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Abstract: One of the most common sleep disorders is sleep apnea. It manifests itself by episodes
of shallow breathing or pauses in breathing during the night. Diagnosis of this disease involves
polysomnography examination, which is expensive. Alternatively, diagnostic doctors can be sup-
ported with recordings from the in-home polygraphy sensors. Furthermore, numerous attempts
for providing an automated apnea episodes annotation algorithm have been made. Most of them,
however, do not distinguish between apnea and hypopnea episodes. In this work, a novel solu-
tion for epoch-based annotation problem is presented. Utilizing an architecture based on the long
short-term memory (LSTM) networks, the proposed model provides locations of sleep disordered
breathing episodes and identifies them as either apnea or hypopnea. To achieve this, special pre-
and postprocessing steps have been designed. The obtained labels can be then used for calcula-
tion of the respiratory event index (REI), which serves as a disease severity indicator. The input
for the model consists of the oronasal airflow along with the thoracic and abdominal respiratory
effort signals. Performance of the proposed architecture was verified on the SHHS-1 and PhysioNet
Sleep databases, obtaining mean REI classification error of 9.24/10.52 with standard deviation of
11.61/7.92 (SHHS-1/PhysioNet). Normal breathing, hypopnea and apnea differentiation accuracy is
assessed on both databases, resulting in the correctly classified samples percentage of 86.42%/84.35%,
49.30%/58.28% and 68.20%/69.50% for normal breathing, hypopnea and apnea classes, respectively.
Overall accuracies are 80.66%/82.04%. Additionally, the effect of wake periods is investigated. The
results show that the proposed model can be successfully used for both episode classification and
REI estimation tasks.
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1. Introduction

Sleep apnea is a common disorder, characterized by episodes of shallow breathing
or cessation of breathing during sleep [1]. According to some studies as much as 23.4%
of female and 49.7% of male adults can be affected [2]. Moreover, many cases remain
undiagnosed [3]. Risk factors for sleep apnea include such aspects as obesity, low blood
oxygen saturation and enlarged tonsils [4,5]. Results of untreated sleep apnea include
daytime sleepiness, snoring, non-restorative sleep and concentration problems [6].

There are several standards specifying annotation of sleep disordered breathing events.
By far the most commonly adopted are the rules proposed by the American Academy of
Sleep Medicine (AASM) [1]. These guidelines describe prerequisites for annotating apnea
and hypopnea episodes. Apnea is detected when there is at least 90% drop of breathing
amplitude, and hypopnea occurs when the amplitude falls by at least 30% for ≥2 breaths.
Additionally, an arousal or arterial oxygen desaturation drop not less than 3% must be
present to score the episode as hypopnea [1]. Another standard for sleep disordered
breathing scoring is the Sleep Heart Health Study (SHHS) method [7]. Both approaches
emphasize the duration of an event. To be clinically important, an episode should last at
least 10 s.
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Apneas and hypopneas are further divided into obstructive and central categories [1].
Treatment of these two diseases can also be different [8]. In this work, however, the
two types of events are not distinguished, and both obstructive and central episodes are
classified together. This approach was chosen to limit the number of labels present in the
dataset and focus strictly on apnea/hypopnea differentiation.

To streamline diagnosis, the apnea–hypopnea index (AHI) was introduced, that allows
for disease severity assessment [6]. The AHI can be calculated as a total number of apneas
and hypopneas lasting at least 10 s, divided by sleep duration expressed in hours. If no
sleep staging data is available for an examination, the monitoring time can be used instead,
producing respiratory event index (REI). REI can be a surrogate for AHI [1].

The golden standard in sleep disorder diagnosis is an attended polysomnography
(PSG) examination. It involves recording of many channels, coming from various medical
sensors. The most important for detection of sleep disordered breathing is the oronasal
airflow signal. It can be recorded by a thermal sensor (either thermistor, thermocouple or
polyvinylidene fluoride (PVDF)) or pressure transducer. The respiration effort signal allows
for differentiation between types of episodes. Several technologies of sensors in form of
belts are used for this purpose, namely respiratory inductance plethysmography, PVDF,
piezoelectric, and pneumatic. Blood oxygen saturation is important for scoring of hypopnea
events, and can be measured by standard pulse oximeter. Electrocardiography (ECG),
electroencephalography (EEG), electromyography (EMG) and electrooculography (EOG)
are also mandatory. The last biological signal that must be recorded is body position [1,9].
While very thorough, this method is also expensive. An examination takes place in a
dedicated sleep laboratory and requires the constant supervision of a technician. Another
option is a home sleep apnea diagnosis. This scenario implies the use of a much simpler
device, called a polygraph, for recording a reduced set of channels. While not as complete
as PSG, polygraphy has better availability and in most cases is sufficient for the sleep apnea
diagnosis [10,11].

To further increase the number of tests that can be conducted and handled, automatic
annotation algorithms were developed. The objective is to streamline the diagnosis by
providing preliminary examination description for the medical personnel. Then, mistakes
can be corrected, and there is no need to mark the evident episodes by hand. In the future,
it could be possible that such an algorithm could be used alone, without further verification
by a human [12].

Firstly, requirements for such an algorithm include good performance, as measured
by typical metrics used in machine learning with strongly imbalanced datasets. Secondly,
the architecture must also fulfill expectations of medical personnel. The episodes must
be individually marked, and AHI calculated based on these markers. There are models
available, that analyze the signal from the entire night and provide only an estimation of
AHI [13,14]. While good for screening purposes, such an approach cannot provide initial
labels of disordered breathing episodes for sleep technicians. Therefore, the aforementioned
models are not useful for reducing the time spent by a human to annotate the recording.
Nevertheless, AHI estimation remains an important functionality of the automatic sleep
disordered breathing detection algorithm.

A reduced number of required channels would also be an advantage. There are
algorithms that can operate on only one signal and provide locations of the sleep apnea
episodes [15,16]. However, since this work aims for analyzing polygraphic examinations
and not screening, channels commonly available in polygraphs can be used without further
complication of the setup.

The last factor considered is division of the episodes into multiple classes. Most of
the recent work focuses on detection of the disordered breathing episodes, and not on
their classification [17]. However, according to the AASM rules [1], apneas and hypopneas
should be scored separately. Such a distinction can improve quality of the diagnosis [18].
Existing approaches towards such classification often have limitations. In [19,20], 1D
and 2D convolutional neural networks (CNN) have been analyzed. These works aim
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for providing separate labels for hypopnea and obstructive apnea events. Unfortunately,
annotation is done on epochs of 30 s duration, and samples containing both hypopnea
and obstructive apnea are discarded. Examinations without either of these classes were
also removed from the study; therefore, performance of the algorithms for healthy patients
is undetermined because of different breathing dynamics. This phenomenon of poor
performance for less disordered cases was observed in [15]. In [21,22] performance of
several deep learning methods in apnea-hypopnea distinction task is evaluated. For this
purpose, a single-lead ECG signal is used. Limiting factors include lack of precise episode
boundaries determination and exclusion of patients with central or mixed sleep apnea, as
well as with cardiovascular diseases. Another interesting approach is documented in [16]:
the SpO2 signal alone was used for detection and classification of apnea and hypopnea
episodes separately. A window of 128 s with 50% overlap was chosen, thus temporal
resolution of this approach is relatively low. With accuracy of hypopnea classification being
only 22.78%, this method would require further improvement before being able to be used
in a practical scenario. AHI estimation accuracy was also assessed, but unfortunately only
for separating moderate and severe cases from normal and mild ones. Records with labeling
flaws were discarded, as well as examination portions containing artifacts. Interesting
approaches were presented by Koley and Dey [23] and Lee et al. [24]. They report good
performance in apnea/hypopnea detection and classification task. Unfortunately, the
databases used in these works do not seem to be publicly available; hence, the results
were not compared with the proposed algorithm. There are methods of AHI estimation
that were tested on the recordings from the SHHS-1 database that was used also in this
work. Deviaene et al. [25] proposed a method based on random forest classifier processing
features from the SpO2 signal. This algorithm is designed for binary classification, i.e.,
it does not separate apnea and hypopnea episodes. As stated in the paper, raw model
output tends to be underestimated; hence, the linear regression afterwards was used to
compensate this error. Olsen et al. [26] developed an algorithm that that takes the ECG
signal as an input and provides locations of sleep disordered breathing episodes, but does
not distinguish between them. This approach is based on bidirectional gated recurrent units
and yields good results in AHI estimation. Additionally, Uddin et al. [27] presented a very
interesting algorithm that is not based on deep learning architecture. Signal processing
techniques are used instead, utilizing airflow and SpO2 signals. The accuracy of AHI
classification is very good. Moreover, the architecture marks individual episodes and
classifies them as apnea or hypopnea, but unfortunately no details about the accuracy of
this differentiation were provided.

The presented work provides a unified machine learning architecture for the following
two tasks. First, is an accurate annotation of sleep disordered breathing episodes with
distinction on apnea and hypopnea ones. The resolution of the labels provided is high
enough to enable use of the algorithm as an aid for sleep technicians. The second feature is
good REI prediction capability. All of these functions are performed by the original archi-
tecture based on the long short-term memory neural network (LSTM). Our algorithm also
introduces few techniques that can be used more generally in the field of sleep disordered
breathing episode detection. Namely:

• Input signals phase shifting to align breaths from multiple sensors;
• Separate stage for detection of hypopnea beginning, i.e., the moment, where the breath

amplitude actually drops;
• Episode thresholding using average labels score.

The approach that is close to this study with goals of apnea/hypopnea classification
is described in [28]. In this work, the CNN was employed to deliver annotation with
1 s resolution. Multiple channels were then used to perform the analysis. Only periodic
breathing and possible episodes were excluded from the study. However, our proposed
method shows better results.

The rest of the paper is organized as follows. Descriptions of the used databases,
and specification of the developed algorithm are covered in Section 2. Section 3 contains
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description of the conducted experiments and their outcomes. In Section 4 there are
conclusions and discussion regarding the presented approach.

2. Method Description
2.1. Model Architecture

Proposed architecture utilizes the LSTM networks to find apnea and hypopnea
episodes in the respiratory signals. The model operates on a subset of signals collected
during standard at-home polygraphic recording. The required signals come from the
following sensors:

• Oronasal airflow (thermocouple);
• Thoracic respiratory effort (RIP band);
• Abdominal respiratory effort (RIP band).

An overview of our proposed architecture is presented in Figure 1. Details of each of
its modules are described in the following sections.
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Figure 1. Block diagram of the proposed architecture.

LSTM is a type of recurrent neural network that has good capability of learning time
dependencies in a signal. This and further properties of the LSTM networks are provided
in the paper by Hochreiter and Schmidhuber [29].

To prevent overfitting, the designed system incorporates a dropout technique. It is a
commonly used regularization method, which is described in [30].
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In this work, apneas and hypopneas are treated as two different classes of disordered
breathing. Obstructive, central and mixed apneas together form the apnea class, and ob-
structive, central and mixed hypopneas form the hypopnea class. The approach presented
in this work focuses on utilizing raw respiratory signals. The model consists of preprocess-
ing stage, two consecutive LSTM networks, and postprocessing stage. Two separate neural
networks are used because of the way the architecture handles hypopnea episodes. First
LSTM stage detects only the onset of hypopnea, and the second one determines the whole
episode boundaries. Such an approach would not be possible with a single neural network.
The stages of the model are discussed in detail in the following sections.

Input to the model consists of three respiratory signals: airflow collected from nasal
cannula, thoracic respiratory effort and abdominal respiratory effort. These three time
series are processed in parallel.

2.1.1. Preprocessing Stage

In the preprocessing stage the input data for the first LSTM is prepared. Each signal’s
offset is removed by subtracting mean value of the signal from each sample. The signals are
then scaled to even out differences that occur between patients. To achieve this, a scaling
factor (SF) for each signal is calculated. The signal is then multiplied by this value.

SF =

√
A·N

∑N
n=1|x(n)|

2 , (1)

where x is the signal, N is the number of samples in the signal and A is a constant. The
value of A was arbitrarily chosen for the signals after scaling to fall roughly within the
(−1,1) range. The selected value was used for all signals through the experiment.

Additionally, airflow signal is inverted after scaling. Scaled signals are then filtered by
the 8th order, 1.25 Hz low-pass Butterworth filter to remove noise. Filtering is done in both
directions, so the original phase of each signal is maintained at this stage.

The last part of signal processing is phase alignment. It was observed in SHHS-1
database, that there are examinations where significant phase shift is present between
the analyzed signals. In the Physionet database, however, there was no evident time lag
between the used signals. Shifting two of the signals to match the third improved accuracy
of classifying normal cases in the SHHS-1 database. Without airflow inversion and phase
shifting 11% of normal cases were classified as normal, 59% as mild and 30% as moderate.
No significant effect has been observed in the other AHI classes. Moreover, the technique
slightly improved the performance of the model when trained on the SHHS-1 database and
validated on the Physionet database. The increase in accuracy for the presented architecture
was achieved only for apnea class. An average increase of 2.57% in correctly classified
apnea samples was observed when running the same model on the same data with and
without airflow inversion and phase alignment. Normal breathing and hypopnea results
were not affected in our experiment. In order to achieve this phase shift, cross-correlation
factors between signals are calculated and minimized by shifting two of the signals in
time. The annotations are not shifted—they remain consistent with thoracic effort signal,
which is not affected in this step. The final episode predictions also do not seem to be
displaced—the presented improvement in accuracy was calculated with 0.5 s resolution;
thus, it is sensitive to the exact episode locations.

An excerpt from one of the SHHS-1 recordings after preprocessing stage is shown
in Figure 2.
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2.1.2. First LSTM Stage

After these initial steps, the signals are divided into windows. The length of each
window is 16 s, and stride equals to 0.5 s. Hence, assuming 10 Hz sampling rate and three
parallel signals, each sample size is 160 × 3. For each signal in every window, mean value
was calculated and subtracted from each sample.

In this work, a novel method of window annotation for neural network training is pro-
posed. In a typical approach each disordered breathing type has its own window class.
These windows are then usually annotated based on either majority of window contents or
on specific point in time (typically beginning, center or end of the window). However, in
the presented method a different labeling scheme is proposed, which at first focuses on
detection of the moment when hypopnea begins, and not on the whole episode itself. For
the first LSTM, there are three classes of samples:

• Normal breathing (N);
• Apnea (A);
• Beginning of hypopnea (Hb).

In the case of normal breathing and apnea samples, the annotated class must be
present in the whole window. However, the last class is different: the beginning of a
hypopnea episode must be between 4 s and 12 s after the beginning of the window. This
approach allows for more robust detection of hypopnea episodes. According to the AASM
rules, hypopnea is annotated when at least 30% reduction in breathing amplitude occurs [1].
This amplitude drop can only be observed on the beginning of the episode. After that,
breathing during hypopnea episode can closely resemble normal breathing patterns, thus
being hard to discern. The amplitude of normal breathing can also change between patients,
or even during the night, making detection of hypopnea onset a must. Windows that do not
fall in any of these categories are discarded during training. The dataset is then balanced
by removing excess windows of two major classes, to equalize number of samples with
the least represented class (usually apnea). Before that, samples are randomized so each
window has equal chance of getting to the final dataset.

Structure of the proposed neural network is as follows:

• LSTM layer—150 units;
• Dropout—factor 0.5;
• Dense layer—30 units, ReLu activation function;
• Dropout—factor 0.5;
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• Softmax layer—3 units.

Information flow is illustrated in Figure 3.
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Figure 3. Signal propagation through the LSTM architecture.

Such a model is trained with the Adam optimizer [31] for 50 epochs.
This network is used to construct time series of N/A/Hb probabilities for each exami-

nation. To achieve this, class probabilities for consecutive windows are lined up. Temporal
resolution of these time series is equal to window stride from the previous stage (0.5 s).
A moving average filter is then applied, with window size of 32 samples (16 s). In this
way, every sample reflects a mean probability of every window it was included in Figure 4
represents the same signals as presented in Figure 2, along with labels constructed by
the first LSTM stage for that excerpt. One of the models from the 5-fold cross-validation
experiment was used to obtain these data. The analyzed recording was not present in the
training dataset of this model.
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2.1.3. Second LSTM Stage

The three constructed probabilities are used as an input to the next neural network.
Additionally, from the preprocessed respiratory recordings fourth signal is calculated. It
is needed to facilitate detection of the hypopnea end stage, since it is not detected by the
first neural network and no other input to the second LSTM contains this information. The
procedure for obtaining this signal is described below.
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Zero crossings are detected in the airflow signal. Points obtained are then used to
partition the recording into single inspirations and expirations. For each segment in every
signal, energy E is calculated and scaled according to the following equation:

E =
∑N

n=1|x(n)|
2

N2 , (2)

where x is the signal, and N stands for the number of samples in the analyzed part of the
signal. The desired time series is then constructed by filling spaces between consecutive
zero crossings using the lowest from the three values calculated for this period. This signal
is then downsampled to 2 Hz by decimation to match the rest of the time series prepared
in this stage. At last, this time series is normalized by dividing each sample by the signal’s
maximum value. This signal is illustrated in Figure 4 as “Minimal energy”. The addition of
such data to the second LSTM resulted in increased accuracy of the classification.

The four signals of this stage are divided into widows. For second neural network,
window length is set to 32 s with 0.5 s stride. With temporal resolution of 0.5 s this division
results in samples of size 64 × 4. Annotation of these samples is done differently than for
the first neural network. As this stage needs to output probabilities for two disordered
breathing classes (apnea and hypopnea) plus normal breathing class, suitable labels have
been introduced (N, A and H). Each sample’s class is determined based on the ending point
of the sample. This approach is similar to the one presented in [15], but with addition of the
third class. The dataset is balanced using the same method as before, i.e., randomization
and removing samples from overrepresented classes. Each class has equal number of
samples in the final training dataset.

The architecture of the neural network used for final prediction is the same as in
the previous stage. Training is done for 100 epochs using the Adam optimizer. Figure 5
illustrates an effect of operation of the proposed method.
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2.1.4. Postprocessing

The postprocessing stage is the last part of the algorithm. Its goal is to determine
final apnea and hypopnea episode locations using window labels produced by the second
neural network. The input to this stage is made by stacking class probabilities produced
by the previous stage for consecutive windows. The resulting time series has temporal
resolution the same as before, which is 0.5 s.
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Transformation begins with finding labels with maximum probabilities for each point
in time. Then, the borders of the episodes are annotated where the label with maximum
probability changes. If the change is from N to A or H, start of an episode is marked.
Alternatively, transition form A or H to N means an end of an episode. Shifts between A
and H labels are not taken into account here.

The next step is to determine class affiliation of each episode. The assignment is
done to the class, where majority of windows in given episode have maximum probability.
Certainty of each episode is then calculated as arithmetic mean of these probabilities.

Obtained episodes are thresholded to filter out ones with low certainty. Threshold
values used in this step are separate for apnea and hypopnea episodes. Their values are
obtained by calculating AI and HI indexes for several different thresholds on a subset of
examinations from the training set that were not used in neural network training process.
Final thresholds are selected by minimizing the root-mean-square error (RMSE) of AI
and HI indexes. Episodes with duration lower than 10 s are excluded from threshold
determination, as well as from final AI and HI calculation.

Additionally, the episodes with low mean probability of N class, that were not pre-
viously marked, are annotated. To calculate the N threshold used for selection of these
episodes, the higher from apnea and hypopnea thresholds is subtracted from one. All
episodes with N probability below this threshold are marked as either apnea or hypopnea,
depending on the class of majority of windows in such episode. This additional step is
needed because there are episodes for which the model does not clearly show their class.
In such episode, A and H probabilities are similar, and N probability is very low. It is clear
that this is indeed an episode, but its type is hard to determine.

An effect of postprocessing stage transformations is shown in Figure 5. The bottom
row of label bars was constructed using procedure described above. Merging of the two
episode types with final class determination can be observed, as well as performance of
different threshold levels for both classes.

This method of episode detection and filtering allows the model to be more accurate
on unseen data. This is due to the fact that individual episodes are not fragmented when
the threshold rises.

2.2. Implementation Details

The neural networks used in the proposed model have been implemented in Keras [32]
with TensorFlow [33] backend. All experiments described in this paper were run on a
standard PC. Images and graphs were prepared using Matplotlib [34].

2.3. Signals and Databases

In this study the SHHS-1 database was used [7,35]. Out of its 5804 records, 3610 were
automatically selected based on the signal energy of the respiratory signals. For each of
the three signals used, their energy has been calculated and divided by the length of the
examination. Records having at least one signal with energy below specified threshold were
excluded from the experiment. The threshold was arbitrarily chosen to filter out records
with large parts indistinguishable from noise. From the 3610 remaining examinations, the
first 1000 were used for validation of the proposed method. This truncation was done
solely to limit computation time on available hardware. No additional record selection
processes were performed. The advantage of this approach is that it can be reproduced
during inference on new data—the energy of each signal can be calculated to indicate
whether the record is of quality high enough to expect good results. The final collection
contained recordings of 486 female and 514 male patients. Among them, 1.7% were healthy,
13.4% had mild, 36.4% moderate and 48.5% severe sleep apnea. A summary of the used
part of SHHS-1 dataset is presented in Table 1.
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Table 1. Summary of the used part of SHHS-1 dataset.

Parameter Mean Standard Deviation

Age (years) 58.24 11.94
Weight (kg) 79.19 16.45

BMI (kg/m2) 27.57 5.12
Recording duration (h) 7.28 0.97

AHI 33.33 19.34

Additionally, for the multiclass classification accuracy assessment, the PhysioNet
Sleep Database was used. This database is provided by St. Vincent’s University Hospital
and University College Dublin [36,37]. The collection consists of 25 records: 4 of female
and 21 of male patients. Disease severity distribution for this dataset is as follows: 4%
normal, 40% mild, 24% moderate and 32% severe sleep apnea. All of the records were
evaluated. The PhysioNet dataset summary is presented in Table 2.

Table 2. Summary of the PhysioNet dataset.

Parameter Mean Standard Deviation

Age (years) 49.96 9.35
Weight (kg) 95.02 14.41

BMI (kg/m2) 31.6 3.95
Recording duration (h) 6.93 0.53

AHI 24.1 20.3

3. Results

The proposed architecture has been validated using the 5-fold cross-validation scheme.
For this purpose, the aforementioned subset of records from the SHHS-1 database was used.

For each experiment iteration, these 1000 examinations were divided into the following groups:

• A total of 700 training records;
• A total of 100 validation records;
• A total of 200 test records.

The training subset, was used for training the neural networks, and validation subset
for optimizing thresholds of the algorithm. Test records were held out and used only for
assessing performance of the method.

The PhysioNet Sleep Database was used only as an additional test set. Neither
neural networks nor thresholds were trained on these data. The database was adapted
to be processed by the proposed architecture. The approach adopted in this comparison
assumed the proposed model to be trained on the SHHS-1 database and validated using
the PhysioNet Sleep Database. Trained models were taken from the previous experiment,
resulting in five iterations of inference to be conducted. Threshold values used for episode
filtering were also reused. The same set of signals from the PhysioNet Sleep Database was
processed by all instances of the model.

Signals in the PhysioNet Sleep Database have sampling rate of 8 Hz; these were
upsampled to 10 Hz for compatibility with already trained models. For this purpose, the
linear interpolation method was used. The airflow sensor used was a thermistor instead of
a thermocouple. Episodes labeled as “Unsure” and “Periodic breathing” were excluded
from the analysis.

3.1. Episode Type Classification Accuracy

One of the most important features of the proposed approach is its ability to discern
between the apnea and hypopnea episodes. In order to check the accuracy of individual
episode classification, final labels generated by the model were compared to the original
annotations from the database for all of the recordings. For every 0.5 s, which is the
resolution of the proposed method, predicted class was checked against the true class
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(either normal, apnea or hypopnea). Then, confusion matrix was constructed containing
these microscale results. The above steps have been done for both SHHS-1 test set and
PhysioNet Sleep Database.

Table 3 contains a summary of the results. For each fold, percentage of correctly
classified samples belonging to each class is presented (i.e., values from the diagonal of
their respective confusion matrix). Total accuracy was calculated as a sum of correctly
classified samples divided by the total number of samples in the dataset.

Table 3. Three-class inference performance of each instance of the model. Values for SHHS-
1/Physionet datasets.

Average
Accuracy (%) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Normal
breathing 86.56/84.48 87.07/85.30 88.06/85.10 87.81/84.42 82.61/82.47

Hypopnea 47.19/54.69 48.21/56.41 46.36/59.18 50.54/60.80 54.20/60.32
Apnea 69.60/70.34 60.61/70.97 68.69/70.23 66.29/67.34 75.83/68.67
Total 80.52/81.90 80.59/82.78 81.65/82.80 82.25/82.24 78.31/80.48

The results from the five experiment iterations were summarized and presented in
Figure 6. Mean and standard deviation were calculated for each field.
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The values reveal higher accuracy for apnea detection, than for hypopnea. Flow
limitation during apnea episodes is more radical, thus they could be easier to detect. The
most noticeable difference in the results obtained on different databases is in hypopnea
detection accuracy. With the PhysioNet database it is higher by 9% than with the test set
from the SHSS-1 database. This can be due to more consistent hypopnea annotations in the
PhysioNet Sleep Database.

3.2. REI Estimation Quality Evaluation

One of the main purposes of the presented model is to provide an accurate detection
of apnea and hypopnea episodes. This can be summarized by REI. To evaluate the perfor-
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mance of the model, in each experiment iteration the REI values have been calculated for
200 test examinations, and then for 25 examinations from the PhysioNet database. Each
value is a sum of separately calculated AI and HI indexes, presented for easy comparison
with other methods. The examinations were divided into four classes, depending on the
REI index. Standard class borders were selected that reflect severity of sleep apnea. They
are associated with health effects of the disease, as described in [38]:

• REI < 5—Normal;
• A value of 5 ≤ REI < 15—Mild;
• A value of 15 ≤ REI < 30—Moderate;
• A value of 30 ≤ REI—Severe.

Results obtained with each instance of our model are presented in Table 4. Values
represent the percentage of each class that was correctly classified.

Table 4. Apnea severity estimation accuracy of each instance of the model. Values represent true
positives for each class in SHHS-1/PhysioNet databases.

Sleep Apnea
Severity Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Normal 14%/0% 0%/0% 0%/0% 14%/0% 0%/0%
Mild 52%/11% 41%/22% 56%0% 47%/0% 16%/0%

Moderate 61%/43% 68%/43% 63%/29% 66%/29% 66%/0%
Severe 53%/75% 48%/75% 51%100% 57%/100% 79%/100%

To summarize REI estimation performance, row-normalized confusion matrices have
been prepared for both databases (Figure 7). These matrices were obtained by normalization
of predictions aggregated from five experiment iterations. Each cell represents a part of the
true REI class assigned to the respective predicted REI class, along with standard deviation
of these accuracies between folds.
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The above results reveal that the model tend to overestimate REI. In the case of SHHS-1
database this is mostly visible in less disordered cases, whereas in the PhysioNet database
this behavior spans across the whole dataset. The latter is caused by the threshold determi-
nation routine—both models and thresholds were reused from the SHHS-1 experiment,
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and these thresholds turned out to be too low for the PhysioNet Sleep database. Separate
threshold optimization for the PhysioNet database could fix this problem, but with only
25 records available in this dataset it would be difficult to obtain meaningful results. To
visualize this behavior, a REI estimation graph from one of the experiment iterations is
presented in Figure 8. Dashed lines mark borders between the classes. Many of the misclas-
sified examinations lay close to their target classes. In the case of PhysioNet Sleep Database
predictions form a diagonal with a clear positive offset from the correct values.
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More detailed results of REI, HI and AI estimation accuracy are provided in Table 5.
It can be seen that hypopnea detection is responsible for the majority of REI estimation
inaccuracy. This may be due to a fact that hypopnea scoring is normally dependent on
desaturation, and this algorithm does not use SpO2 signal. The influence of desaturation
criteria on the scoring of hypopnea events for SHHS-1 dataset was discussed in [39].

Table 5. Mean error, standard deviation, min and max errors, Pearson’s and Spearman’s correlation coefficients for REI, HI
and AI. The values were averaged across five experiment iterations. Data obtained on SHHS-1/PhysioNet databases.

Mean
Absolute Error

Standard
Deviation Min Error Max Error Pearson’s r Spearman’s r

REI 9.24/10.52 11.61/7.92 −27.07/−27.52 46.58/14.67 0.71/0.88 0.67/0.89
HI 8.99/9.16 10.76/8.36 −21.44/−20.04 47.22/19.36 0.59/0.69 0.57/0.72
AI 3.11/3.28 3.57/4.62 −20.54/−21.55 11.25/2.59 0.86/0.96 0.64/0.65

3.3. Wake Time Influence on Scoring Performance

It has been observed in the SHHS-1 database, that many of the evident breathing
events were not annotated. Closer inspection revealed that these episodes frequently lie
inside a period of time marked as “Wake”. It seems that there are recordings that lack
scoring of respiratory events during wake time. Sleep staging is not a part of this work,
nevertheless to estimate the influence of these discrepancies another evaluation was run.
For both test datasets (SHHS-1 test set and PhysioNet Sleep Database) parts of the signal
marked as “Wake” were not analyzed during this second experiment. All of the episodes
during wake time were removed—both in original annotations and in detected epochs. In
this way, only disturbances that occurred during actual sleep contribute to the final REI
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index. Figure 9 contains confusion matrix for disease severity classification, and Table 6
summarizes errors in REI, AI and HI estimation.
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Table 6. Mean error, standard deviation, min and max errors, Pearson’s and Spearman’s correlation coefficients for REI,
HI and AI with “Wake” periods removed. The values were averaged across five experiment iterations. Data obtained on
SHHS-1/PhysioNet databases.

Mean
Absolute Error

Standard
Deviation Min Error Max Error Pearson’s r Spearman’s r

REI 5.57/7.39 7.55/6.56 −18.13/−17.02 38.58/16.55 0.82/0.88 0.8/0.93
HI 5.61/7.43 7.22/6.95 −16.95/−14.45 33.97/15.85 0.75/0.74 0.73/0.71
AI 1.39/1.57 2.34/3.03 −13.57/−13.35 13.09/3.39 0.91/0.96 0.71/0.76

In the case of SHHS-1 test dataset, the exclusion of respiratory events detected during
wake time resulted in major improvement of REI estimation accuracy, especially in less
disordered classes. Such a result could mean that the model is misled by abrupt changes
in the airflow that occurred when the patient was not sleeping. The PhysioNet Sleep
Database results exhibit similar behavior—REI estimation without wake periods is still
shifted towards more diseased cases, but the effect is not as substantial as in the original
evaluation. This experiment shows that database quality is very important to accurately
assess the performance of such a method.

Episode classification accuracy was also tested on both databases with wake periods
removed. The method is the same as with the original experiment. Table 7 contains
accuracies for five experiment iterations, and Figure 10 presents confusion matrices with
average accuracies and standard deviations. The results below can be compared directly
with Table 3 and Figure 6.

The wake periods removal led to increased hypopnea episodes detection accuracy,
but lowered apnea performance slightly. This indicates that the problem inside the “Wake”
periods is mainly with hypopneas. An additional analysis of SpO2 signal could improve
the results, as drops in the blood oxygen saturation may not be so significant when the
patient is not sleeping. Additionally, the SHHS-1 database results got improved in the
normal breathing class, which is not the case with the PhysioNet Sleep Database. This
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difference may indicate that the annotations in the latter are more consistent during various
sleep stages.

Table 7. Three-class inference performance of each instance of the model with “Wake” periods
removed. Values for SHHS-1/Physionet datasets.

Average
Accuracy (%) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Normal
breathing 88.93/84.76 87.85/83.84 88.86/84.52 89.54/84.74 84.39/81.57

Hypopnea 53.11/57.97 55.36/61.51 54.26/63.43 53.42/63.24 57.55/63.93
Apnea 65.64/66.33 56.63/68.22 62.68/68.55 66.47/63.42 67.37/66.27
Total 82.41/81.78 81.52/81.34 82.59/82.13 83.37/82.18 79.13/79.52
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3.4. Additional Episode Marking Effect

Originally, additional episode marking based on the value of the N class was not
performed. The apnea and hypopnea episodes were annotated based solely on the values
of A and H class probabilities, respectively. However, after close scrutiny we have found
out that there are episodes for which the results were ambiguous—the model was not
sure to which class of disordered breathing they belong and left them marked as normal
breathing. This happened despite the fact that the average N class probability for these
events was very low. With this in mind we have added these additional episodes annota-
tion to the postprocessing stage. The confusion matrix representing three-class inference
performance on the PhysioNet Sleep Database without additional episode marking is
presented in Figure 11.

The most noticeable difference is lower apnea accuracy for the method without ad-
ditional episodes. This is because in case of many episodes the results were ambiguous
and such events were not marked (i.e., they were left marked as normal breathing). For
the same reason there are also more false negatives for both apnea and hypopnea events.
However, the percentage of hypopnea samples that are correctly classified is lower after
annotating the additional episodes, but the difference is only 2%. This is caused by the
automatic threshold calculation procedure—both A and H thresholds tend to be higher
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after the addition of the new events. The addition of this step also helped to stabilize
performance between folds slightly.
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4. Discussion

The main goal of the proposed algorithm is to detect sleep disordered breathing
episodes and classify them as either apnea or hypopnea. As was discussed earlier, many
publications focus on delivering similar differentiation, but most of them have limitations
that render them hard to compare with the proposed model. The algorithm with the
closest end goal was described in work [28] and therefore performance of the proposed
algorithm was compared to this publication. The other work was developed and tested
using PhysioNet Sleep Database. In contrast to [28], where two records were discarded
from study due to poor signal quality, in this work all of the examinations available in the
database were used. In the above setup the accuracies obtained by our method outperform
the values reported in [28] and shown in Table 8. Moreover, our results were obtained
using models and thresholds trained only on the SHHS-1 database. This approach has
confirmed that the proposed architecture can be portable between databases.

Table 8. Three-class inference accuracy of the CNN from [28].

Average Accuracy CNN from [28]

Normal breathing 82.20%
Hypopnea 53.61%

Apnea 66.24%
Total 79.61%

Unfortunately, Ref. [28] does not consider REI estimation accuracy. Therefore, this
parameter cannot be compared with CNN from the other publication.

Another study that aimed to differentiate between apnea and hypopnea episodes was
described by Nikkonen et al. [40]. It also uses LSTM networks to deliver class probabilities,
but there is no postprocessing stage. The other algorithm differs from the one described
in that it uses slightly different set of signals—most notably SpO2 is required as well as
two nasal flow sources, both thermistor and pressure. Only data segments between “lights
off” and “lights on” were included in the other study, whereas the presented results were
obtained on complete recordings. The other work is based on a newer database that seems
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to not be publicly available, which is important when comparing the performance of the
two approaches. Mean absolute errors of AHI, HI and AI estimation from [40] are presented
in Table 9.

Table 9. Mean absolute error for REI, HI and AI estimation from [40].

Mean Absolute Error LSTM from [40]

REI 3.0
HI 2.9
AI 2.0

The other approach seems to be accurate in episode detection. Apnea and hypopnea
detection accuracies averaged across the patients are reported to be 78.3% and 54.7%,
respectively. However, the method of obtaining these values is different than in the
presented work. In [40], the event is considered correct when it overlaps with an event
labeled by a sleep technician, and in this work every 0.5 s of the recording is taken into
account separately in accuracy calculation. In the other paper, average episode start and
end time errors for apneas were calculated as 7.0 and 1.2, respectively, and for hypopneas
they were 6.7 and 2.6, respectively. Given 10s of minimal episode duration these values
seem to be significant.

The second approach used to assess the performance of the new method was to check
REI estimation accuracy. In the first place, level of agreement could be checked against
this of two human experts. The values from Table 5 can be compared with inter-scorer
variability. In [41] mean absolute error for AHI calculation was presented for five different
scorers. These errors range from 3.82 to 5.15. Our proposed method does not have such a
high agreement. This is mainly caused by hypopnea events misclassification, which in turn
can originate from the lack of SpO2 signal that is crucial for scoring desaturations needed
for accurate hypopnea annotation.

Similar classification task was considered in [15]. Both of the two approaches use the
LSTM networks operating on time series data. For this reason, the performance of both
algorithms was compared. However, comparison of such results in a form presented in
Figure 7. (e) of [15] can be problematic due to different number of examinations used for
validation in each work, and changes in the number of records belonging to particular
classes between folds. These fluctuations were also reflected in standard deviation provided
in Figure 7. (e) of [15].

Figure 7a also contains standard deviation of these accuracies between folds. For
the results from [15] standard deviation is not provided, because the other work does not
contain results for each fold separately. While summarized confusion matrix is sufficient
for calculating per-class normalized accuracy values, results from individual folds should
be first normalized to correctly calculate standard deviation as presented in Figure 7a. REI
estimation accuracies from [15] are presented in Table 10.

The proposed method exhibits higher accuracy in normal, mild and moderate classes,
and lower in severe class than the model from [15]. It is worth noting, that in both
approaches there were no cases of severe apnea being misclassified as normal breathing.
This fact was highlighted in [15]. Moreover, the presented approach returned no moderate
cases as normal, and no normal cases as severe. Another important factor is the difference
in how both methods handle wake time during recording. In this paper, total recording
time (TRT) was used as denominator for REI calculation, whereas in [15] pure AHI index
was used instead. The sleep time is required for AHI calculation, according to AASM
rules [1]. Algorithms also differ in that the other approach does not consider classification
of detected epochs. Our method uses three respiratory signals instead of just one used
in [15]; however, all of these signals are recorded during standard polygraphy anyway.
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Table 10. REI estimation performance in comparison with LSTM from [15], Random Forest from [25]
and LSTM from [40].

Average
Accuracy (%) Our work LSTM from [15] Random Forest

from [25] LSTM from [40]

REI < 5 7% 3% 51% 92%
5 ≤ REI < 15 43% 26% 67% 81%

15 ≤ REI < 30 65% 54% 74% 82%
30 ≤ REI 58% 73% 86% 92%

Both the proposed setup and the one form [15] tend to overestimate apnea severity in
less disordered cases. This can be caused by uneven distribution of disease severity across
the SHHS-1 dataset used for training of both models. Normal and mild cases make up
only 15.1% of the whole dataset. The authors of the other work hypothesize that normal
breathing dynamics change with disease severity. The results reflect these differences,
because such a model is not able to sufficiently learn the signal characteristics of healthy
patients. This problem could potentially be fixed by changing the structure of the used
dataset. Methods that do not directly use raw respiratory signals could be more immune to
such an imbalance, because they do not rely on breathing dynamics as much.

As AHI estimation is one of the most important tasks performed by this algorithm, its
performance was also compared to other methods that were validated on the same database.

Table 10 presents row-normalized results from [25] (Figure 7, SHHS1). The other
method compares favorably to the proposed method in terms of the disease severity
estimation. However, the method from [25] contains a linear regression stage at the end of
the processing pipeline that inflate AHI predictions; therefore, the performance obtained by
simply counting detected episodes would be different. Additionally, no apnea/hypopnea
classification was done by the other method, as only one class of disordered breathing
was considered.

Due to very similar approach, the results of the proposed technique were compared
to those of the LSTM from [40]. The other work reports higher accuracies in all classes;
however, they were not obtained on the same database.

Row-normalized AHI severity estimation results from [26] are presented in Table 11.
Class definitions used in the other work had lower granularity, hence the output of our
algorithm was recalculated to match them. The accuracy of the proposed model is worse
by a few percent in each class. However, as stated by the authors, their algorithm was
neither meant to provide exact locations of the events, nor classify them as apnea or
hypopnea type.

Table 11. REI estimation performance in comparison with GRU from [26].

Average Accuracy (%) Our Work GRU from [26]

REI < 5 7% 32%
5 ≤ REI < 30 86% 94%

30 ≤ REI 58% 69%

The recent work that accomplished most similar task to the presented one on the
SHHS-1 database was described in [27]. The other algorithm was able to determine the
exact location and duration of apnea and hypopnea episodes, as well as differentiate one
from the other. In this regard the goals of [27] and this work were the same. Unfortunately,
results for individual episode classification accuracy were not provided, thus the two
models cannot be compared in this regard. The difference between the two works is in the
kind of algorithm; Ref. [27] does not use a deep learning approach and instead focuses on
extensive analysis of the signal itself. Additionally, the SpO2 signal is required by the other
model. Table 12 shows results from [27] and this work in the form of diagonal values from
row-normalized confusion matrices for three AHI cut-offs: 5, 15 and 30.
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Table 12. REI estimation performance in comparison with a method from [27] for different cut-offs.

Average
Accuracy (%) Cut-Off = 5 Cut-Off = 15 Cut-Off = 30

Our Work [27] Our Work [27] Our Work [27]

Negative 7% 60% 48% 88% 87% 98%
Positive 100% 99% 90% 95% 58% 88%

5. Conclusions

Sleep apnea is a relatively common disorder, and public awareness of its consequences
is rising [42]. This increases the demand for quick diagnosis. One way of improving
efficiency of testing is to provide an aid for technicians that would allow them to shorten
the time needed for analyzing a single examination. Automatic sleep disorder detection al-
gorithms are capable of providing initial labels for the events in the signal. This description
can be further adjusted by a technician to correct mistakes that may happen.

The aim of this work was to develop a machine learning architecture, capable of
providing both an accurate sleep disordered breathing episode detection and good REI
estimation. Special and novel feature of the designed model is its capability to distinguish
between apnea and hypopnea events. Most publications focus on one of these tasks, either
being it REI estimation or apnea/hypopnea differentiation.

Presented approach utilizes novel architecture of two LSTM neural networks arranged
in a series, along with signal preprocessing stage and result filtering. Additionally, few
additional novel techniques, allowing for better episode detection and classification, have
been proposed. The most important are as follows:

• Respiratory signals phase alignment;
• Two-stage architecture with the first stage detecting apnea and beginning of hypopnea;
• Classification thresholding method based on average score of labels in the episode.

Model training and verification of REI estimation accuracy were done on a subset of
records from the SHHS-1 database, and additional verification was run on the PhysioNet
Sleep Database. The 5-fold cross-validation scheme was used to obtain five independent
models. The quality of disease severity class prediction based on REI estimation was
compared with several other models that were validated on the same SHHS-1 database.
Our proposed model showed slightly worse performance for this task than other methods—
however, these methods do not differentiate between the types of the episodes, or do not
provide results for quality of such differentiation.

REI estimation quality was also assessed using PhysioNet Sleep Database. The results
show overestimation of the predictions on this dataset. This is most probably caused by
the automatic threshold determination routine, which is run on the SHHS-1 dataset only.
Thresholds obtained seem to be too low for the other database, as there is a constant offset
of predictions from the correct values. This is a potential place for future improvement of
the algorithm, to be better scalable between databases.

Performance of the model was also assessed on both databases rectified by excluding
the so called “wake” periods. This experiment resulted in increased REI estimation accuracy,
especially for less disordered cases. Hypopnea detection performance was also better in
this case, and apnea annotation quality slightly worse. It can be hypothesized that the
results of the method would improve when more accurate database would be used, as
many of the respiratory events in periods marked as “Wake” are not accurately annotated
in the SHHS-1 database.

These experiments have shown, that the proposed algorithm gives good results, but
there are other methods with particularly better AHI severity classification capability. How-
ever, with the apnea and hypopnea episodes divided into separate classes by our automatic
approach, sleep technicians can immediately have better insight into the examinations. The
main advantage of the proposed architecture is that all of the tasks are reliably done by a
single model.
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The presented method itself has also some drawbacks. Three signals must be available
to perform inference with the designed model. The recordings must be of good quality
to give proper results; however, this can be simply checked by calculating the energy of
the signals. Furthermore, a large part of the available data is discarded during training.
While this is not a problem when using big database such as SHHS-1, the model could be
hard to train on small databases like the PhysioNet Sleep Database. Additionally, while the
model differentiates between apnea and hypopnea episodes, it does not mark the type of
an epoch, i.e., if it was central, obstructive or mixed. Separating obstructive and central
episodes can be considered as an addition to the presented method—another model could
be easily designed as a next stage for providing this additional classification which is a
promising area for future development. The architecture also needs certain processing
power to be trained efficiently. Another matter worth noting is that the presented approach
does not use SpO2 signal. It is a possibility for future development to integrate blood
oxygen saturation analysis into this model to achieve better scoring accuracy. However,
in the present form the system is able to annotate the examinations even when the SpO2
signal is not available due to sensor malfunction or disconnection. These factors, however,
do not limit the possibility of using the proposed solution as an initial scoring algorithm
for at-home sleep studies.

The advantage and the main use case of the proposed method is to provide apnea
and hypopnea labels suggestions for medical personnel. These labels could streamline
further human work, as majority of the episodes would be already marked. Therefore, this
approach is not meant to be a standalone solution for sleep study scoring, rather it is a tool
to speed up the whole process.
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