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Abstract: Electronic noses can be applied as a rapid, cost-effective option for several applications. This
paper presents the results of measurements of samples of two pathogenic fungi, Fusarium oxysporum
and Rhizoctonia solani, performed using two constructions of a low-cost electronic nose. The first
electronic nose used six non-specific Figaro Inc. metal oxide gas sensors. The second one used ten
sensors from only two models (TGS 2602 and TGS 2603) operating at different heater voltages. Sets
of features describing the shapes of the measurement curves of the sensors’ responses when exposed
to the odours were extracted. Machine learning classification models using the logistic regression
method were created. We demonstrated the possibility of applying the low-cost electronic nose
data to differentiate between the two studied species of fungi with acceptable accuracy. Improved
classification performance could be obtained, mainly for measurements using TGS 2603 sensors
operating at different voltage conditions.

Keywords: electronic nose; odour classification; VOC; volatile organic compounds; fungi and
biosecurity

1. Introduction

Analysis and detection of odours can be performed using many techniques of chem-
ical analysis of gases. On the one hand, most of the information can be obtained by
classical chemical analytical techniques, such as gas chromatography combined with mass
spectrophotomety [1]. It allows identifying the individual chemical components of a
sample and their relative concentrations. Unfortunately, in practice, this technique is
limited to applications in laboratory conditions. On the other hand, there are multiple
approaches for which so-called electronic nose devices (e-nose) have been proposed [2–4].
They do not identify the components of a gas mixture, but rely on the pattern recognition
techniques supported by machine learning algorithms. E-noses are usually rapid, non-
invasive, online instruments comprised of an array of gas sensors and appropriate pattern
recognition software.

Different types of gas sensors can be used in the development of electronic noses, such
as optical [5], gravimetric [6] and electrochemical [7] sensors. Specifically, low-cost simple
constructions are often based on commercially available metal-oxide (MOX) sensors. In the
recent years, several groups reported such devices based on Taguchi-type MQ series gas
sensors [8–14]. Other devices were proposed by Szczurek et al. [15] to detect bee colony
infestations, Wu et al. [16] for cigarette brand identification, Anyfantis and Bliona [17] to
detect human presence, and Gonzalez Viejo et al. [18] to assess the aroma profiles of beer.
Lampson and coworkers have described a portable electronic nose for detecting pests and
plant damage [19].
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An essential task in the process of electronic nose construction is a choice of gas
sensor types. Multiple reports describe approaches to optimisation of the gas sensor
arrays [20–25]. Several approaches allow even single sensor devices to be used, wherein
different aspects of the measurement conditions are investigated to achieve the required
sensitivity and selectivity. The most often used approach is to use all characteristics of
the sensor’s response to the changes in gas condition from clean air to the sample (gas
adsorption), and again to the clear air (gas desorption), which exploits transient sensors’
response regions [26–30]. Another commonly used approach is to exploit the sensor’s
response in the regime modulated sensor temperature [31–35].

When building a low-cost electronic nose, the constructors are limited in their choices
of gas sensors to the models on the market. Therefore, the standard approach is to use
electrical circuit parameters according to recommendations of the sensor manufacturers—
for example, the sensor’s heater voltage, which determines the sensor’s temperature.
On the other hand, since the MOX gas sensors are used for other purposes in electronic
noses than originally intended, different operation conditions could be more appropriate.
Fonollosa and coworkers [36] reported research on optimisation of MOX sensor array
temperature. There is also research on MOX [37] and nanomaterial [38] sensor arrays,
during which multiple sensors of the same type were working in different temperatures.

Proposed constructions, applications, or limitations and challenges of e-noses de-
signed for studies of fungal, bacterial, and viral infections can be found in several re-
view papers [39–43]. Electronic noses have also found applications in cheese ripening
analysis [44,45]. These devices have been used to confirm the originality of, e.g., Italian
Parmigiano Reggiano, and its quality (ripening time). The portable S3 sensing device,
based on a matrix of six metal oxide semiconductor gas sensors, proved to be fast and
reliable, and the SPME-GC-MS method allowed the identification of biomarkers of volatile
organic compounds (VOC); the results were evaluated using multivariate statistical prin-
cipal component analysis (PCA). Mota et al. (2021) [46] examined published information
on the feasibility of fungal identification using electronic noses. The results of 16 articles
showed that a system based on electronic sensors can detect mycotoxins and identify the
associated microbial species. This technology has already been tested in several domains,
from the food industry to clinical practice.

Herein, we report experimental results of a simple, low-cost electronic nose device.
When in a sensor array, we used two sensors and five individual sensors working in
different temperatures. The device was successfully used to differentiate between odours
of two common forest fungi pathogens, Fusarium oxysporum and Rhizoctonia solani . Fungi of
the genus Fusarium, belonging to Ascomycota, and Rhizoctonia, belonging to Basidiomycota,
have been of interest to microbiologists worldwide, for many years. Currently, these fungi
are counted among the most pathogenic and phytotoxic microorganisms in the world.
They are plant pathogenic fungi with broad host ranges and worldwide distribution. The
species R. solani was discovered over 100 years ago and is considered a soilborne pathogen,
and F. oxysporum is currently considered a species complex comprising a variety of species
and strains that are ubiquitous in soils [47]. Most of these strains are saprotrophic, and
despite their ability to colonise plant roots, some are represented as commensal endophytes
that do not affect their host plants [48].

The most recent review paper, still referred to by many researchers, dates back more
than 35 years [49]. The authors reported 79 particular forms and mentioned races in 16
unique forms. Since then, the known host range of F. oxysporum has expanded considerably,
and many new particular forms and races have been described. In an extensive literature
review, Edel-Hermann and Lecomte [50] enumerated 106 special forms that they considered
well documented, 37 special forms that they considered insufficiently documented, and 58
additional host plants for which no special form has yet been characterised. The researchers’
studies show the power and danger of the formation of new forms of F. oxysporum. The
difficulty of traditional detection of these fungi in practice is that the anamorph (imperfect,
asexual form) does not produce spores, while the teleomorph (sexual, perfect) does not
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produce fruiting bodies, but only sexual spores, called basidiospores. A device that detects
pathogens in the soil of the rhizosphere or at the base of the stems would be precious for
early detection of pathogens and planning preventive measures.

Some authors [51] performed in vitro tests on cellulose agar at two relative humidities
(75, 100% RH) to distinguish contamination and colonisation by Aspergillus terreus, A.
holandicus, and Eurotium chevalieri. In vitro tests showed that the conductive polymer
sensor matrix exhibited different responses to each species at the two moisture levels.
Discriminant functional analysis of the data showed discrimination between the control
and the fungi. Cluster analysis showed significant separation of the control from each of the
paper-damaging fungi. In situ tests on three paper grades showed that the volatile pattern
produced by each fungus differed from the patterns of the others and the control when
natural substrates were used. The results obtained were better at higher moisture contents.
The three paper grades were successfully differentiated into clusters. The differentiation
between the control and the perishable fungi was better for a single paper grade with
higher moisture content. This study showed that this technology can detect fungal decay
in library and archival materials early to protect cultural heritage better. We also want
to acknowledge here a paper by Falasconi et al. [52], in which detection by the olfactory
system of Fusarium verticillioides in corn is reported.

2. Electronic Nose

In the present paper, we report the results of measurements performed by two elec-
tronic nose devices. PW4 was already described in more detail in the previous paper [53],
and PW6 is presented in Figure 1.

Figure 1. The PW6 electronic nose device. The cover was opened for the photo. 1—aluminium probe,
2—temperature and humidity sensors, 3—additional resistor, 4—TGS sensor, 5—16-channel analogue
multiplexer (Texas Instruments, Dallas, TX, USA), 6—Atmel 0814G Atmega 8-16PU microcontroller
(Microchip Technology, Chandler, AZ, USA), 7—USB wire, 8—external power supply wire, 9—16-bit
ADS1115 AD converter Texas Instruments, Dallas, TX, USA).

2.1. Sensor Array Selection

The operation of an electronic nose relies on measuring the resistances of non-specific
gas sensors exposed to the studied odour sample. In the previous papers [53,54]„ we
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reported the measurements performed by the electronic nose PW4 in which six MOX
commercially available gas sensors of Figaro Inc (Japan) were used. The list and target
gases of these sensors are presented in Table 1. In previous research, we demonstrated the
possibility of differentiating between samples of odours emitted by pathogenic oomycetes
Pythium intermedium and Phytophthora plurivora. We also noticed that the low-cost electronic
nose device could be simplified, as the best performing classification was obtained when
data extracted from just one sensor signal were used. It was the TGS 2603 sensor, but also,
in some cases TGS 2602 sensor data allowed us to achieve similar classification performance.
In the current study, we have extended our research to detect odours of pathogenic fungi
that are not closely related to oomycetes. Therefore, it can be expected that the emitted
metabolites contain similar or different chemical components and yet can be detected by
the same type of gas sensors.

Table 1. A list of sensor models used in e-nose devices and the odours and gases targeted.

Sensor Model Target Detection

In both constructions (PW4 and PW6)

TGS 2602

Has high sensitivity to low concentrations of odorous gases such
as ammonia and H2S generated from waste materials in office

and home environments. The sensor also has a high sensitivity to
low concentrations of VOCs such as toluene emitted from wood

finishing and construction products. [55]

TGS 2603
Has high sensitivity to low concentrations of odorous gases such

as amine-series and sulphurous odours generated from waste
materials or spoiled foods such as fish. [56]

Only in the first construction (PW4)

TGS 2600

Has a high sensitivity to low concentrations of gaseous air
contaminants such as hydrogen and carbon monoxide, which

exist in cigarette smoke. The sensor can detect hydrogen at a level
of several ppm. [57]

TGS 2610
Uses filter material in its housing, eliminating the influence of

interference gases such as alcohol, resulting in a highly selective
response to LP gas. [58]

TGS 2611
Uses filter material in its housing which eliminates the influence

of interference gases such as alcohol, resulting in a highly
selective response to methane gas. [59]

TGS 2620
Has high sensitivity to organic solvents and other volatile
vapours’ vapours, making it suitable for organic vapour

detectors/alarms. [60]

Sensor models TGS 2602 and TGS 2603 —the latter especially—are designed to detect
low concentrations of odorous gases generated from waste or spoiled materials. Hence, it is
not surprising that they react to the gases emitted by the growth of oomycetes or fungi, as
this is a similar biological process of organic material consumption as during food spoilage.

When building a low-cost electronic nose based on MOX sensors, we were limited to
commercially available sensors, as manufacturing our own sensors would have been too
costly. One idea for improving electronic nose performance is to use more sensors with
overlapping target gases but with different response characteristics and to then rely on
the machine learning algorithms to differentiate between response patterns. For that task,
it would be possible to use sensors from various manufacturers. Another idea exploited
in this paper is to change the conditions of sensor operation, which can be achieved by
changing the sensor’s heater voltage, and thus the operation temperature. This approach
is similar to proposals of using an array of custom-made gas sensors with a temperature
gradient [37,38].
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It may be interesting to recall the construction of an MOX-type gas sensor and its
operation principle. The main elements of the sensor are a sensing material, typically tin
dioxide, and an electric heater, usually made of platinum. When the sensing material is
heated, usually to the temperature of a few hundred degrees Celsius, in clear air, oxygen is
absorbed on the surface of the sensing element and attracts donor electrons, preventing
electric current flow. In reducing gases, oxygen reacts with the gas particles and the surface
density of adsorbed oxygen decreases; donor electrons are released into the tin dioxide,
leading to electric current flow. This means that the temperature is an important parameter
for controlling the physical processes of this gas sensor’s operating principle.

To some extent, an MOX gas sensor behaves differently at different temperatures,
and may exhibit different sensitivities and selectivities to various chemical components.
Indeed, in Figure 2, we present the response curves of sensors of the same type but with
various sensor heater voltages, and one can notice that their response characteristics can
be significantly different. In addition, even if the odour classification method has the
best performance when based on the data collected by a single sensor, studies on the
dependence of the electronic nose’s performance on the sensor temperature are essential,
as they allow one to determine optimal measurement conditions [36].

Figure 2. Examples of sensors’ responses to a sample of Rhizoctonia odour. Responses of sensors are
displayed in the subfigures as marked: (a) in PW4 e-nose device, (b) in PW6 with TGS2602 sensors
and (c) with TGS2603 sensors. The y-axis represents the sensor resistance R relative to the resistance
in clean air R0. The x-axis represents the sensor resistance read number counted from the start of the
measurement of the sample. The sensors were read for 1.22 seconds each.

2.2. Electronic Nose Construction

Compared to PW4, the PW6 device has upgraded hardware: a 16-bit ADS1115 AD
converter instead of a 12-bit one. To control more sensors, a better model of the Atmega
microchip controller (Atmel 0814G Atmega 8-16PU) was used. Additional delays were
added to ensure that the time of one measurement sequence was the same for both devices.
As the sensors’ heaters voltage stability was critical in this experiment, an external power
supply was used to power them. Sensors were power supplied, just as in PW4, via a
computer’s USB port. This cable was also used to control the devices and send the data to
the computer, where they were stored.
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The PW6 electronic nose device was built using ten metal oxide gas sensors (Figaro
co., Osaka, Japan) and humidity and temperature sensors. We decided not to use any
air pumps or fans to force airflow to reduce costs and complications. The sensors were
placed in an aluminium cover that just fit into Petri dishes 9 cm in diameter. The wires that
connect sensors and multiplexers were connected alternately to signal and ground wires,
to better shield electrical noise.

The main difference in the PW6 e-nose, compared to the PW4, was the use of only
two types of sensors, but each of them had an extra resistor R in the sensor’s heater circuit,
presented in Figure 3. After the tests reported in the previous papers [53,54], two models
of air pollutant sensors, TGS 2602 (sensitive to VOCs, ammonia, and H2S) and TGS 2603
(sensitive to amine and sulphur series odours), were chosen. They were connected to
resistors, as listed in Table 2. This combination made ten different sensors in the electronic
nose array. This resistor changed the power supplied to the sensors’ heaters by changing
the voltages to them. Power gained by the heater was proportional to the square of the
voltage and inversely proportional to the resistance. The voltages measured on each heater
are presented in Table 2.

Figure 3. The scheme of wiring for a representative sensor. There was an additional resistor,
allowing us to modify the electric voltage applied to the sensor’s heater and thus reduce the sensing
element’s temperature.

Table 2. Resistors connected to each sensor’s heater supply circuit and the electric voltage applied to
each sensor’s heater, in the PW6 electronic nose.

Resistor TGS 2602 TGS 2603

0 Ω 5.0 V 5.0 V
10 Ω 4.5 V 4.6 V
50 Ω 3.0 V 3.2 V
75 Ω 2.4 V 2.6 V
100 Ω 2.0 V 2.3 V

Due to the different original resistances of the heaters (TGS 2602 had 59 Ω and TGS
2603 had 67 Ω, both at room temperature), the temperatures of the different types of
sensor with the same resistor were not the same. Additionally, the resistances of the
heaters changed with their temperatures. The different parameters allowed by different
sensor manufacturers cause different sensitivities and reactions from sensors of the same
type. As low-coast devices, PW4 and PW6 do not need much power to work. The main
power consumers are the sensors’ heaters. The levels of power consumption by individual
components of the constructed devices are presented in Table 3.
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Table 3. Power consumption of sensors’ heaters and other electronic components used in PW4 and
PW6 electronic noses.

Component Power Consumption

TGS 2600 210 mW
TGS 2602 280 mW
TGS 2603 240 mW
TGS 2610 280 mW
TGS 2611 280 mW
TGS 2600 210 mW

Other 250 mW

Total PW4 1750 mW
Total PW6 2850 mW

3. Measured Samples

Damping-off is a disease that causes decay of germinating seeds and young seedlings,
especially those that grow in forest nurseries [61]. Among a lot of different organisms
causing damping-off that were taken for testing, F. oxysporum and R. solani were chosen
for further examination with the use of the constructed e-nose device. They are the most
abundant pathogens in Poland’s forest nurseries, and they can create chlamydospores
(thick-walled large resting spores). Pathogens in this form can remain latent in the soil for
a very long time and develop when optimal development conditions (e.g., weakness in
plants and high humidity) occur. It is one of many reasons why their early detection is so
essential in nursery production.

The pathogenic strains mentioned above develop readily in soil, which is their natural
habitat. Their adaptability has led them to being considered one of the most damaging
microorganisms in the world today. They cause root rot [62,63], tuber blight [64], and
wilting. In addition, recent evidence indicates that the species F. oxsyporum is among the
top 10 most destructive fungal plant pathogens worldwide. The pathogenic strains of
F. oxysporum are responsible for two types of symptoms. The most common is vascular
wilt, and in some cases, rotting. In vascular wilt, Fusarium invades host roots in the xylem
vessels, which it colonises upward, causing progressive yellowing and wilting of the plant.
While residing in the soil, it can decompose dead organic matter (saprotrophic), or infest
and damage healthy plants (parasite), or live a latent life in their tissues (endophyte).
Over time, the endophytic presence of the pathogen may be manifested by reduced plant
growth, followed by wilting, chlorosis, and premature death of the plant. This shows how
important it is to be able to detect it at an early stage. The fungus F. oxysporum is the only
representative of the genus Fusarium that develops in the vascular system of the host plant
and spreads upwards within the plant tissue, mainly affecting the bark layer. Other fungal
species spread outside the plant tissue. In the presence of suitable host plants, Fusarium
changes its mode of life to parasitic (occasional parasite). An infection by a pathogen of
the genus Fusarium occurs more readily when the root system is mechanically damaged;
nematode damage is particularly favoured.

The difficulty of controlling a species as complex as F. oxysporum is that there are
harmful, toxic, and pathogenic strains and beneficial ones. Some strains of F. oxysporum,
such as Fo47 and CS-20, are indeed beneficial to the host and may even protect against root
pathogens. At this stage, our research should only distinguish between F. oxysporum and R.
solani in order to use effective selective fungicides. An additional consideration is that the
F. oxysporum species complex mutates frequently, and virulence-related genes may lead to
the continual emergence of new races within the species [65–68].

R. solani, in turn, lives in the soil as vegetative hyphae or spores called sclerotia. The
thick cell walls of the spores allow them to survive in the soil for many years. They begin
to develop when exposed to chemicals secreted by a growing plant, or when exposed to
chemicals produced during the decomposition of organic plant debris. Capturing these
volatiles with an e-nose is a solution that provides some promise. The fungus can enter
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the plant through natural openings and through the epidermis. Upon contact with the
plant, the cuticle of the pathogen produces appressoria and infectious hyphe that penetrate
the plant cells. Enzymes produced by the pathogen are involved in the dissolution of
the cuticle.

3.1. Sample Preparation

The fungal strains were isolated in a forest nursery (Chojnów Forest District) from
the rhizosphere soil of diseased European oaks (Quercus robur) and were kept in the stock
of the Department of Forest Protection in the Forest Research Institute in Sękocin Stary
(Poland). The fungal samples were cultured on classical PDA-Agar media (20 g dextrose,
15 g agar, 4 g potato starch, and 1 L distilled water) in 9 cm Petri dishes. They were kept at
room temperature until the mycelium grew over the surfaces of their dishes completely.

3.2. Measurements of Samples

The procedure of odour measurements was almost the same as in earlier work [53]. It
was detailed in the previous paper, so we outline only the most essential parts here. For both
devices, the measuring procedure was the same, and the devices were used simultaneously.
Each day of measurements included at least one series of measurements for all samples. The
sequence of samples was selected via random number generator separately for each device
at the beginning of each day. The number of one-day measurement series was limited to
two to avoid overestimation of any day. During any one day, the sensors’ responses to the
odour of one type of sample looked similar.

Each measurement included 700 sensor reads; readings were taken over 1.22 s each.
The first 100 reads (122 s) were the baseline. Next, the sensors were placed manually
on the Petri plate with the sample. That made a small gas chamber under the sensors.
After 100 readings, each sensor’s probe was removed and placed away from the samples.
The last 500 resistance readings (6 min 10 s) recorded relaxation and sensor cleanings.
When not being measured, all samples on Petri dishes were covered to avoid any infec-
tions. Electronic noses and samples were stored in a laminar flow cabinet to ensure stable
environmental conditions.

All data used in this paper were measured between the 23rd of June and the 7th of
July 2021. That makes 10 measuring days, so any random noise in the environment could
be reduced. The sensors were power supplied and heated during all those days. We kept
them clean. For each of the specimens, 35 measurements were collected. That makes a total
of 105 records to analyse.

In our experiment, we maintained controlled conditions of constant temperature and
humidity throughout the experiment. The sensitivity of the MOX gas sensors is highly
dependent on these parameters, and we were interested in finding differences in the
responses of the sensors to the odours emitted by the test samples. Since we held the
humidity constant, we could consider a sensor’s response to it as a background signal,
which was the same in all cases.

4. Data Analysis Techniques

The data analysis that we performed consisted of several steps. First of all, the sensors’
response resistance data, which are presented in Figure 2, were pre-processed, and in
this step, several features describing the shapes of the curves were extracted. We applied
principal component analysis (PCA) to transform the input dataset to less dimensional
space and visualise data distribution patterns. The main type of data analysis involved
building machine learning classification models to differentiate between categories. All
analyses of experimental data that we report were performed using Python 3.7 code with
the scikit-learn module.



Sensors 2021, 21, 5868 9 of 18

4.1. Data Preprocessing

The number of reads collected during one measurement of a sample was 3600 for
the PW4 e-nose and 6000 for the PW6 e-nose device—each represents the number of
sensors multiplied by the number of reads of sensor resistance magnitude in both the gas
adsorption and desorption phases, as one can observe in Figure 2.The common practice [69]
is to extract from the sensor response curves a smaller number of features, which allows
reducing the dimensionality of the problem. In the present studies, we used a similar list
of the modelling features as reported in previous papers [53,54,70]. We can enumerate
several groups of the features types used in our data analysis. The first group consists of
the response curve’s basic characteristics: maximum, minimum, median, average, standard
deviation, skewness, and kurtosis. The second group consists of the same basic statistical
types but calculated for the response curve derivative, calculated after the original curve
smoothing using the exponential moving average method. Another group of features
consists of characteristic times, such as the times to reach 10%, 25%, 50%, and 90% of
the sensor’s response range, and the time to reach the maximum/minimum of the curve
derivative. The next group of features consists of the magnitudes of the sensor response
at characteristic moments of the measurements, such as half of the adsorption phase, the
moment when it reaches the maximum/minimum of the response derivative. Finally, the
last group of features consists of the parameters of the curve using a third-order polynomial.
The modelling features were extracted separately (i) from the whole curve, (ii) from the
adsorption, and (iii) from the desorption parts of the response.

4.2. Principal Component Analysis

Principal component analysis is an unsupervised method of data space transformation
to a new space represented by factors. The magnitude of a factor is related to the variability
of the dataset captured by the given factor. The factors construct a coordinate system in
which the first coordinate vector sets the axis for which the variance of the dataset points
is maximal, then the second coordinate vector sets the axis perpendicular to the first one
and contains the maximum of the remaining variance of the dataset, and so on. The PCA
transformation can be intuitively interpreted as a rotation of the coordinate system. One
of the applications of PCA analysis is the reduction of the dimensionality of the dataset,
as it allows the maximum of the content of the data variability in each of the components
and decides to discard the less critical ones. In our analysis, the PCA method was used
for visualisation purposes only. This allowed us to examine the data distribution in less
dimensional space and understand the patterns. Since the input variables are represented
in various measurement units in the studies we used and have various ranges, the input
data were standardised, which allowed us to treat them on an equal footing.

4.3. Classification Modelling

To build a machine learning classification model, we used the logistic regression
method. The model’s performance was evaluated using an accuracy measure, defined
as the proportion of correctly classified samples to all samples in the scored dataset. The
accuracy was calculated using the cross-validation (CV) technique.

It may be interesting to elaborate in more detail on the CV procedure used in our
analysis. As we already mentioned, the measurements were performed over 10 days,
and every day of measurement, each sample on a Petri dish was measured twice. In our
opinion, that should be considered in the proper splitting of the experimental data to the
training, validation, and testing datasets. Data collected from measurements of the same
sample should not be used in both operations: model building and testing. In addition,
as we noticed last time [70], the measurements performed during one day were pretty
similar, and far more pronounced differences could be observed when we compared data
from various days. That could be explained by varying measurements conditions, such as
background odours, humidity, and temperature variations. An advantage of such a group
splitting method is that it guarantees stratification of data and keeps the same proportion
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for each category of samples in a natural way. We implemented the CV loop so that data
collected during two randomly selected days of measurements were kept apart as the
testing dataset, and these data were used for model building or champion model selection,
but only for calculations of the final performance statistics. The CV loop was used for
30 repetitions.

It is essential to notice that, in the dataset we prepared, the number of modelling
features is quite large, and to avoid overfitting, we performed a variable selection procedure
using the recursive variable selection method [70]. This task was performed inside the
main CV loop, in another loop, and repeated 10 times. The partitions of the dataset,
which were made in the main CV loop, were used again, one for model training and the
second to evaluate its performance to select the best performing model (validation dataset).
That means that the training dataset used in each step for fitting the logistic regression
parameters contained only 60% of the original data. Additionally, for the training dataset,
data standardisation was performed. The validation dataset was used for the choice of best
features during the forward selection procedure. We limited this procedure to a choice of no
more than 20 features. After the selection procedure for forward features, the performances
of models with various numbers of features were compared, using statistics calculated
from testing run on the validation dataset. The number of modelling features with which
we achieved the best performing accuracy was found. We decided to implement this
model training and selection procedure because it avoids leakage of information from
the training/validation datasets to the testing dataset, and the final evaluation of the
classification performance is performed on entirely independent data.

5. Results and Discussion
5.1. Principal Component Analysis

In Figure 4 we present results of the principal component analysis of the measurement
data. As we described in the previous section, the input of the PCA was the modelling
features extracted from the sensors’ response curves. The machine learning classification
models selected the features that allowed for differentiation between the sample types. The
PCA analysis was performed only to reduce the problem’s dimensionality, which helped
with data visualisation.

5.2. Performances of the Classification Models

As one can observe in the following figure, there is a clear distinction between samples
infected by fungi and non-infected samples containing only the growth medium. Addition-
ally, we can notice that the separation between medium only and Rhizoctonia samples is
larger than the separation between medium only and Fusarium. This may indicate that the
classification models detecting Rhizoctonia perform better than the classification models
differentiating between medium and Fusarium samples. In addition, we can observe that
differentiation between the two studied species of fungi F. oxysporum and R. solani may
be more challenging, as the data distributions for these samples are not totally separated
and have a small overlapping region. As we present in the next section, such intuitive
observations about the classification performances are confirmed by the accuracy measures
based on the PCA visualisation.

The first result of machine learning classification modelling that we would like to
present compares the model’s performance using data collected by the PW4 and PW6
electronic noses. In Figure 5 we compare the accuracy of binary and multinomial target
models for all combinations of sample types. The models were built using data collected
by all sensors in electronic noses, which are listed in Tables 1 and 2. As one can notice, an
improvement in accuracy was achieved in all cases.
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Figure 4. Distribution of measured samples based on PCA transformation of the modelling features
extracted from sensor response curves. Data were obtained from the PW6 e-nose, all TGS 2603
sensors; six features selected by the classification model were transformed. The sample types are
represented with different colours and symbols. The percentages of variability accounted for by the
PC are indicated on the axes’ labels.

Figure 5. Comparison of the accuracy of the classification performance using data collected by the
PW4 and PW6 electronic noses. Classification for binary or multinomial target models, as indicated
on the x axis.

For further analysis, we built more models to verify the performances of various
cases, when data collected by just one of the sensors in the PW6 electronic nose were
used for the model training, or when we used data collected from the sensor working at
its heater voltage suggested by the manufacturer together with other sensors working at
lower voltages (Table 2). We noticed that the data from TGS 2603 sensors provided better
performances for the considered odours than the models built using TGS 2602 sensors’
data. For that reason, we would like to start our discussion from data presented in Figure 6,
of the TGS 2603 sensors.
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Figure 6. Performances of classification models, using data collected by the TGS 2603-type sensors
with various heater voltages. Average accuracy and standard deviation of model accuracy were
calculated in a cross-validation loop, as described in the main text. Binary or multinomial target
classification is presented in subfigures. (a) Medium versus Fusarium. (b) Medium versus Rhizoctonia.
(c) Fusarium versus Rhizoctonia. (d) Medium versus Fusarium versus Rhizoctonia. The bars represent
various models built using a single sensor’s data or multiple sensors’ data, and the sensors are
labelled by the resistances attached to their heaters. The horizontal line represents the null (random)
model level.
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As one can notice, in most cases, we achieved better accuracy performance when the
heater voltage was lower than the nominal one. In the case of differentiation between
medium and Fusarium samples, the difference was in the order of six percent, which con-
sidering the number of data points, is equivalent to two more samples being correctly
classified. The highest increase of the classification accuracy was observed for the multino-
mial classification when the classification of all categories was attempted, and the increase
was in the order of nine percent, which is equivalent to about five samples.

In Figure 7 we present the results of model performance using the data collected by
the TGS 2602-type sensors. As one can notice, in this case, we could not obtain good differ-
entiation between the studied odours when sensors were working with the heater voltages
recommended by the manufacturers. However, the models’ performances significantly
improved for much lower voltages when resistors of 75 and 100 Ω were used. When we
refer to the data presented in Table 2, we can notice that these resistors performed ideally
when the sensors’ heater voltages were at most half of the nominal ones.

One final note is worth mentioning. As we discussed in the previous subsection, the
distribution of data presented in Figure 4 could indicate perfect separation between clear
medium and infected samples. Additionally, the separation between both categories of
infected samples seemed to be potentially better than the results reported in Figures 5–7.
It can be recalled that the PCA transformation was based on the whole collected dataset,
without separation of training and testing data. At the same time, the classification model’s
performance was estimated using the training subsets of data not used in the model
building process, and this was repeated for several splits in the cross-validation loop.
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Figure 7. Performances of classification models, using data collected by the TGS 2602-type sensors
with various heater voltages. Average accuracy and standard deviation of model accuracy were
calculated in a cross-validation loop, as described in the main text. Binary or multinomial target
classification is presented in subfigures. (a) Medium versus Fusarium. (b) Medium versus Rhizoctonia.
(c) Fusarium versus Rhizoctonia. (d) Medium versus Fusarium versus Rhizoctonia. The bars represent
various models built using a single sensor’s data or multiple sensors’ data, and the sensors are
labelled by the resistances attached to their heaters. The horizontal line represents the null (random)
model level.
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6. Summary

Electronic noses have been proposed as a rapid and non-invasive diagnostic tool in
many industries and agriculture applications. In our previous papers [53,54] we demon-
strated successful applications of these noses in differentiating between two species of
pathogenic oomycetes, Phytophthora and Pythium. In the current paper, we reported fur-
ther development of the constructed low-cost electronic nose device with an application
to pathogenic fungal differentiation (Fusarium oxysporum and Rhizoctonia solani). Fungi
of the genus Fusarium and Rhizoctonia are considered some of the most pathogenic and
phytotoxic microorganisms in the world. They are plant pathogens with vast host ranges—
worldwide, in fact. They are the most abundant pathogens in forest nurseries in Poland,
where they cause damping-off, the disease that leads to the decay of germinating seeds
and young seedlings.

The first low-cost electronic nose created by our team (PW4) [53,54] consisted of six
Figaro Inc. TGS series gas sensors. The main idea behind developing the new e-nose
(PW6) was another approach to selecting the sensors included in the sensor array. In the
PW4 e-nose, we applied a broad range of TGS series sensors reacting to a broad range
of chemical components. In the PW6 e-nose, we used only two sensors, which, in the
preliminary measurements, provided data that allowed us to build the best performing
classification models. This selection was made after experiments performed on oomycete
odours, and we assumed that although they are technically not fungi, their odours should
be similar to fungal ones; thus, this selection might be still valid. In the PW6 nose, we
tested TGS 2602 and TGS 2603 gas sensors, for which various magnitudes of heater voltages
were applied.

In the data analysis part of the research, we applied a well-established methodology.
In the first step, the responses of the sensors to the presence of odours were transformed,
and a set of features describing the shapes of the response curves were applied. Then the
classification models using the logistic regression method were trained, and in this process,
the variable selection procedure was applied. The accuracies of classification models were
estimated using the cross-validation method.

The results demonstrated the possibility of differentiating between the studied samples
using the data collected by the low-cost electronic nose devices. We also demonstrated
an improvement of classification performance when data of the second proposed device
were used.
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Nose Differentiation Between Quercus robur Acorns Infected by Pathogenic Oomycetes Phytophthora plurivora and Pythium
intermedium. Molecules 2021, 26, 5272. [CrossRef]

55. Figaro Engineering Inc. TGS 2602 Product Information. Available online: https://www.figarosensor.com/product/docs/TGS2
602-B00 (accessed on 10 July 2021).

56. Figaro Engineering Inc. TGS 2603 Product Information. Available online: https://www.figaro.co.jp/en/product/docs/tgs2603_
product_information_rev02.pdf (accessed on 10 July 2021).

57. Figaro Engineering Inc. TGS 2600 Product Information. Available online: https://www.figarosensor.com/product/docs/TGS2
600B00%20%280913%29.pdf (accessed on 10 July 2021).

http://dx.doi.org/10.1016/j.snb.2004.12.009
http://dx.doi.org/10.1016/j.compag.2018.10.026
http://dx.doi.org/10.3390/electronics7040054
http://dx.doi.org/10.1109/JSEN.2015.2483901
http://dx.doi.org/10.1016/j.snb.2012.12.026
http://dx.doi.org/10.3390/s40400037
http://dx.doi.org/10.1016/j.aca.2020.05.015
http://dx.doi.org/10.3390/s130202295
http://www.ncbi.nlm.nih.gov/pubmed/23396191
http://dx.doi.org/10.1016/j.bios.2016.09.032
http://dx.doi.org/10.3390/s17112596
http://www.ncbi.nlm.nih.gov/pubmed/29137109
http://dx.doi.org/10.3390/s18020378
http://dx.doi.org/10.1088/1361-6501/abef3b
http://dx.doi.org/10.3390/bios6040060
http://www.ncbi.nlm.nih.gov/pubmed/27999300
http://dx.doi.org/10.1016/j.fbr.2021.03.005
http://dx.doi.org/10.3389/fpls.2020.00037
http://www.ncbi.nlm.nih.gov/pubmed/32117376
http://dx.doi.org/10.1094/PHYTO-08-18-0320-RVW
http://dx.doi.org/10.1016/j.ibiod.2004.04.001
http://dx.doi.org/10.1016/j.snb.2004.09.046
http://dx.doi.org/10.3390/s21041326
http://dx.doi.org/10.3390/molecules26175272
https://www.figarosensor.com/product/docs/TGS2602-B00
https://www.figarosensor.com/product/docs/TGS2602-B00
https://www.figaro.co.jp/en/product/docs/ tgs2603_product _information_rev02.pdf
https://www.figaro.co.jp/en/product/docs/ tgs2603_product _information_rev02.pdf
https://www.figarosensor.com/ product/docs/TGS2600 B00 %20%280913 %29.pdf
https://www.figarosensor.com/ product/docs/TGS2600 B00 %20%280913 %29.pdf


Sensors 2021, 21, 5868 18 of 18

58. Figaro Engineering Inc. TGS 2610 Product Information. Available online: https://www.figaro.co.jp/en/product/docs/tgs2610_
product_information_rev03.pdf (accessed on 10 July 2021).

59. Figaro Engineering Inc. TGS 2611 Product Information. Available online: https://www.figarosensor.com/product/docs/TGS%
202611C00(1013).pdf (accessed on 10 July 2021).

60. Figaro Engineering Inc. TGS 2620 Product Information. Available online: https://www.figarosensor.com/product/docs/TGS%
202620C%280814%29%20pdf.pdf (accessed on 10 July 2021).

61. Lamichhane, J.R.; Dürr, C.; Schwanck, A.A.; Robin, M.H.; Sarthou, J.P.; Cellier, V.; Messéan, A.; Aubertot, J.N. Integrated
management of damping-off diseases. A review. Agron. Sustain. Dev. 2017, 37, 10. [CrossRef]

62. Jarvis, W.R. Taxonomic Status of Fusarium oxysporum Causing Foot and Root Rot of Tomato. Phytopathology 1978, 68, 1679.
[CrossRef]

63. Vakalounakis, D.J. Root and stem rot of cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum f. sp. nov. Plant
Dis. 1996, 80, 313. [CrossRef]

64. Linderman, R.G. Fusarium diseases of flowering bulb crops. In Fusarium: Diseases, Biology, and Taxonomy; Nelson, P.E.; Toussoun,
T.A.; Cook, R.J., Eds.; Pennsylvania State University: University Park, PA, USA, 1981; pp. 129–141.

65. Houterman, P.W.; Speijer, D.; Dekker, H.L.; de Koseter, C.G.; Cornelissen, B.J.C.; Rep, M. The mixed xylem sap proteome of
Fusarium oxysporum-infected tomato plants. Mol. Plant Pathol. 2007, 8, 215–221. [CrossRef]

66. Ma, L.J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.;
Henrissat, B.; et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367–373.
[CrossRef] [PubMed]

67. Schmidt, S.M.; Houterman, P.M.; Schreiver, I.; Ma, L.; Amyotte, S.; Chellappan, B.; Boeren, S.; Takken, F.L.W.; Rep, M. MITEs in
the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genom. 2013, 14, 119.
[CrossRef] [PubMed]

68. Kang, S.; Demers, J.; Jimenez-Gasco, M.M.; Rep, M. Fusarium oxysporum. In Genomics of Plant-Associated Fungi and Oomycetes:
Dicot Pathogens; Springer: Berlin/Heidelberg, Germany, 2014; pp. 99–119. [CrossRef]

69. Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors
2015, 15, 27804–27831. [CrossRef] [PubMed]

70. Borowik, P.; Adamowicz, L.; Tarakowski, R.; Siwek, K.; Grzywacz, T. Odor Detection Using an E-Nose with a Reduced Sensor
Array. Sensors 2020, 20, 3542. [CrossRef] [PubMed]

https://www.figaro.co.jp/ en/product/docs/ tgs2610_product _information_rev03.pdf
https://www.figaro.co.jp/ en/product/docs/ tgs2610_product _information_rev03.pdf
https://www.figarosensor.com/ product/docs/ TGS%202611C00(1013).pdf
https://www.figarosensor.com/ product/docs/ TGS%202611C00(1013).pdf
https://www.figarosensor.com/product/docs/TGS %202620C%280814 %29%20pdf.pdf
https://www.figarosensor.com/product/docs/TGS %202620C%280814 %29%20pdf.pdf
http://dx.doi.org/10.1007/s13593-017-0417-y
http://dx.doi.org/10.1094/Phyto-68-1679
http://dx.doi.org/10.1094/PD-80-0313
http://dx.doi.org/10.1111/j.1364-3703.2007.00384.x
http://dx.doi.org/10.1038/nature08850
http://www.ncbi.nlm.nih.gov/pubmed/20237561
http://dx.doi.org/10.1186/1471-2164-14-119
http://www.ncbi.nlm.nih.gov/pubmed/23432788
http://dx.doi.org/10.1007/978-3-662-44056-8_5
http://dx.doi.org/10.3390/s151127804
http://www.ncbi.nlm.nih.gov/pubmed/26540056
http://dx.doi.org/10.3390/s20123542
http://www.ncbi.nlm.nih.gov/pubmed/32585850

	Introduction
	Electronic Nose
	Sensor Array Selection
	Electronic Nose Construction

	Measured Samples
	Sample Preparation
	Measurements of Samples

	Data Analysis Techniques
	Data Preprocessing
	Principal Component Analysis
	Classification Modelling

	Results and Discussion
	Principal Component Analysis
	Performances of the Classification Models

	Summary
	References

