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Abstract: This paper deals with a planar nanopositioning and -measuring machine, the so-called
nanofabrication machine (NFM-100), in combination with a mounted atomic force microscope (AFM).
This planar machine has a circular moving range of 100 mm. Due to the possibility of detecting
structures in the nanometre range with an atomic force microscope and the large range of motion
of the NFM-100, structures can be analysed with high resolution and precision over large areas by
combining the two systems, which was not possible before. On the basis of a grating sample, line
scans over lengths in the millimetre range are demonstrated on the one hand; on the other hand, the
accuracy as well as various evaluation methods are discussed and analysed.

Keywords: long-range AFM scans; planar nanopositioning; nanofabrication machine; active micro-
cantilevers

1. Introduction

The trend towards increasingly shrinking structures according to Moore’s Law is
advancing within various research areas, such as nanophotonics, nanooptics and nano-
electronics [1]. In addition, the semiconductor industry is following this trend, with a
simultaneous focus on mass production and cost reduction. This includes reducing the
structure size on the one hand and increasing the wafer size on the other hand in order to
achieve the highest possible yield [2].

In order to detect the smallest possible structures for surface imaging, scanning probe
microscopy methods can be used [3,4]. This also includes atomic force microscopy (AFM),
in which the bending of a microcantilever provides information about the topography of
the sample to be analysed [5]. Most of these tip-based methods work with high accuracy in
ranges of a few micrometres and are accordingly limited in the analysis of large areas.

In this work, an atomic force microscope is utilised, which uses active microcantilevers.
These self-sensing and self-actuating microcantilevers can be applied to measure topogra-
phy. However, it is also possible to use them for scanning probe lithography [6,7]. With this
so-called field-emission scanning probe lithography (FESPL), structures with sizes below
sub-10 nm can be generated [8,9].

In addition, a planar nanopositioning and measuring machine was developed [10].
This nanofabrication machine (NFM-100) is especially designed for two-dimensional tasks
and has a movement range of 100 mm in diameter. The use of laser interferometers makes
it possible to measure the position of the machine table with nanometre precision and a
resolution of 5 pm [11].

In principle, the NFM-100 can be equipped with various tools for measuring structures
in the nanometre range, such as AFM or laser focus sensors, as well as for micro- and
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nanostructuring, such as FESPL, direct laser writing (DLW) or nanoimprint lithography
(NIL) [12]. At present, the NFM-100 is equipped with an AFM/FESPL system. The novel
combination of a nanopositioning machine, which is specialised for planar applications,
and a tip-based measuring and writing system makes it possible to detect the smallest
structures below 1 nm over extremely large areas, in contrast to conventional AFM systems,
and, above all, to produce nanostructuring with high resolution on wafer sizes of up to
4 inches [13]. In addition, the growing demand for measuring periodic structures over
long ranges is increasing, so the NFM-100 in combination with the tip-based system opens
up new possibilities for measuring long ranges such as precision grids. On the one hand,
this enables quality control as well as the investigation of nanostructures in large working
areas, tending towards wafer size. In the future, repair of these structures using various
nanomanufacturing processes [12] will be explored.

In this paper, the focus is on AFM measurements over the millimetre range. Using
line scans over a length of 50 mm on a periodic grid structure, the compatibility of the two
measurement systems described is demonstrated and the accuracy is also examined in more
detail using various evaluation methods. Furthermore, a comparison of the measurement
results at different measuring speeds and a distinction between the different evaluation
methods is made.

2. Configuration of the Measurement Set-Up Used

The state of the art for measuring periodic structures is the use of optical measuring
methods, based on the diffraction of a laser beam and the subsequent determination of the
refractive angle [14]. However, these methods have a poor lateral resolution because of
the diameter of the laser beam. This is due to the integration of the structural properties
over the laser spot size and results in measuring the mean pitch for the investigated area.
The approach proposed in this paper has a significantly better lateral resolution in the
nanometre range based on the high-resolution AFM system.

2.1. Tip-Based Measuring System with Active Microcantilevers

The development of tip-based cantilevers has progressed steadily in recent decades.
There are different ways to excite the microcantilever as well as to choose the read-out of the
bending of the cantilever. In the work presented here, active microcantilevers are used. As
can be identified in Figure 1, the microcantilevers use a piezoresistive read-out to detect the
deflection of the beam. According to the piezoresistive effect, a mechanical tension induced
in resistors leads to a change in resistivity. By applying this in the form of a Wheatstone
resistance measuring bridge, an improvement in performance in terms of temperature
stability and deflection sensitivity could be achieved. Furthermore, a significantly improved
signal-to-noise ratio was reached through optimised resistor technology [15].

Moreover, as can be seen in Figure 1, the active microcantilever uses a thermomechan-
ical actuator to excite the oscillation. This thermomechanical actuator works according to
the bimorph effect and consists of two different layers with various thermal expansion
coefficients. In this case, silicon and aluminium are used as layers. The mismatch of the
thermal resistance coefficients leads to a higher actuator efficiency [15]. If a periodic signal
is now applied to the meander actuator, this leads to an oscillation of the cantilever due to
a periodic temperature change [16]. The change in bending can therefore be detected by
the resistance bridge at the clamping point.
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(a) (b)

Figure 1. Magnification of the used self-sensing and self-actuated microcantilevers (courtesy of
nano analytik GmbH, Ilmenau, Germany [16,17]). (a) SEM side-view image of the probe with
integrated piezoresistive read-out and thermomechanical actuation (active cantilever). A sharp
silicon tip (b) at the end of the cantilever ensures advanced AFM imaging and SPL capabilities [13].
These microcantilevers have dimensions of around 350 µm in length, 120 µm in width and 5 µm in
thickness [15].

2.2. Nanopositioning and Nanomeasuring Machine

Usually, tip-based systems are characterised by high resolution when analysing the
roughness or searching for defects in a given surface, but the scanning area is limited to a
range of 100 µm× 100 µm in conventionally available systems. To overcome this limitation,
the combination with nanopositioning and nanomeasuring machines represents a novel
option. For more than 20 years now, the Institute for Process Measurement and Sensor
Technology has been involved in research into nanopositioning systems. The focus here is
on measurement and positioning on the basis of laser interferometry according to the Abbe
comparator principle in extended three-dimensional working areas [18]. Based on this
expertise, two different machines have been developed: the nanomeasureming machine
NMM-1, with a working range of 25 mm × 25 mm × 5 mm [19], and the nanopositioning
machine NPMM-200, with a range of motion of 200 mm × 200 mm × 25 mm [20]. These
machines work according to the scanning stage principle and can move the machine table
in three dimensions. In contrast, the machine used in this work has a planar driving system.
The adjustment to height variations is to be made by the installed measuring or writing
system. However, the aim of the NFM-100 was to achieve greater stability in the z-direction,
which is necessary for a sensitive tip-based system.

Due to its high stability in the z-direction, the NFM-100 represents a special platform
for investigating new nanomeasuring technologies and alternative lithography processes
on extended macroscopic working ranges. This nanopositioning machine uses a planar
direct drive system with a range of motion of 100 mm in diameter. A model of its design is
depicted in Figure 2. The entire setup including the tip-based system is presented in [13].

A large granite block serves as the basis of the machine [21]. The topside is finished
with a flatness of below 1 µm and serves as the guiding surface for the air bearings of the
machine slider.

These have the property of enabling high repeatability and, above all, stability. In
this way, the highest possible accuracy with almost frictionless and jerk-free movement is
guaranteed. To perform the movement of the machine table, direct drives in the form of
three linear actuators are used. These have the advantage that there are no disturbances in
regard to cogging forces during movement, even at low speeds. They are also characterised
by high dynamics and repeatability with respect to positioning. The driving systems are
arranged in a 3× 120° orientation and can apply three independent forces to the slider in
the z plane. This arrangement offers three degrees of freedom: the movement in x and y
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directions as well as the rotation around the z axis, when properly controlled. The machine
table is equipped with three measuring mirrors for the length measuring systems.

angular interferometer

length interferometers

machine table

measuring mirror

direct drive

air bearings

granite base

Figure 2. CADmodel of the Nanofabrication Machine (NFM-100). The AFM measuring system is
mounted directly above the center of the machine table but is not depicted here for better visibility of
the NFM-100.

Fibre-coupled interferometers are used to precisely track the position of the machine
table. Here, one stabilised He-Ne laser is used to supply the three interferometer heads [10].
Two interferometers are arranged to measure the length in the x and y directions. A third
interferometer is used to measure the rotation around the z axis. The laser interferom-
eters represent the only measurement systems for the x and y axes, and, thus, the laser
wavelength serves as the length scale for these coordinates. The AFM only covers the
z-measuring direction and does not scan in the x and y directions. To calibrate the laser
wavelength, it was compared to a traceable laser, stabilised to an iodine absorption cell.
The actual laser wavelength determined in this way is considered in the machine control
system. Thus, the movement and measurement in the x and y directions is carried out
with very high accuracy. The measurement in the z direction realised by the AFM does
not significantly contribute to the pitch measurement as the main information there is
located in the x and y spatial directions. However, the z axis of the AFM can be calibrated
by, e.g., a step height standard, if necessary. Because of the planar setup, the machine
coordinate system is defined by the three measuring mirrors on the machine slider. Thus,
the straightness of the x and y axes is defined by the flatness of these measuring mirrors and
the angle between x and y by the angle between the mirror stripes. As there are no mechan-
ical representations of the axes, there is no coupling between them. The only mechanical
representation inside the machine coordinate system is the z plane, which is defined by
the granite base. As the z height is not actively controlled, flatness errors of the granite
directly lead to movements of the sample in the z direction. Thus, these movements have
to be covered by the AFM measuring system. However, from a metrological point of view,
z movements induced by the machine table are nonhazardous as they can be measured by
an optional z interferometer and can be compensated in the measuring data afterwards.

3. Measurement Strategy

Due to the limited scanning range of conventional tip-based systems, the use of
positioning systems is beneficial. Regarding long-range line scans, research results have
already been achieved [22,23]. Here, the NMM-1 was used as a nanopositioning system and
is accordingly limited to an area of 25 mm × 25 mm × 5 mm. With the newly developed
NFM-100, it is possible to measure over ranges up to 100 mm. As mentioned, in [13], first
line scans over 50 mm could be demonstrated. The sample used was a LIF 401 length scale
from HEIDENHAIN [24] with a nominal pitch of pn = 8 µm and a step height of 200 nm. It
is made of glass and is classified as accuracy class 3 µm. In this paper, the sample was used
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over again for analysis with different methods to evaluate the accuracy of the systems and
to explore the ability of the systems for the quality control of the micro- and nanostructures.
However, different scan velocities are analysed and evaluated here in terms of measurement
accuracy. The line scans were performed with scanning velocities of 5 µm s−1, 10 µm s−1,
20 µm s−1, 30 µm s−1, 40 µm s−1, and 50 µm s−1. For these measurements, the movement in
the x and y directions is realised by the machine table. The movement in the z direction
is compensated by the tip-based system. The same start and end points were used and
driven through the machine table over a total length of 50 mm. The values measured by
the interferometers were recorded simultaneously alongside the values measured by the
AFM unit. For a velocity of 20 µm s−1, the values of the x and y interferometers are depicted
in Figure 3.

0 10 20 30 40 50
−5

−2.5

0

2.5

5

x/mm

y/
nm

raw measuring data
moving average

Figure 3. Signals of the x and y interferometer during linescan with a velocity of 20 µm s−1 over
a length of 50 mm driven by the machine table of the NFM-100, which shows the deviation of a
straight line.

The measured values of the interferometers are acquired with a sampling rate of
10 kHz. The standard deviation for a movement of 50 mm in length and a velocity of
20 µm s−1 is approximately 825 pm in the y direction. With a moving average of 1000,
a standard deviation of 64 pm is achieved (Figure 3). Even for velocities up to 50 µm s−1,
the standard deviation with respect to the ideal trajectory is below 4 nm.

The sampling rate of the AFM system is time-constant and thus changes with the
moving velocity per period; this is summarised in Table 1 for different moving velocities.

Table 1. Comparison of the sampling rate and the mean distance of the measuring points at different
moving speeds. The period of the analyzed sample is 8 µm.

Mean Sample Rate Mean Sample Rate Mean Point Distance
[Points/µm] [Points/Period] [nm]

5 µm s−1 12.2 97.5 82.1
10 µm s−1 5.9 47.0 170.4
20 µm s−1 3.0 23.7 337.9
30 µm s−1 2.0 16.0 501.4
40 µm s−1 1.5 12.0 666.8
50 µm s−1 1.2 9.6 834.0

4. Processing and Analysis of Measurement Data
4.1. Sample Misalignment and Sample Deformation

When placing the measuring object on the machine table of the NFM-100, despite
elaborate adjustment, the orientation of the object will be slightly rotated with respect to
the machine coordinate system. To remove the tilt around the x axis and y axis from the
measuring data, a straight line is fitted into the measurement points via a least squares
process. Afterwards, the measuring data are rotated into the z plane; thus, distortion
(shortening) of the measurement data is avoided, in contrast to simply projecting onto the
z plane, resulting in a cosine error [25].
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Additionally to the imperfect orientation, there is also a deviation from a perfect plane
with respect to the line of the measuring object. This is because of the form deviation
of the sample due to gravity, inner stress, non-ideal support and so on. However, some
evaluation methods described in the following sections rely on a straight scan line and a
profile without deformation. To straighten the measuring data, the profile to evaluate has
to be isolated from the superposition with the long-wavelength form of the sample. The
reconstruction of the straight profile in this project was realised by high-pass filtering of
the measurement data. In turn, low-pass filtering was performed to suppress the nominal
pitch in the measuring data and calculate the deformation line. Subsequently, this line was
subtracted from the data points to achieve effective high-pass filtering and to straighten
the profile in this way.

Implementing a low-pass filter for this purpose is possible in various ways. A simple
sliding average filter can ideally suppress the nominal pitch, if the length is chosen appro-
priately to the length of a full period. Besides the nominal pitch, this type of filter will also
suppress integer fractions thereof. However, the pitches between this integer fraction will
only be poorly suppressed. Thus, this information would afterwards be removed from
the measuring data, though it might contain important information on the sample. This is
why a low-pass filter according to the BUTTERWORTH design [26] was applied. This type
of filter has a flat frequency response in the pass band and stop band, ensuring the uniform
suppression of pitches in the desired range.

The filter configuration was designed as an 2nd order type with a cut-off wavelength
of τc = 10 pn. With this configuration, the nominal pitch is suppressed by a factor of 100.
Figure 4 shows a comparison of the frequency responses of the sliding average and the
BUTTERWORTH filter.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

τ/µm

m
ag

ni
tu

de
/1

BUTTERWORTH Sliding Average

Figure 4. Frequency responses of the sliding average filter with a window length corresponding to
pn = 8 µm and a 2nd order BUTTERWORTH filter with a cut-off wavelength of τc = 10pn = 80 µm.
The sliding average filter offers perfect suppression of integer fractions of the window length,
but lacks suppression of the wavelengths between.

When applying this filter to the measuring data, the resulting filter line represents the
deviation of the sample from a straight line. This deviation is then subtracted from the
measurement data to straighten the profile. This progress is depicted in Figure 5.

4.2. Noise in Measurement Data

In general, it is possible to remove noise in the measuring data by low-pass filtering
with, e.g., a cut-off wavelength of τc = 1/10pn. In this way, in combination with remov-
ing the deformation above, the process would primarily preserve the wavelength of the
nominal pitch. This would be of use, for example, for the centre of gravity (COG) method
(Section 4.3.1), which gains from a clean profile, so no phantom pitches are detected because
of noise, peaks, overshoots and so on. However, distortions of the scanned profile, such
as slopes of sidewalls, an asymetric profile (duty factor 6= 50 %), non-flat top and bottom
plateaus and other parameters that might be of interest, could also be suppressed by ap-
plying a low-pass filter. When applying the high-pass filter from Section 4.1 alone, only
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low-frequency errors with much larger wavelength than pn are removed. Thus, the sample
profile will be preserved as far as possible. As this results in the least modified measuring
data, low-pass filtering was rejected.

4.3. Analysis Methods

The preprocessed measurement data are the basis for the subsequent analysis and
calculation of the pitch value. In this regard, different evaluation methods are available.
A simple approach would be the detection of the intersection point between the mean
profile height and the profile line. However, this method is based on a poor statistical base
as it only takes into account data points directly around the mean line. For this reason,
only evaluation methods using the complete measurement information were used in this
project. This includes methods providing information about the local pitch (COG method,
Section 4.3.1) as well as methods that calculate the mean pitch over the entire scan length.
In this regard, a FOURIER transform (Section 4.3.2), an approximation by an ideal profile
(Section 4.3.3) and a lock-in method were investigated. Finally, all pitch values calculated
by the different methods were compared (Section 4.4).

0 10 20 30 40 50
−1 000

−500

0

500

1 000

1 500

z/
nm

raw measuring data
filter line

0 10 20 30 40 50
−500

−250

0

250

500

z/
nm

straightened profile

12.5 12.6 12.7 12.8 12.9 13
−600

−400

−200

0

x/mm

z/
nm

raw measuring data
filter line

Figure 5. Profiledata of the measured grating sample. The first plot shows the original data over the
complete measuring length, rotated to the z plane and the filter line, resulting from applying the
BUTTERWORTH filter described above to the measuring data. The second plot shows the profile data
with tilt and bend removed by subtracting the filter line from the measuring data. In the third plot,
a detail of the scan line is depicted. Here, it is observable how the filter follows the form deviations
of the sample.

4.3.1. Centre of Gravity (COG)

The COG method [27] divides the measuring points into two classes and evaluates
the area of the profile above and below a threshold line, located approx. in the middle of
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the profile. To calculate this threshold line, a histogram method is used. In this regard,
the histogram of the z coordinates of all measurement points is calculated. Because of
the plateaus in the profile, there is an accumulation of measuring points in this area. This
results in two peaks in the histogram at the according levels. The maxima of the histogram
are used to identify these levels and, based on these two values, the threshold line is
calculated as the mean of the upper and lower peak in the histogram (Figure 6).

0 20 40 60 80 100
−150

−100

−50

0

50

100

150

x/µm

z/
nm

profile threshold line

0 10 20 30 40 50

upper max.

lower max.

threshold line

=
=

number of occurences/1000

(a) (b)

Figure 6. Calculatingthe threshold line from the profile data. A histogram (b) is calculated for the
measuring points of the profile (a, detail) over the complete scan length. In the histogram, the peaks
above and below the x axis are determined. The threshold line is placed symmetrically between these
peaks by calculating their unweighted mean. With the threshold line, the profile can be divided into
an upper (green) and a lower (red) part.

To calculate the COG of the upper (green in Figure 6) and lower (red in Figure 6) parts
of the profile, the exact enclosed area between the according measurement points and the
threshold line needs to be known. However, at the transition between an upper and a lower
profile section, there is not necessarily a data point, located exactly on the threshold line.
When numerically calculating the enclosed area, this would lead to an error. Therefore,
the intersection points of the profile line and the threshold line are estimated by linearly
interpolating between one data point of the upper and lower section each, located nearest
to the threshold line (Figure 7).

x

z

threshold
line

interpolated
intersection

nearest
neighbours

lower
part

upper
part

Figure 7. The intersection of the profile line and the threshold line is calculated by linear interpolation
between the data points of the profile, located nearest to the threshold line. This additional data
point allows more accurate calculation of the area enclosed between profile and threshold line for the
subsequent COG calculation.

After the crossings of the scan line and the threshold line were estimated, the enclosed
area was calculated for each profile section above and below the threshold line. This results
in twice as many areas as the number of full periods of the profile. For each of these, the x
position is calculated, at which the area is divided into two equal parts, and this position
is used as the COG in the x direction. As the z position of the COG is not relevant for
the determination of the pitch, it is estimated by half of the median of the data points in
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a single half period for plotting purposes only. Figure 8 shows a detail of the measured
profile and the calculated COGs therein.

0 10 20 30 40 50 60 70 80 90 100
−150

−100

−50
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100
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x/µm

z/
nm

measured profile upper COGs
threshold line lower COGs

Figure 8. Calculated COGs for the scanned profile (detail). In the x direction, the COGs are located
at the position where the area of the according profile element is divided into two equal parts.
The z position of the COGs is not relevant for the pitch calculation and introduced for descriptive
purposes only.

The calculated x positions now represent the COGs of the upper and lower parts
of the profile and, thus, the half-pitch of the sample. However, because of distortions in
the measurement process, it is possible that additional crossings of the profile line over
the threshold line can occur. This in turn results in additional and mistakenly detected
profile elements, affecting the pitch calculation. To prevent such distortions, a grid of
ideally located COGs with the nominal pitch pn is calculated. For each of these grid
points, which are evenly spaced by a distance pn, the COG is identified, which is closest
to the ideal point. Thus, to each ideal point, a COG based on real measurement data is
related. For evaluation of the pitch, now, only the related COGs are used. Unrelated and
thus surplus COGs, resulting from erroneous profile detection because of measurement
distortions, are discarded. This allows us to sort out invalid detected COGs without
affecting the remaining data (Figure 9).

x

z

noise/
distortion

regular
profile

ideal COGs (x-pos.)
regular upper COG
regular lower COG
spurious upper COG
spurious lower COG
nearest
discarded

Figure 9. Spurious COGs, caused by additional crossings of the profile line and the threshold line,
e.g., because of noise. To eliminate these, a sanity check and a selection of the detected COGs is
executed. For this purpose, a synthetic grid of ideally spaced COGs (black dots) is generated and
the nearest COG, obtained from measuring data, is determined (black arrows). All other COGs are
discarded for this particular ideal COG (grey arrows). Only COGs related to the ideal grid are used
for the subsequent calculations.

For the remaining COGs, a best fit line in the least squares sense is calculated. As the
data consist of upper and lower COGs, the slope of this line represents the half pitch of the
grating. The full pitch pCOG of the grating, calculated for a scan velocity of 10 µm s−1, is

pCOG = 8.0038 µm . (1)



Sensors 2021, 21, 5862 10 of 17

As the COG evaluation is based on a per-period calculation, it provides information
about the local pitch of the investigated profile. The local pitch pCOG,i can be calculated by

pCOG,i = 2(xCOG,i + 1 − xCOG,i), i ∈ N, (2)

where xCOG,i is the x position of the COG for a single profile element (coloured area in
Figure 9). Figure 10 shows the pitch value for every sample period over the complete
scan line.
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Figure 10. Local pitch of the measured grating. As the COG method allows us to calculate the pitch
for every period of the sample, local deviations from the nominal pitch pn can be detected.

As can be seen in Figure 10, the main advantage of the COG method is the high-
resolution information about the local pitch. Furthermore, the mean pitch over the complete
scan length can be calculated by the described best-fit line. The methods described in the
following section only provide pitch information for the complete length to which they
are applied.

4.3.2. Fourier Transform

As the measured profile is a periodic structure, it can be analysed for its frequency
components. This can be achieved by a FOURIER transform, which can calculate the
amplitudes of contained spectral components. Here, the spectral component with the
maximum amplitude represents the mean frequency over the complete scan length of the
measured profile. Of course, the calculated frequency can be converted to the pitch of the
grating. Usually, the FOURIER transform is carried out by utilising built-in functions of
available software. However, a Fast-FOURIER-Transform (FFT) is typically used, which is
limited in its frequency resolution, depending on the sample rate and the number of data
points. Thus, the FFT can only be used for a raw calculation of the mean pitch.

The calculation of the FFT relies on equally spaced data points in the x direction.
As the data points contain jitter because of non-uniform sampling, the FFT contained
noise in the resulting spectrum, making it difficult to identify the spectral component with
the maximum amplitude. To solve this issue, the measuring points were resampled to
a regular grid with an increment size of the mean data point distance in the x direction.
The resampling to the regular grid was carried out by linear interpolation between the
points of the original measurement data. Afterwards, the FFT was calculated on this data
set, using the corresponding built-in function of OCTAVE [28]. Figure 11 shows the resulting
spectrum for the grating, measured at a scanning speed of 10 µm s−1.

In the spectrum above, the maximum amplitude at the nominal pitch can be clearly
observed. Furthermore, there are additional peaks at the half, the third and the quarter
of the nominal pitch. These peaks result from the rectangular shape of the profile and the
resulting harmonics, as well as, e.g., an asymmetry in the profile. Lower frequencies/larger
wavelengths indicate periodic distortions in the grating, mainly because of distortions
during production.
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Figure 11. Normalised FFT of the measured profile. The maximum amplitude located at 8 µm
represents the mean pitch of the sample grating. Peaks at 4 µm, 2.67 µm, etc., result from the shape of
the profile (see text).

As the measurement length is no integer multiple of the mean pitch, a shift in the
maximum in the discrete spectrum results. This is known as the leakage effect [29] and
poses a fundamental issue when using a Fast FOURIER Transform for calculating the
pitch. From the spectrum, the mean pitch over the complete scan length was calculated
as 8.0033 µm. As described before, this value is resolution limited by the number of data
points and the sampling rate. For the shown measurement, the pitch resolution is 1.28 nm.
To overcome the resolution limitation, the pitch calculated by the FFT is used as a starting
value in a Discrete FOURIER Transform (DFT) based on the GOERTZEL algorithm [30].
The amplitude can be calculated for a spectral component of arbitrary frequency. Based
on this initial value, a maximum search algorithm was started, using a NELDER–MEAD

approach [31] to find the maximum of the spectrum without any limitation in the resolution.
Figure 12 shows a close-up view at the maximum of the FFT (see Figure 11) and the

calculated peak frequency of the DFT.
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Figure 12. The resolution limitation of the FFT causes the maximum calculated amplitude not to be
equal with the true maximum amplitude, visible in the DFT. However, the FFT maximum was used
as initial parameter for the maximum search algorithm utilising a DFT.

The peaks in the figure above represent the calculated pitches of the FFT (pFFT) and
DFT (pDFT) and are located at

pFFT = 8.0033 µm and (3)

pDFT = 8.0037 µm . (4)

4.3.3. Best-Fit Function

As the leakage effect leads to a slight shift in the maximum in the Fast FOURIER

transform, other methods incorporating the complete profile were investigated. One
attempt is the approximation of the measured profile with an ideal, synthetic one. For this
purpose, an ideal profile is numerically calculated and its parameters are optimised to best
fit the measured profile in a least squares sense. To achieve this, the z values of an ideal
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square zsqu,bf function as well as an ideal sine zsin,bf were calculated at the x positions of
the measurement points.

zsin,bf = A sin
(

2π

psin,bf
(x + ϕsin,bf)

)
(5)

zsqu,bf = A sgn sin

(
2π

psqu,bf
(x + ϕsqu,bf)

)
(6)

Then, the period lengths (psin,bf, psqu,bf) as well as the phase (ϕsin,bf, ϕsqu,bf) of the
two ideal functions were optimised to the measuring data by a LEVENBERG–MARQUARDT

nonlinear regression [32]. The amplitudes (A) and offset of the ideal functions were fixed
in this optimisation. The offset was set to zero, as the mean of the measuring data was
subtracted from the scan line prior to the approximation. The amplitude was chosen to be
equal to the standard deviation of the measuring points in the z direction.

The initial parameters for the optimisation were taken from the COG method in Section 4.3.1
to ensure a proper approximation result. When any of the initial parameters for offset, amplitude,
phase or period length differ too much from the real values, the optimisation will stop in
a subsidiary maximum and thus result in a—fortunately obvious—incorrect approximation.
After the optimisation finished, the parameters psin,bf and psqu,bf were taken as the pitch of the
measured profile. Figure 13 shows the profile as well as the two optimised functions.
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Figure 13. Best fit sine function and square function, tuned to the measured profile by minimising
the squared error.

For the profile measured at a scanning speed of 10 µm s−1, the calculated pitches are

psin,bf = 8.0038 µm and (7)

psqu,bf = 8.0038 µm . (8)

4.3.4. Lock-In Principle

The lock-in [33] principle, used as an additional evaluation method in this project, is
similar to the best-fit method described before. Here, the basic idea is to determine the
frequency with respect to the period of the measured data by comparison with a reference
signal. For this purpose, the measured profile is multiplied point-wise with the values
of the ideal reference profile. The resulting product is afterwards low-pass-filtered to
obtain the amplitude at the current phase between measurement and reference profile.
The low-pass filter chosen for this calculation is the mean over the complete length of the
multiplication product. As in the previous section, the parameters of the reference profile
were optimised to achieve a maximum mean amplitude over the complete scan length and,
thus, the best overlay of the reference function to the measurement data. The reference
profiles were once again calculated as an ideal square zsqu,li function as well as an ideal
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sine zsin,li, each with zero offset and an amplitude A equal to the z standard deviation of
the measuring points.

zsin,li = A sin
(

2π

psin,li
(x + ϕsin,li)

)
(9)

zsqu,li = A sgn sin

(
2π

psqu,li
(x + ϕsqu,li)

)
(10)

The initial parameters for the optimisation were taken from the COG method and
the parameters psin,li and psqu,li were taken as the pitch of the measured profile. Figure 14
shows the profile as well as the two lock-in functions.
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lockin(square)

Figure 14. Approximated sine function and square function, tuned to the measured profile by a
lock-in method.

For the profile measured at a scanning speed of 10 µm s−1, the calculated pitches are

psin,li = 8.0038 µm and (11)

psqu,li = 8.0037 µm . (12)

4.4. Comparison of the Results

The measurements and analyses described before were realised with a single grating
sample, scanned on the same trace for maximum comparability. The six different scan ve-
locities between 5 µm s−1 and 50 µm s−1 and the seven different analysis methods described
in Section 4.3 result in a total of 42 values for the pitch of the grating under test. In this
section, the results are compared to each other and analysed. Table 2 lists the values of
the applied analysis methods for the different scan velocities. In the table, each column
contains the mean of the pitch values obtained by the methods COG, DFT, best-fit (sine and
square) and lock-in (sine and square). Values of the FFT are excluded from the respective
mean calculation because of its limited resolution and the resulting—in general—large
deviation from the other, unlimited, methods. The results in each single column are based
on the same measuring data and should be equal in the ideal case.

Apparently, the measured pitch of the sample differs from the nominal pitch pn by
approx. +3.8 nm, which is a relative error of +4.75× 10−4, regardless of the evaluation
method or scanning speed. This deviation can, in theory, be due to several reasons.
The NFM-100 can be excluded to a large extent, because of the application of interferometric
length measuring systems with stabilised He-Ne lasers (stability 10−8 . . . 10−9) and an
online correction of the refractive index of air (uncertainty 10−8) by the modified EDLÉN

formula [34]. A misalignment of the sample also results in an error of the measured
pitch. When the scan direction is not parallel to the grating direction, a cosine error arises,
resulting in the measured pitch being too large. The rotation of the sample around the z
axis and the resulting angle with respect to the x and y axes of the machine coordinate
system is subject to future investigations (see Section 5). Another main factor is the thermal
expansion of the linear scale made of glass, with a coefficient of thermal expansion of
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8×10−6 K−1. In general, the pitch error is caused by all three factors. As this paper focuses
on the processing of the measurement data by different algorithms and their comparison,
metrological investigations and different scan strategies will be the focus of future work.

Table 2. Comparison of the calculated pitches for the different evaluation methods and the different
scanning speeds. Values in a column should ideally be equal, as they are based on the same
measuring data.

Pitch/µm

Scanning Speed/µm s−1

Analysis Method 5 10 20 30 40 50 Stand. Dev.

COG 8.0038 8.0038 8.0038 8.0038 8.0038 8.0038 15 pm
DFT 8.0038 8.0037 8.0037 8.0037 8.0036 8.0036 54 pm

best fit sine 8.0038 8.0038 8.0038 8.0038 8.0038 8.0038 30 pm
best fit square 8.0038 8.0038 8.0037 8.0038 8.0037 8.0038 50 pm

lock-in sine 8.0038 8.0038 8.0037 8.0037 8.0037 8.0039 62 pm
Lock-in square 8.0039 8.0037 8.0037 8.0038 8.0038 8.0039 66 pm

mean 8.0038 8.0038 8.0037 8.0038 8.0037 8.0038 34 pm
standard deviation 35 pm 34 pm 25 pm 48 pm 51 pm 90 pm

FFT 8.0034 8.0033 8.0032 8.0036 8.0038 8.0029 309 pm

The differences in the analysis methods from the mean value for the according scan
velocity are depicted in Figure 15. Here, it is observable that the deviation of the different
evaluation methods between each other increases with the scanning speed. This is because
of the increasing distortion of the measured profile due to overshoots, etc., the limited
mechanical slew rate of the AFM and fewer data points per period. Furthermore, it is
conspicuous that the pitch calculated with the DFT method is always lower than the mean
value. The reason for this behaviour will be examined further in the project.
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Figure 15. Deviations of the different analysis methods from the mean pitch for the according
scan speed.

The differences between the evaluation methods are acceptable for scanning speeds
in the range of 5 µm s−1. . . 20 µm s−1. The maximum deviation of +45.6 pm for the lock-in
method using a square function is equal to a length measuring error of only 0.29 nm over
the complete scan length of 50 mm. Nonetheless, the measuring time is acceptable 42 min.
The DFT apparently suffers from a decreasing number of data points per period with
increasing scanning speeds (see Table 1).

The calculated standard deviations in Table 2 show that the COG method is the most
reproducible analysis method for different scanning speeds and the resulting different
point density per period. For the scanning speeds, a velocity of 20 µm s−1 results in the
smallest standard deviation, which is also observable in Figure 15. This medium speed
seems to be a trade-off between lower speeds, suffering from drift effects because of the
long measuring time, and higher speeds, causing overshoots and other distortions due to
the mechanical properties of the tip-based system.
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Figure 16 shows a detail of the calculated pitches for the complete scan length. Here,
it is observable that each single period can be clearly distinguished and analysed. This
opens up the possibility for a highly localised examination of the grating properties and
the identification of possible manufacturing issues.
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Figure 16. Per-period deviation from mean pitch (detail of complete scan line).

With these findings and the possibility of segmental evaluation, local pitch changes
can be detected by using these high-precision measuring systems. This means that these
local changes can be recognised again. As a result, statistical scales can be used in the future.

5. Conclusions and Outlook

The combination of the two presented measuring systems offers a novel possibility
for the detection of defects as well as for quality control of large-area periodic grids such as
diffraction gratings or length scales. With the help of the NFM-100, this can be realised up
to an area of Ø 100 mm with nanometre precision. In this paper, line scans over a length of
50 mm with a velocity up to 50 µm s−1 are presented. These were evaluated using different
approaches and finally compared with each other. It was shown that it is possible to reliably
detect periods while excluding obvious profile errors (Section 4.3.1). By evaluating with
different methods that take all measurement points into account, this provides a solid
statistical base. In addition, the mentioned methods provide information about the local
pitch of the measured sample and also the calculation of the mean pitch over the entire
profile line. The machine table of the NFM-100 itself can achieve a standard deviation of
64 pm with respect to the ideal trajectory for the enormous length of 50 mm (Section 3).

In general, the described machine and methods can also be applied to two-dimensional
scans. Here, the AFM will cover the z measurement, while the NFM-100 machine table
will move in the x and y directions. In this way, several scan lines can be measured one
beside another to gather the topography of an areal sample. In fact, this possibility of the
NFM-100 will be exploited for more accurate measuring results in future investigations
(see next paragraph). Furthermore, any other trajectory, be it circles, spirals or free forms,
is also possible for the scan path, which might be useful for applications other than
pitch measurements.

In the future, the focus will be on the segment-by-segment evaluation, with which it
will be possible to apply the full-length analysis methods to local sections of the sample and
thus the local accuracy of the sample to be analysed. This will make it possible to determine
whether defects occur more frequently in certain areas. Furthermore, the dependence of
the angle of the scan direction is important, which is why this should also be analysed and
taken into account in more detail in the future, as was shown in [35], for example. This
can be achieved by further investigation with different scan angles and several line scans
next to each other. In addition, another focus is on the repeatability of the measurements,
for which several line scans are necessary. Conclusions can then also be obtained about
the tip wear of the microcantilevers. Long-range AFM scans are very time-consuming.
Thus, the effect of temperature fluctuations cannot be ignored. To address the effect of
thermal drift, additional investigations will be performed in the future. A possible method
is to periodically interrupt a current measurement, go to a known reference position on
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the sample, determine the drift and then return to the previous position and resume
the measurement.
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