduced the equipment cost for non-destructive 

GMC measurement instruments. 

This study proposed a smartphone-based GMC measurement tool that obtains and 

analyzes a considerable number of morphological traits in grain images, which enables its 

wide application. The objective and contributions achieved in this study are as follows: 

 The GMC assessment model applying the SVR algorithm has a great performance 

with a MAE of 1.23% for a GMC of below 40% and a MAE of 1.08% for a GMC of 

below 32%, so as to perceive the GMC variation in the field at a very early stage.  

 The proposed non-destructive GMC assessment model executed through 

smartphones is low-cost and handy so as to efficiently collect the field GMC over a 

broad area in time. 

 The proposed multi-day GMC prediction model provides the prediction of daily 

GMC variation for the coming week, which helps to evaluate the best harvest timing 

and optimize the scheduling of agricultural machinery. 
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Abbreviations 

The following abbreviations are used in this paper: 

Abbreviation Explanation 

CIs color indices 

ExG Excess Green Index 

GD growth days 

GI Green Index 

GIGR green immature grains rate 

GMC grain moisture content 

HLS hue, luminance, saturation 

HMC harvest moisture content 

HSV hue, saturation, value 

MAE mean absolute error 

MAPE mean absolute percentage error 

MLR multivariate linear regression 

MLP multilayer perceptron 

NDI Normalized Difference Index 

OHD optimal harvest date 

PCA principal component analysis 

QR quick-response 

RBF radial basis function 

RF random forest 

RGB red, green, and blue 

RGRI Red–green Ratio Index 

RMSE root mean square error 

RMSProp root mean square propagation 

ROI region of interest 

SSCB simple spectral–geometric correction board 

SVM support vector machine 

SVR support vector regression 

TNG67 Tainung no. 67 

TNG71 Tainung no. 71 

w.b. wet basis 

YOLOv4 You Only Look Once v4 
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