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Abstract: Automated driving systems are in need of accurate localization, i.e., achieving accuracies
below 0.1 m at confidence levels above 95%. Although during the last decade numerous localization
techniques have been proposed, a common methodology to validate their accuracies in relation to a
ground-truth dataset is missing so far. This work aims at closing this gap by evaluating four different
methods for validating localization accuracies of a vehicle’s position trajectory to different ground
truths: (1) a static driving-path, (2) the lane-centerline of a high-definition (HD) map with validated
accuracy, (3) localized vehicle body overlaps of the lane-boundaries of a HD map, and (4) longitudinal
accuracy at stop points. The methods are evaluated using two localization test datasets, one acquired
by an automated vehicle following a static driving path, being additionally equipped with roof-
mounted localization systems, and a second dataset acquired from manually-driven connected
vehicles. Results show the broad applicability of the approach for evaluating localization accuracy
and reveal the pros and cons of the different methods and ground truths. Results also show the
feasibility of achieving localization accuracies below 0.1 m at confidence levels up to 99.9% for
high-quality localization systems, while at the same time demonstrate that such accuracies are still
challenging to achieve.
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1. Introduction

An automated driving system (ADS) supporting automation levels 3 to 5 according to
SAE International Standard J3016TM [1] is supposed to be able to automatically execute
driving maneuvers in specific operational design domains (ODDs) [2] with decreasing
human intervention. An ADS being classified as SAE J3016TM level 4 (high automation),
for example, requires that the driving system is able to precisely and safely execute driving
maneuvers such as lane changes or turns at intersections. In order to execute such driving
maneuvers, localization accuracies of 0.1 m at 95% confidence are a crucial requirement
of an automated vehicle (AV) [3]. Due to complex and dynamically changing driving
environments, achieving such accuracies reliably over time or distance is considered as
one of the main challenges of AVs.

During the last decade, various localization techniques for AVs have been pro-
posed [4–8]. A comprehensive review of the current state-of-the-art of the three most
common localization approaches ((1) GNSS-IMU fusion, (2) Simultaneous Localization and
Mapping (SLAM), and (3) a priory map-based localization and their potential for automated
driving) can be found in [4]. All localization techniques have in common that their capabil-
ity of being used for the localization of AVs has to be proven with a validated ground-truth
dataset. According to [3], the performance of safety-critical localization systems can be
evaluated using the key performance indicators (KPIs) accuracy, integrity, and availabil-
ity. The authors propose a three-dimensional geometrical bounding box around a vehicle
as protection level, i.e., in order to be safe for the localization of the AV, the output of
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the localization system has to stay within this bounding box. The three KPIs are used to
indicate to which extent a localization system is able to fulfill the localization requirements
of AVs. The KPI availability is defined as the ratio to which the localization system is able
to keep the localization error within the alert limits (bounding box). If the localization error
exceeds the alert limits, no safe operation of the AV is possible and the localization system’s
status is set to unavailable. KPI integrity describes the probability to which the localization
system is capable to keep the localization error within the alert limits over distance or time
and accuracy describes the nominal performance of the localization system and is typically
described with a confidence level, e.g., 0.1 m accuracy at 95% confidence. Consequently,
the KPI accuracy describes the measured performance of the localization system while
integrity describes to which degree the defined safety limits can be met.

In their work, the authors further derive accuracy and integrity requirements for
different vehicle types and ODDs. For passenger cars on local US roads, the authors
propose lateral and longitudinal localization accuracies of 0.1 m at 95% confidence as
well as alert limits of 0.29 m. As integrity levels they define 10−9 per mile or 10−8 per
hour. The 5G PPP (5G Infrastructure Public Private Partnership, a joint initiative between
the European Commission and the European ICT industry) [9] proposes that AVs should
achieve a localization accuracy below 0.3 m (originally, this threshold has been proposed
by [10]). The 5G PPP argues that safety functions of AVs should achieve an integrity level of
10−5 (99.999%) which is considerably lower compared to the integrity levels defined by [3].
Another definition for accuracy requirements of safety-critical automated driving comes
from the European GSA with <0.2 m accuracy and 99.9% availability [11]. After reviewing
different localization requirements for AVs, it is obvious that currently there exists no
commonsense on the accuracy, integrity, and availability requirements for automated
driving systems, which has recently also be confirmed by [12]. Due to the most reasonable
scientific grounding and the stringent accuracy requirements, for the current work, we rely
on the requirement definitions by [3] with 0.1 m accuracy at 95% confidence.

Concerning evaluation methods for localization performance, two different categories
of approaches have been proposed by other researchers. The first category evaluates the
performance of a localization system in relation to a high-quality reference position trajec-
tory [7,13,14]. This approach allows for an efficient comparison of longitudinal and lateral
position errors but suffers from the drawback that a position trajectory, if estimated by
a localization system, may hardly be considered as ground-truth. Even if a high-quality
localization system is used, it is still a dynamic system and localization errors may oc-
cur at any time. Therefore, the second category uses a static, map-based ground-truth,
either a pre-defined driving path [15] or a high-definition (HD) map [16,17]. Even if the
static ground-truth is of high quality, a certain error compared to the ground truth may
be expected. The International Maritime Organization (IMO) distinguishes between the
navigation system error (caused by the navigation system) and the chart error (caused by
surveying inaccuracies or errors in the geodetic reference system) [18]. Typically, the chart
error of a HD map for highly automated driving may account for an error up to 0.1 m.
Therefore, when using a map-based ground truth, the chart error may play a significant
role for the error estimation and has to be considered as well. However, it is challenging to
estimate the map error and to deal with varying accuracies of different map sections and
elements. Moreover, even in case of a ground-truth with known accuracies, the question of
how location measurements should be validated against this ground-truth remains unad-
dressed. Sharath et al. [17], for example, argue that most map-matching algorithms match
trajectories only to the middle axis of the road and not in relation to the driving lane. In [16],
the authors apply a lane-level map matching algorithm to evaluate the uncertainty of GNSS
localization and in [19], the authors apply a lane-level HD map matching algorithm to
determine availability, accuracy and integrity. However, while lane-level map matching is
indeed able to match position trajectories to the correct driving lane, since an AV’s actual
driving path may deviate from the centerline, the question remains unaddressed how
sub-decimeter localization errors with respect to the driving path or the HD map can be
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evaluated. From related work, we conclude that a common methodology for evaluating
localization performance of AVs in real-world driving scenarios with respect to a validated
ground truth dataset is missing so far. The current work aims at closing this gap.

The approach proposed in this paper considers the localization system of an AV as
black box and evaluates localization accuracy of the resulting position trajectory in relation
to two different ground-truth datasets, a pre-defined driving path and a lane-level HD
map. Given these two ground truths, the AV’s localization performance is evaluated by
calculating Euclidean error distances between the localization measurements and (1) the
AV’s driving path (lateral error), (2) the centerline of the driving lane (lateral error), (3) the
lane boundaries being overlapped by the AV’s geometrical body (overlapping distance er-
ror) and (4) AV’s longitudinal offset at known stop points (longitudinal error). By applying
these methods, the following accuracy measures can be derived: (1) path accuracy (lateral
distance error with respect to a pre-defined driving path); (2) lane-centerline accuracy
(lateral distance error with respect to the centerline of the driving lane); (3) lane-boundary
overlaps (driving distance or percentage of AV’s localized body overlapping lane bound-
aries); and (4) longitudinal accuracy (longitudinal distance error at pre-defined stop points).
For evaluating accuracies, statistical measures such as the mean Euclidean distance (MED),
standard deviation and confidence levels are compared using two different calculation
methods: (1) measurement-based evaluation (accuracies are calculated based on Euclidean
error distances of position measurements) and (2) distance-based evaluation (accuracies
are weighted by the distance travelled by the AV; see Section 2.2).

The proposed methods and measures are evaluated using two localization datasets.
The first dataset has been acquired from test drives with an ADS (EZ10-Gen3 self-driving
shuttle from EasyMile (Toulouse 31000, France) (https://easymile.com/vehicle-solutions/
ez10-passenger-shuttle, accessed on 5 July 2021)), which is capable of autonomously
following a pre-defined driving path being used as ground truth. To compare the lo-
calization performance of ADS to other localization systems, the EZ10-Gen3 shuttle has
been equipped with further localization systems, namely a Multi-GNSS/RTK system,
an IMU-supported multi GNSS-smartphone with L1/L2 GNSS localization capability, and
a standard Multi-GNSS-based system. The second dataset has been acquired from ETSI
ITS-G5 CAM messages [20], received from manually driven, C-ITS (Cooperative Intelligent
Transport Systems)-enabled vehicles [21] via five roadside ITS stations. Although these
vehicles are not automated, the second test dataset is used to demonstrate the wider ap-
plicability of the approach and answers the question whether C-ITS enabled vehicles on
the market cope with the localization requirements of C-ITS use cases such as Intersection
Collision Risk Warning (ICRW) [22,23]. Results show that the proposed evaluation methods
are able to estimate localization accuracy of arbitrary localization systems including those
of AVs as well as manually driven connected vehicles. While a high-quality localization
system of an AV using sensor fusion is capable of achieving an accuracy below 0.1 m at
confidence levels up to 99.9%, Multi-GNSS/RTK-based systems are still capable to achieve
lane-level accuracies below 0.5 m at the same confidence level. Consumer-grade systems
as well as C-ITS-enabled vehicles are currently not able to cope with the requirements of
lane-level accuracy.

2. Materials and Methods
2.1. Ground-Truth

In order to evaluate localization accuracy of moving objects, beside the localization
data, a ground-truth dataset is needed. Although in previous works, localization systems
under test are often evaluated in relation to a high-quality reference localization system,
a localization system may be hardly considered as ground truth. For this work, ground-
truth is defined as a pre-defined, static dataset with validated accuracy representing either
an AV’s driving path or the AV’s driving lane from an HD map.

One possible ground truth dataset is the known driving path of an AV. This driving
path can be either static (as used by the EZ10-Gen3 for path following) or dynamic (being
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calculated by the AV based on a HD road map or environmental perception). A static
driving path is considered best suited as ground truth since it represents the path that has
to be followed by the AV at best effort. For example, the static driving path of the EZ10-
Gen3 is acquired by manual drives with the internal localization system. After acquisition,
it has to be manually edited until it represents the intended driving path of the vehicle
on the road (validated by test drives). However, it has to be considered that the resulting
AV’s location measurements may contain an actuation error being a result of the AV’s
actuation strategy, but this is the case with location measurements of any AV and cannot
be considered separately if the AV is treated as a black box. Nevertheless, localization
inaccuracies will most likely lead to deviations from the driving path since the localization
measurements are the main data source for the actuation system. A dynamic driving path,
if known, can be used as ground truth as well. However, the dynamic driving path has to
be calculated based on an accurate ground-truth dataset such as an HD map with proven
accuracy. Moreover, since it may continuously be recalculated and differs for each test
drive, a static driving path should be preferred as ground-truth.

A second possible ground-truth dataset is an HD map representing the road infrastruc-
ture with a proven accuracy at centimeter-level. Such an HD map can be composed from
sensor data being collected by a HD mapping vehicle [24], after extraction of the relevant
road features from the LiDAR (Light Detection and Ranging) point cloud and modelling
the map features in a HD map format such as Lanelet2 [25]. Lanelet2 HD maps represent
the road infrastructure as geographically referenced areas. Driving lanes are modelled as
lanelets (directed lane sections of variable length with left and right boundaries). For mod-
elling the ideal driving path of an autonomous vehicle on this lane, the centerline of each
lanelet can be calculated as middle axis from the left and right boundaries. Similar to the
static or dynamic driving path, the Euclidean distance of each AV’s location measurement
to this centerline can be calculated. However, since it may not be assumed that the AV
actually follows the centerline during its drive, the resulting error distances between local-
ization measurements and the centerline can only answer the question whether the vehicle
stays within the driving lane. If the exact driving path is not known, lane-level accuracy is
considered as best measure for determining localization accuracy.

2.2. Localization Accuracy Measures

As stated earlier, the goal of the proposed approach is to consider the localization
system of an AV as black box. The data source under evaluation is the resulting position
trajectory from an arbitrary drive, i.e., a time-ordered sequence of vehicle localizations.
For the localization accuracy evaluation, each localization measurement is set in relation to
one of the two ground truths, either the static driving path or the driving lane of the HD
map. Given a vehicle movement in three degrees of freedom (3 DoF), with respect to the
ground truth, four different error measures can be calculated. Figure 1 illustrates a driving
lane and an AV’s geometrical body with the relevant variables (lane width and vehicle
width) and the four different error measures:

• Path error distance (ep) (red area): It measures how far the localization measurements
deviate from the actual driving path (red arrowed line). The localization accuracy
is derived by calculating the lateral Euclidean error distance for each localization
measurement (AV’s reference point) in relation to the driving path.

• Centerline error distance (ec) (blue area): It is a combination of the driving error
(the deviation of the vehicle from the centerline during a drive) and the localization
error (the deviation of localization measurements from the driving path). Although
it is not possible to separate the individual errors, the combined Euclidean error
distance between the AV’s reference point and the lane centerline must not exceed the
centerline error threshold so that the vehicle’s localized body is not overlapping the
lane boundaries during drive (this assumption only holds if the driving lane is known
and the vehicle does not leave or change the driving lane while under evaluation).
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• Boundary overlapping error distance (eo) (grey area): Besides calculating the Eu-
clidean error distances between the AV’s location reference point and the lane cen-
terline, the lane-keeping can also be evaluated by intersecting the AV’s located and
oriented geometrical body in three degrees of freedom (3 DoF) for each position mea-
surement with the lane boundaries. The vehicle’s geometrical body should not overlap
the lane boundaries, otherwise the longitudinal distance of the boundary overlap is
considered as boundary overlapping error distance. In comparison to the point- based
path and centerline error distance measures, a semantically richer accuracy evaluation
is possible (i.e., it allows to determine at which locations and to which side overlaps
occur or the localized vehicle is overlapping soft or hard lane boundaries).

• Longitudinal error distance (el): The Euclidean longitudinal error distance can only
be calculated in case of known stops points since otherwise the ground-truth is missing.
In case of stop points, the error distance between the AV’s reference point and the stop
point is calculated.
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Calculating Euclidean error distances as well as confidence levels can be accomplished
in three different ways: (1) measurement-based, (2) time-based, or (3) distance based.
For determining the reliability of the localization system, it is relevant to determine con-
fidence levels, i.e., the ability of the localization system to keep a certain accuracy over
measurements, time, or distance. Confidence levels can be derived from the corresponding
cumulative frequency distributions (CFD) of error distances (weighted by time or distance),
i.e., how many of the localization measurements stay below a certain error threshold in
relation to all measurements or total distance. The following methods for calculating the
statistical values may be applied:

• Measurement-based error distances: Euclidean error distances are calculated for
each position measurement of the trajectory.

• Time-based error distances: Euclidean error distances are also calculated for each po-
sition measurement of the trajectory but are weighted by time. If localization intervals
are stable, there is no difference to measurement-based error distances. Only in case
of variable localization intervals, variances in the calculated values may occur.

• Distance-based error distances: Euclidean error distances are again calculated for
each position but weighted by the travelled distance in relation to the total distance.
Consequently, distance errors at high speeds count more compared to distance errors
at low speed. This measure could be more appropriate since many safety-related key
performance indicators (KPIs) of AVs are measured in relation to the driven distance
(e.g., disengagements of autonomous mode or accidents) [26].

When applying the previously introduced accuracy measures to the SAE J3016TM au-
tomation levels, it can be recognized that not all measures can be applied to all automation
levels. Path accuracy and longitudinal accuracy can only be measured for partly or highly
automated vehicles from SAE J3016TM level 3 onwards since vehicles at SAE J3016TM levels
0 to 2 do not have the capabilities to follow a driving-path or to stop automatically at a stop
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point. However, for vehicles at SAE J3016TM levels 0–2, the lane- accuracy of their localiza-
tion systems can still be evaluated (since also a human driver or a driving assistance system
has to stay within the lane boundaries). Therefore, position measurements of a high-quality
localization system have to stay within the lane as well. Table 1 gives an overview of the
different evaluation options with respect to the SAE J3016TM automation levels.

Table 1. Possible accuracy evaluations with respect to SAE J3016TM automation levels.

SAE 0 SAE 1 SAE 2 SAE 3 SAE 4 SAE 5

Path accuracy X X X
Lane accuracy X X X X X X

Longitudinal accuracy X X X

2.3. Evaluation Methods

This section introduces the calculation methods of the measurement-based and
distance-based path and centerline lateral error distances, the boundary overlapping error
distances, and the longitudinal error distances.

2.3.1. Calculation of Measurement-Based Path and Centerline Lateral Error Distances

The measurement-based lateral path error distances are calculated as follows: for each
WGS84-coordinate pair of a position measurement, the minimal Andoyer distance to
the driving path or lane-centerline is determined by using a map-matching algorithm as
the one proposed in [27]. Matching each position to the path or lane-centerline results
in a positive (towards left boundary in driving direction) or negative (towards right
boundary) error distance. As in [16,19], map-matching has been selected as optimal
strategy to select the nearest path or lane-centerline segment while obeying to traffic
regulations. Therefore, the matched path or lane-centerline segments have: (1) the lowest
Euclidean distance between the position measurements and the referenced segments and
(2) the route and path distance difference is minimized. In order to retrieve feasible map-
matching results for route parts with close path options (e.g., planned U-turns of the driving
path), the maximum matching radius has to be limited. For this work, the maximum
matching radius has been set to 5 m, resulting in lateral error distances not higher than
this threshold. While for high-quality localization systems this threshold will never be
exceeded, low-quality systems may exceed it. In this case, the measurements with lateral
error distances higher than 5 m cannot be map-matched and are therefore excluded from
the accuracy evaluation.

2.3.2. Calculation of Distance-Based Path and Centerline Lateral Error Distances

In contrast to the calculation of measurement-based lateral error distances, for the
distance-based calculation the individual error distances of each localization measurement
in relation to the path or lane-centerline are weighted according to the driving distance
between two measurements in relation to the total driving distance. For example, if the
driving distance to the last position measurement is short, the weight is low and increases
with the distance. Consequently, measurement error at slow speed or at stops have a
lower or no impact (in case of stops) because less driving distance is covered. For example,
measurement errors during a 30 s stop will result in 30 measurement-based lateral distance
errors (assuming 1 Hz sampling rate) or in 30 distance-based errors with low weight since
no or only a low driving distance is covered. The longitudinal driving distance can be
calculated in two ways: (i) deriving the distance from measurements or (ii) deriving the
distance from the driving path or lane-centerline. The later one is used for this evaluation
since it avoids an increase of the distance due to erroneous localization measurements.

2.3.3. Calculation of Boundary Overlapping Error Distances

Besides calculating the lateral error distances between localization measurements
and the path or lane-centerline, this approach intersects the AV’s geographically oriented
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geometric body (3 DoF) with the geometries of the driving lane and calculates left and right
boundary overlaps separately. The orientation of the AV’s geometrical body is calculated
from the GNSS data for each position using the heading to the next position. To enable
a correct polygon creation, the coordinates are transformed to the Cartesian coordinate
reference system ‘MGI/Austria GK M31’. See Figure 2 for an excerpt of a position trajectory
where the oriented geometric body of the AV is visualized for each track point. In case of a
boundary overlap, the driving distance from the last position measurement is summed up
as left and/or right boundary overlapping error distance. At the end of each drive, the sum
is put in relation to the whole driving distance which results in the percentage of boundary
overlaps. Since a Lanelet2 HD map contains hard (may not be crossed) and soft (may
be crossed) lane boundaries, both types of boundary overlapping errors are calculated
separately. In contrast to the lane-centerline based evaluation method, this method results
in semantically richer information with respect to the actual driving environment.
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2.3.4. Calculation of Longitudinal Error Distances

The longitudinal error distance can only be calculated at defined stop locations from
the driving path or the HD map. These stop locations can be considered as the ground
truth and the longitudinal error distance of stops from the position trajectories in relation
to these ground-truth stop locations can be calculated. For instance, if the driving path
yields a vehicle stop at 50 m and the trajectory includes a stop after 50.4 m, this leads to a
longitudinal error of 0.4 m. All stop locations in the driving path as well as in the trajectories
refer to the AV’s geometrical center (reference position). Determining longitudinal errors
from stop lines in the HD map is more difficult since it is not clear how far an AV would stop
in front of a stop line. In this case, the longitudinal error distance can only be determined as
a combined error distance of the longitudinal stop error and the localization error similar
to the lateral error distances in relation to the lane-centerline. Therefore, for the current
evaluation, the longitudinal error is only calculated for pre-defined stop locations on the
driving path.

2.4. Evaluation Datasets

This section introduces the ground-truth and the localization datasets.
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2.4.1. Ground-Truth Datasets

As described earlier, for the evaluation of localization accuracy, two different ground-
truth datasets are used. Both datasets represent a 1.4 km-long section of the municipal road
L226 in the municipality of Koppl near Salzburg in Austria which is used for automated
driving tests. An overview of the whole test track (red line) together with a detailed view
of the driving path (red) and the HD map (light blue) at bus stop ‘Ortsmitte’ is visualized
in Figure 3.
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The static driving path of the EasyMile EZ10-Gen3 vehicle is used for the path-level
ground truth (red line in Figure 3). During the deployment of an EasyMile EZ 10 shuttle,
the driving path is acquired by a manual drive and manually edited afterwards so that
the vehicle moves perfectly on the lane. This driving path is then used by the ADS of
the EZ10-Gen3 for its path-following functionality. Therefore, it has to be accurate since
the vehicle has to stay on the lane at any time. For this work, the driving path has been
converted into a road graph structure with five-meter-long segments (the segment length
has been chosen arbitrarily, other lengths are possible as well).

As lane-level ground truth dataset, an HD map in the Lanelet2 format has been
used [25]. The HD map primarily represents the test track on the rural road L226 in Koppl
(along the red line in Figure 3). For building the HD map, the road infrastructure has been
mapped with an HD mapping vehicle. Afterwards, road features such as lane boundaries
and lane markings have been extracted from the LiDAR point cloud with the software
tool TopoDOT® (https://new.certainty3d.com/, accessed on 5 July 2021). The accuracy
of the extracted features has been validated by surveying 345 reference points manually.
The validation revealed a mean accuracy of 0.07 m (sd: 0.1 m) for all validated features
which satisfies the ground truth assumption. In order to be used for localization accuracy
evaluation, a lane-accurate Lanelet2 HD map has been composed from the extracted
geographic features using the JOSM editor (https://josm.openstreetmap.de/, accessed on
5 July 2021). Additionally, regulatory elements have been added so that a lane-level road
graph could be derived. If lane markings were missing in reality, a virtual road middle
axis (calculated from the right and left road boundaries) acts as left or right lane boundary.
The lane-centerlines have been generated automatically as middle axis between the left
and the right lane boundaries using the HD feature of the open-source tool Graphium
(https://github.com/graphium-project/graphium/tree/feature-graphium_hd, accessed

https://new.certainty3d.com/
https://josm.openstreetmap.de/
https://github.com/graphium-project/graphium/tree/feature-graphium_hd
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on 5 July 2021) for managing road graphs. Graphium has been extended to manage
Lanelet2 HD maps.

For evaluating the C-ITS data from manually driven connected vehicles, the lane-level
HD map has been extended by the intersection connecting the L226 municipal road to
the B158 main road as well as 900 m of the road B158 (blue line in Figure 3). This was
necessary since most trajectories from C-ITS-enabled vehicles have been recorded on this
road section.

2.4.2. Localization Datasets

In order to evaluate the methods, two different test datasets have been recorded.
The first test dataset, called the “AV dataset”, has been generated by using the localization
system of the EasyMile EZ10-Gen3 automated shuttle. The EZ10-Gen3 has the ability to
follow a static driving path (ground truth) at a speed of 15 km/h at maximum. Localization
accuracy of the EZ10-Gen3 vehicle may be measured by setting the localization data in
relation to the static driving path. It has to be noted that for evaluating localization accuracy,
the EZ10-Gen3 vehicle has to be operated in autonomous mode (since only in this mode
it will follow the pre-defined driving path). Localization measurements during manually
operated sections have been excluded from the accuracy evaluation. In addition, if the
vehicle is not located exactly on the driving path after manual driving, after being set into
autonomous mode again, the vehicle starts to get on its driving path. Therefore, the first
10 m after switching to autonomous mode have been excluded from the evaluation as well.

The localization system of the EZ10-Gen3 fuses data from four different sensor systems.
A GNSS-RTK receiver, located on the vehicle’s geometrical center on the roof top (reference
point) along with one LiDAR sensor on the front roof top that positions the shuttle by
using SLAM technology. The GNSS signal has been improved using the HxGN SmartNet
RTK service (https://hxgnsmartnet.com/, accessed on 5 July 2021) to correct ionospheric
and tropospheric distortions as well as satellite clock bias and orbital errors [28]. The next
base station is 3.5 km away. Further, the EZ10-Gen3 features an Inertial Measurement Unit
(IMU) and an odometer to improve localization performance. Due to commercial interests
of EasyMile, the exact fusion algorithm is not revealed. However, the fused localization
measurements are made available via an API at 2 Hz frequency.

In order to set the EZ10-Gen3 results in contrast to results of other localization sys-
tems, three additional localization systems have been mounted on the EZ10-Gen3 vehicle
(Figure 4). The systems have been placed almost to the reference point on the roof top of
the EZ10-Gen3 shuttle: (a) the Leica Geosystems Zeno GG04 Smart Antenna (https://leica-
geosystems.com/en-us/products/gis-collectors/smart-antennas/leica-zeno-gg04-plus, ac-
cessed on 5 July 2021) (geodetic grade Multi-GNSS/RTK receiver) (Heerbrugg 9435, Switzer-
land), (b) Xiaomi Mi 9 Smartphone (https://www.mi.com/global/mi9/, accessed on
5 July 2021) (consumer grade IMU-supported L1/L5 multi GNSS receiver) (Beijing 100085,
China), and (c) a prototypical C-ITS on-board unit (OBU) in development from Kapsch
TrafficCom (Vienna 1120, Austria) (EVK-3300 V2X Evaluation Kit) using two different
consumer grade Multi-GNSS-receivers (ublox NEO-M8L and ublox C94-M8P-3 with NEO-
M8P-2 chipset). The Leica Zeno GG04 plus GNSS/RTK antenna records locations with
the aid of a RTK signal to reach centimeter accuracy. It can read the satellite signals and
frequencies of GPS (L1, L2, L2C, L5), Glonass (L1, L2), BeiDou (B1, B2, B31), Galileo (E1,
E5a, E5b, Alt-BOC, E61), QZSS2 and SBAS (WAAS, EGNOS, MSAS, GAGAN) [29]. For the
evaluation of the longitudinal accuracy, an offset of 0.09 m longitudinal offset has been
considered to compensate the distance between the device antenna’s phase center and the
reference point. The Xiaomi Mi9 is one of the few smartphones featuring multiple GNSS
frequency bands to improve localization quality at the time of the evaluation. The Xiaomi
Mi9 can read GPS (L1 + L5), Galileo (E1 + E5a), GLONASS (L1) and Beidou (B1) signals
and improves the localization with IMU data. The offset of the device antenna’s phase
center to the vehicle’s reference point (0.08 m longitudinal and 0.055 m lateral offset) can be
neglected due to the overall lower accuracy. The location data recorded by the C-ITS OBU

https://hxgnsmartnet.com/
https://leica-geosystems.com/en-us/products/gis-collectors/smart-antennas/leica-zeno-gg04-plus
https://leica-geosystems.com/en-us/products/gis-collectors/smart-antennas/leica-zeno-gg04-plus
https://www.mi.com/global/mi9/
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has been acquired using two different ways: (1) using the internal consumer grade GNSS
receiver (ublox NEO-M8L), and (2) using a consumer grade external GNSS receiver (ublox
C94-M8P-3 with NEO-M8P-2 chipset) being augmented by GNSS correction data received
from a local C-ITS-based GNSS Positioning Correction (GPC) Augmentation Service [30].
GNSS corrections have been calculated by using the roadside ITS stations as GNSS refer-
ence stations (RIS-9160 roadside ITS station from Kapsch TrafficCom with a prototypical
implementation of a RTK-enabled GNSS reference station using an ublox NEO-M8P-2
chipset) and have been transmitted to the OBU using ETSI ITS-G5 RTCMEM [31]. It has to
be noted that for RTK-supported localization systems, measurements with missing RTK
correction signals have been excluded (this applies to the Leica GNSS antenna and the
C-ITS OBU).
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Figure 4. Mounted sensor setup on the roof top of the EZ10-Gen3 shuttle: (A) Xiaomi Mi 9 Smart-
phone, (B) GNSS sensor of the C-ITS-OBU and (C) Leica Zeno GG04 plus antenna. The front of the
vehicle is to the right of the picture.

For generating the test dataset for the EZ10-Gen3 localization system as well as the
additional localization systems mounted on the EZ10-Gen3 vehicle, a three-day evaluation
period from 30 November to 2 December, 2020 has been chosen. Data has been recorded
during three-hour-sessions with two one-hour breaks in-between in order to mind different
satellite constellations as recommended by other studies [32]. Table 2 gives an overview
of the EZ10-Gen3 data and the three mounted localization systems. Position data with
missing RTK correction and data recorded in manual driving mode is excluded.

Table 2. Overview of the recorded test datasets.

Device Distance [km] Duration [min] Sampling Interval Median [s]

EZ10-Gen3 73.9 400.2 0.5

Leica GG04plus 28.7 161.6 1.0

Xiaomi Mi9 62.9 340.6 1.0

C-ITS OBU RTK 42.1 210.0 1.0

C-ITS OBU 66.3 359.1 1.0

To demonstrate the wider applicability of the approach, a second test dataset of manu-
ally driven SAE level 0 vehicles, called the “C-ITS dataset”, has been used. The localization
measurements of the C-ITS dataset have been collected from C-ITS-enabled vehicles send-
ing ETSI ITS-G5 CAM messages [20]. Starting in September 2020, five roadside ITS stations
(R-ITS-S, localized in Figure 3) are collecting CAM messages from C-ITS-enabled vehicles
passing the R-ITS-S. Vehicles such as the Volkswagen Golf 8, ID.3 or ID.4 are already
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equipped with C-ITS-enabled onboard units and are sending continuously CAM messages
(if the Car2X functionality has not been deactivated by the user). During the test period
from week 38, 2020 to week 11, 2021, 664 trajectories from C-ITS enabled vehicles have been
recorded. It has to be noted that vehicles periodically change their identification for privacy
reasons. 127 trajectories originating from the C-ITS OBU installed in the EZ10-Gen3 are
already included in the “AV dataset” and have therefore been excluded from the “C-ITS
dataset”. The remaining 537 trajectories cover a distance of 154.9 km and a duration of
154 min.

3. Results

In order to evaluate the proposed methods for estimating localization accuracy,
we have conducted several experiments comparing the localization measurements with
the ground-truth datasets. Before presenting the evaluation results, we first evaluate the
ground-truth datasets by compare the driving path to the lane-accurate HD map. While
Figure 1 provides an abstract view of the widths and distance metrics of a driving lane,
Figure 5 shows the exact widths of the driving lane modelled in the ground-truth dataset.
The figure reveals that the driving path (blue horizontal line) is mostly within a 0.5 m corri-
dor along the lane-centerline (black horizontal line in the middle). The figure also reveals
that the driving path tends towards the road-centerline as the offset tends to the left of the
lane centerline (upper half of the chart). The vehicle width (1.97 m, blue area) is shown as
corridor along the driving path and shows whether it keeps within the lane corridor which
is indicated with 1 m, 2 m, and 3 m wide corridors (grey colors with increasing lightness)
along the lane-centerline. Additionally, the solid dark grey line at the bottom indicates
hard road boundaries that can or may not be crossed. Hard road boundaries include
curbstones, the road border (e.g., grass) and solid lane markings. They mainly occur at
the right boundary where the road lane is next to the walkway or banquet. Concerning
localization accuracy, the error distance including the vehicle’s width and the vehicle’s
deviation from the lane-centerline may never overlap the hard lane boundaries.

Sensors 2021, 21, 5855 12 of 22 
 

 

 
Figure 5. Comparison of the driving path (blue line), lane-centerline (solid black line), left (positive 
values) and right (negative values) lane boundaries (solid grey boundaries) as well as the error 
thresholds in relationship to the HD map for the test track. 

3.1. Evaluating Localization Accuracies in Relation to the Driving-Path 
The first evaluation sets the position trajectories of the “AV dataset” in relation to the 

static driving path of the EZ10-Gen3. Table 3 gives an overview of the mean of lateral 
Euclidian error distances of the localization measurements, the standard deviation (sd), 
and different confidence levels (p50, p95, p99, p99.9) in relation to the driving path per 
localization system. The table reveals that only the localization system of the EZ10-Gen3 
is capable to meet the localization requirements for AV’s proposed in [3] (0.1 m; 95% 
confidence). As expected, the localization system of the EZ10-Gen3 achieves the lowest 
median of error distances of 0.013 m. The error distances for the p95 and p99-percentiles 
stay still below 0.1 m error threshold. Since the autonomous driving functionality of the 
EZ10-Gen3 is implemented to stay within a 0.3 m corridor of the driving path (alert limit), 
the low error distance of the EZ10-Gen3 can be expected. If the vehicle detects a lateral 
localization error of more than 0.1 m from the driving path, it slows down. If the lateral 
error distance exceeds 0.3 m (alert limit), the vehicle stops until a better localization is 
available or until the operator moves the vehicle to a location with a better localization 
manually. This behavior is in full accordance with the localization requirements for AVs 
on local roads proposed by [3]. Offsets may occur due to incorrect GNSS signals and/or 
LiDAR localization or if the vehicle drifts off the path while driving on gravel or similar 
surfaces, especially at turns with low radius. This situation occurs regularly near the 
station Sperrweg in the North of the test track. 

Beside the EZ10 Gen3, also the position measurements of the Leica GG04plus stay 
below the 0.1 m threshold for the p50-percentile, but exceed the threshold for the p95-
percentile. Concerning the Leica Zeno GG04 plus it has to be noted that this localization 
system only uses Multi-GNSS/RTK-localization without INS-support or any other sensor 
fusion. All other tested localization systems, although achieving reasonable localization 
results, do not meet the accuracy requirements of an AV. The results also reveal that the 
GNSS corrections obviously improve the accuracy of the C-ITS OBU (it has to be noted 
that only C-ITS OBU measurements with the states RTK-float (carrier phase floating point 
solution) and RTK-fixed (carrier phase integer ambiguity resolution) have been 
considered for the evaluation). However, a higher accuracy will be difficult to achieve 
with a low-cost GNSS chipset. Furthermore, the applied C-ITS OBU is still under 
development and better results are expected in the future. 

Figure 5. Comparison of the driving path (blue line), lane-centerline (solid black line), left (positive values) and right
(negative values) lane boundaries (solid grey boundaries) as well as the error thresholds in relationship to the HD map for
the test track.



Sensors 2021, 21, 5855 12 of 22

3.1. Evaluating Localization Accuracies in Relation to the Driving-Path

The first evaluation sets the position trajectories of the “AV dataset” in relation to
the static driving path of the EZ10-Gen3. Table 3 gives an overview of the mean of
lateral Euclidian error distances of the localization measurements, the standard deviation
(sd), and different confidence levels (p50, p95, p99, p99.9) in relation to the driving path
per localization system. The table reveals that only the localization system of the EZ10-
Gen3 is capable to meet the localization requirements for AV’s proposed in [3] (0.1 m;
95% confidence). As expected, the localization system of the EZ10-Gen3 achieves the lowest
median of error distances of 0.013 m. The error distances for the p95 and p99-percentiles
stay still below 0.1 m error threshold. Since the autonomous driving functionality of the
EZ10-Gen3 is implemented to stay within a 0.3 m corridor of the driving path (alert limit),
the low error distance of the EZ10-Gen3 can be expected. If the vehicle detects a lateral
localization error of more than 0.1 m from the driving path, it slows down. If the lateral
error distance exceeds 0.3 m (alert limit), the vehicle stops until a better localization is
available or until the operator moves the vehicle to a location with a better localization
manually. This behavior is in full accordance with the localization requirements for AVs
on local roads proposed by [3]. Offsets may occur due to incorrect GNSS signals and/or
LiDAR localization or if the vehicle drifts off the path while driving on gravel or similar
surfaces, especially at turns with low radius. This situation occurs regularly near the station
Sperrweg in the North of the test track.

Table 3. Measurement-based lateral error distances in relation to the driving-path for the first
localization dataset generated by test drives of the EZ10-Gen3 and mounted additional localization
systems; distances in meters.

Device TP Count Mean sd p50 p95 p99 p99.9

EZ10-Gen3 48,070 0.017 0.025 0.013 0.044 0.071 0.349

Leica GG04plus 9699 0.093 0.120 0.079 0.228 0.319 0.929

Xiaomi Mi9 20,440 1.318 1.417 1.175 2.970 3.526 4.615

C-ITS + RTK 12,502 0.851 0.944 0.724 2.093 2.735 3.894

C-ITS 21,417 1.652 1.540 1.487 3.790 4.620 5.255

Beside the EZ10 Gen3, also the position measurements of the Leica GG04plus stay
below the 0.1 m threshold for the p50-percentile, but exceed the threshold for the p95-
percentile. Concerning the Leica Zeno GG04 plus it has to be noted that this localization
system only uses Multi-GNSS/RTK-localization without INS-support or any other sensor
fusion. All other tested localization systems, although achieving reasonable localization
results, do not meet the accuracy requirements of an AV. The results also reveal that the
GNSS corrections obviously improve the accuracy of the C-ITS OBU (it has to be noted
that only C-ITS OBU measurements with the states RTK-float (carrier phase floating point
solution) and RTK-fixed (carrier phase integer ambiguity resolution) have been considered
for the evaluation). However, a higher accuracy will be difficult to achieve with a low-cost
GNSS chipset. Furthermore, the applied C-ITS OBU is still under development and better
results are expected in the future.

In contrast to the measurement-based evaluation, the distance-based evaluation
weights the lateral error distances by the driving distance. This weighting lowers localiza-
tion errors during slow drives or stops (e.g., visible as decreased averages and standard
deviation). Table 4 shows the comparison of the absolute error distances to the driving
path. While the p50- and p95-percentiles for the EZ10-Gen3 are nearly identical, the value
for the p99.9-percentile is significantly lower and still stays below the 0.1 m error threshold.
The Leica Zeno GG04 plus results stay below the 0.1 m threshold only for the p50-percentile.
The p95- and p99 percentiles stay below a 0.3 m threshold. Overall, deviations most likely
occur in case of stops if the localization system produces measurements at a fixed sampling
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interval. If localization systems suppress localization measurements in case of stops, devi-
ations between the two methods are minimal. Nevertheless, especially at lower speeds,
results can significantly deviate in comparison to a measurement-based evaluation.

Table 4. Distance-weighted lateral error distances in relation to the driving-path for the first localiza-
tion dataset generated by test drives of the EZ10-Gen3 and mounted additional localization systems
(distances in meters).

Device Distance Mean sd p50 p95 p99 p99.9

EZ10-Gen3 73,872 0.016 0.014 0.013 0.042 0.061 0.086

Leica GG04plus 28,711 0.084 0.062 0.073 0.196 0.259 0.458

Xiaomi Mi9 62,831 1.243 0.875 1.092 2.830 3.390 4.260

C-ITS + RTK 42,088 0.849 0.644 0.727 2.051 2.724 3.893

C-ITS 66,307 1.629 1.083 1.487 3.665 4.394 4.851

For analyzing lateral localization accuracies along the test track, a visualization of
distance errors along the driving path has been chosen. Figure 6 shows the lateral distance
errors of the four different localization systems (y-axis) for an exemplary test drive along
the test track in Koppl from the bus stop Sperrweg (North) to the bus stop Ortsmitte
(South) in relation to the driving-path (in the figure also C-ITS measurements without RTK
correction are included). The figure shows that the lateral distance errors of the EZ10-Gen3
and the Leica Zeno GG04 plus antenna stay near the zero value on the y-axis for the whole
track while all other localization systems show variable error rates. The Xiaomi Mi9 shows
distance errors up to the 5 m threshold while the localization system of the C-ITS OBU
stays within an error distance of 2.5 m.
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Figure 6. Lateral error distances (in meters) in relation to the driving-path for the different localization systems; data of an
exemplary EZ10-Gen3 test drive in Koppl from Sperrweg (North) to Ortsmitte (South).

3.2. Evaluating Localization Accuracies in Relation to the Lane-Centerline

If the exact driving-path is not known or not available for the localization accuracy
evaluation, a lane-level evaluation can be applied. As described in Section 2.3, this method
sets the localization measurements in relation to the lane-centerline of a ground truth HD
map. Again, measurement-based as well as the distance-based evaluations are compared.
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Table 5 gives an overview of the lane-level lateral error distances for the five different
localization systems. As has already been demonstrated in Figure 5, the driving path of
the EZ10-Gen3 is not exactly following the lane-centerline. Therefore, the lateral error
distances in Table 5 are a combination of the driving path’s deviation from the centerline
and the localization error. If we consider the vehicle width of the EZ10 Gen3 of 1.97 m
and assume an average lane width of 3.5 m, the combined distance error of the AV may
not exceed 0.765 m from the lane-centerline so that the vehicle is able to stay within the
lane boundaries. Looking at the results in Table 5, for the EZ10-Gen3 and Leica GG04plus
localization systems this is valid for the p50- and the p95-percentiles but not for higher
confidence levels. As gets visible from Figure 5, the driving path is neither aligned to
the lane-centerline nor is the lane width always 3.5 m. Therefore, it is possible that the
combined error distance exceeds the defined error threshold, even if the localization error
is below the error threshold. This result clearly indicates the supremacy of the path-related
evaluation or the calculation of actual lane boundary overlaps as presented in Section 3.3.

Table 5. Measurement-based lateral error distances for the first localization dataset in relation to
the lane-centerline generated by test drives of the EZ10-Gen3 and mounted additional localization
systems; distances in meters.

Device TP Count Mean sd p50 p95 p99 p99.9

EZ10-Gen3 45,064 0.223 0.299 0.170 0.611 0.949 1.088

Leica GG04plus 9066 0.251 0.341 0.191 0.641 1.193 1.418

Xiaomi Mi9 19,386 1.282 1.369 1.105 2.959 3.671 4.742

C-ITS + RTK 12,259 0.887 0.987 0.786 2.133 2.897 3.960

C-ITS 21,196 1.723 1.580 1.550 3.913 4.646 6.334

While all other localization systems are not able to cope with the lane-level accuracy
requirements, the localization system of the C-ITS +RTK OBU exceeds the error threshold
for the p50-percentile by 0.021 m only.

Again, beside the measurement-based error distances, the distance-based lateral error
distances have been calculated (Table 6). The results confirm the driving path-related
results. The distance errors of the different percentiles are a bit lower compared to the
measurement-based ones since erroneous measurements during slowly driven route parts
or stops are weighted lower (as indicated by lower mean errors and standard deviations).
The EZ10-Gen3 and the Leica GG04plus localization systems stay within the error threshold
of 0.765 m at the 95% confidence level. Interestingly, up to the p99-percentile, the Leica
GG04plus shows similar results to the EZ10-Gen3 with a slightly better result compared to
the EZ10-Gen3 for the p99-percentile. For the other localization systems, the overall picture
from the measurement-based evaluation is confirmed.

Table 6. Distance-weighted lateral error distances in relation to the lane-centerline for the first
localization dataset generated by test drives of the EZ10-Gen3 and mounted additional localization
systems; distances in meters.

Device Distance Mean sd p50 p95 p99 p99.9

EZ10-Gen3 73,872 0.209 0.175 0.168 0.565 0.770 1.030

Leica GG04plus 28,711 0.235 0.195 0.189 0.579 0.727 1.579

Xiaomi Mi9 62,831 1.237 0.884 1.066 2.821 3.528 4.666

C-ITS + RTK 42,088 0.872 0.640 0.787 2.040 2.717 3.932

C-ITS 70,149 1.739 1.183 1.580 3.904 4.675 6.511
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Figure 7 shows the lateral error distances of the five localization systems in relation
to the lane-centerline along the test track for one exemplary test drive. As expected, since
the driving-path of the EZ10-Gen3 deviates from the lane-centerline, also the combined
distance error deviates (blue line), but still stays below the 0.765 m error threshold. Also,
the Leica Zeno GG04 plus shows a similar result while the three other localization systems
reveal significantly higher error rates.
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3.3. Evaluating Localization Accuracies by Lane Boundary Overlaps

Besides calculating localization accuracies in relation to the driving-path and the
lane-centerline, the third evaluated method calculates the longitudinal absolute distance
and ratio of left and right lane-boundary overlaps of the AV’s geographically oriented
geometrical body. In the Lanelet2 HD map, the lane boundaries are modelled either as hard
or soft lane boundaries. Hard lane boundaries should not be crossed (e.g., type curbstone,
road border or solid road marking). The assumption is that vehicles should never cross
such hard boundaries during driving. On the other hand, soft lane boundaries such as
dotted road markings may be crossed, but only in specific cases. Therefore, during a usual
drive (such as the test drives), the vehicle should stay within both types of boundaries
and the overlap of the localized oriented vehicle body should not overlap the boundaries.
Table 7 shows the absolute and relative driving distance with left and right boundary
overlaps per localization system. As the test track in Koppl primarily follows a two-lane
rural road (one lane per direction) and there is no solid lane marking in-between, there
are almost no overlaps with hard boundaries to the left (towards the road middle axis).
In contrast, the right lane boundary usually represents the road border, a curbstone or a
solid road marking. The presented distances are based on the longitudinal distances of the
lane-centerline. Since hard lane boundaries should not be crossed, hard lane boundary
overlaps in Table 7 most probably are a result of localization errors. While the EZ10-Gen3
trajectories reveal no hard lane boundary overlaps, the other devices have an overlap ratio
above 10%. As expected, hard lane boundary overlaps mainly occur to the right whereas
overlaps to the left are mainly soft boundary overlaps. Another notable observation are
the varying overlap error distances to the left (towards the road middle axis) and right
(towards the road border) of the Xiaomi Mi9, C-ITS and C-ITS RTK localization systems.
Since the data has been acquired at the same time and the Xiaomi Mi9 and the C-ITS
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systems show similar deviations to the right, the reason for the left deviation of the C-
ITS RTK system can only be found in the RTK correction. Since these deviations appear
during the whole test period and along the whole test track (with an emphasis on the
Northern parts) inappropriate satellite constellations are only hardly be accountable and
no conclusive explanation has been identified.

Table 7. Lane-boundary overlap distances and ratios between the vehicle geometrical body and
hard or soft lane boundaries; data of all EZ10-Gen3 drives in Koppl between 30 November and
2 December 2020 (distances in kilometers).

Device Total Distance Left Overlap
Distance

Right Overlap
Distance

Hard lane boundaries only
EZ10-Gen3 73.568 0 (0.00%) 0.000 (00.00%)

Leica GG04plus 56.633 0 (0.00%) 6.170 (10.92%)
Xiaomi Mi9 63.029 0 (0.00%) 26.759 (42.56%)
C-ITS RTK 69.586 0 (0.00%) 7.634 (10.97%)

C-ITS 69.429 0.443 (0.64%) 30.252 (43.57%)
Soft lane boundaries only

EZ10-Gen3 73.568 0.281 (00.38%) 1.329 (01.81%)
Leica GG04plus 56.633 6.481 (11.47%) 1.297 (02.30%)

Xiaomi Mi9 63.029 8.315 (13.22%) 2.889 (04.59%)
C-ITS RTK 69.586 29.713 (42.70%) 1.577 (02.27%)

C-ITS 69.429 5.732 (08.26%) 5.037 (07.26%)
All lane boundary types

EZ10-Gen3 73.568 0.281 (00.38%) 1.329 (01.81%)
Leica GG04plus 56.633 6.481 (11.47%) 7.466 (13.22%)

Xiaomi Mi9 63.029 8.315 (13.22%) 29.648 (47.15%)
C-ITS RTK 69.586 29.713 (42.70%) 9.211 (13.24%)

C-ITS 69.429 6.175 (08.89%) 35.289 (50.83%)

3.4. Evaluating Longitudinal Localization Accuracies

Along the EZ10 driving path for the Koppl test track, there are two stop locations
that can be used as ground-truth for the evaluation of longitudinal localization accuracies.
The first stop is located after the station ‘Ortsmitte’ before entering the road L226 (indicated
in Figure 3). The second stop is located near the station ‘Sperrweg’ before turning into the
same road. These stop locations are exactly located on the driving path of the EZ10-Gen3.
While the first is a mandatory stop, the second one represents a yield where the vehicle is
allowed to resume without stopping. From the “AV dataset”, 11 (first stop) and 7 (second
stop) trajectories contain stops in autonomous mode and therefore can be used for the
evaluation. All other trajectories have been discarded due to manual driving before or at
the stop location.

Table 8 shows the linearly referenced stop locations (covered distance on path before
stop) as well as the longitudinal error distances on the driving path. The linear references
of stop locations refer to the driven distance on the path before the stop. Both stop locations
are shortly after the start of the path (11.29 and 24.22 m). The results indicate a median
longitudinal Euclidean error distance of 0.06 m (first stop) and 0.04 m (second stop) for
the EZ10-Gen3. The trajectories recorded with the Leica GG04plus antenna reveal a
longitudinal offset between 0.12 and 0.20 m. The values of this device have been corrected
by 0.09 m to compensate the longitudinal distance between the antenna and the vehicle’s
longitudinal middle axis. The other localization systems reveal a longitudinal error distance
above 0.5 m.
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Table 8. Longitudinal median of error distances of test drives for the two stop locations along the
driving path (distances in meters).

Device Stop ‘Ortsmitte’ Stop ‘Sperrweg’

Ground truth 11.29 24.22
EZ10-Gen3 11.35 (+0.06) 24.18 (−0.04)

Leica GG04plus 11.41 (+0.12) 24.02 (−0.20)
Xiaomi Mi9 9.27 (−2.02) 23.26 (−0.96)

C-ITS OBU RTK 10.15 (−1.14) 23.68 (−0.54)
C-ITS OBU 9.91 (−1.38) 22.17 (−2.05)

3.5. Evaluating Localization Accuracies of Manual Drives

In order to show the wider applicability of the approach, the accuracy evaluation has
been applied to the “C-ITS dataset” containing position trajectories from manually driven,
connected vehicles. As described earlier, the second trajectory dataset has been generated
from ETSI ITS-G5 CAM messages received from C-ITS-enabled vehicles via five roadside
ITS stations. Due to the CAM origin of the localization data, the actual vehicles and their
localization systems are not known. However, since the availability of localization data
from connected vehicles continuously increases and for many C-ITS use cases such as
Intersection Collision Risk Warning (ICRW) [22] location accuracy matters, applying the
proposed localization accuracy evaluation to this kind of data is considered highly relevant
as well. Moreover, in comparison to the “AV dataset”, this dataset also contains data from
vehicles moving at higher speeds up to 80 km/h.

Figure 8 shows the lane-level HD map of the intersection connecting the autonomous
driving test track on the L226 municipal road with the B158 major road and the map-
matched localization measurements of the “C-ITS dataset” on this intersection. The lane-
level HD map excerpt contains one driving lane on the B158 in each direction (green and
yellow), lanes for safe turning to and from the L226 (red and blue) as well as separate bus
lanes (dark grey) leading to the bus stops on each side of the road. The light grey areas
represent pedestrian and bicycle paths.
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Since the actual driving-lane is not known, each measurement is matched to the lane-
centerline with the lowest normal Euclidean distance in case that the regulatory elements
allow such a driving maneuver.
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The lane-level accuracy evaluation of position measurements reveals a median Eu-
clidean distance error of 1.157 m in relation to the matched lane-centerline (Table 9).
As expected, the distance-based evaluation reveals a slightly better result with a median
distance error of 1.038 m. Overall, the results show that the error threshold for lane accuracy
(0.75 m; considering a lane width of 3.5 m and a vehicle width of 2 m) is by far not achieved.

Table 9. Comparison of the distance errors of the C-ITS test dataset in relation to the lane-centerline
of the HD map (distances in meters).

Method Count Mean sd p50 p95 p99 p99.9

Measurement-
based 22,252 TPs 1.303 1.603 1.157 3.014 4.611 5.234

Distance-based 106.961 km 1.184 0.863 1.038 2.610 4.204 4.950

In addition to the lateral distance error analysis, a lane-boundary overlap analysis
has been performed for the C-ITS test dataset as well (Table 10). Since the driving lanes
at this part of the road are slightly curved (Figure 8), the localization measurements have
a tendency towards the North-East as the vehicles probably move on the inner side of
the slight curve. Since there are additional lanes on both sides of the main driving lane,
the lane boundaries are only soft boundaries and it is possible for the vehicles to move near
the lane boundaries. The results of the lane-boundary overlap analysis in Table 10 show
this tendency with higher overlaps of soft lane boundaries. Again, the results show that
the lane accuracy requirements (at least no hard lane boundary overlaps) are not met.

Table 10. Overlap between localized and oriented vehicle body and lane boundaries for the C-ITS
test dataset.

Type of Boundary Total Matched
Distance (km)

Left Overlap
Distance (km)

and Ratio

Right Overlap
Distance (km)

and Ratio

All lane boundaries 151.402 38.561 (25.47%) 51.860 (34.25%)
Hard lane boundaries only 8.983 (05.93%) 41.649 (27.51%)
Soft lane boundaries only 29.578 (19.54%) 10.210 (06.74%)

4. Discussion

The evaluation results demonstrate the overall applicability of the proposed methods
for evaluating lateral and longitudinal localization accuracy of AVs (and also connected
vehicles). The evaluation of position measurements in relation to the exact driving-path
is considered the ‘gold standard’ for evaluating localization accuracy. In the case of
the EZ10-Gen3, this kind of evaluation is possible since the driving-path is static and
the vehicle is programmed to follow the driving-path at best effort. Additionally, if the
driving path contains programmed stop points, these can be used to evaluate longitudinal
localization accuracy. If the driving-path is dynamically calculated by the vehicle, a lane-
level evaluation is considered more appropriate. Concerning the lane-level evaluation,
both proposed methods, the lane-centerline method as well as the lane-boundary overlap
method, are appropriate methods to estimate localization accuracy with respect to a HD
map ground truth. The prerequisite for this kind of evaluation is a lane-accurate HD map
with an absolute geographical accuracy below 0.1 m (0.01 m would be best as the ground
truth should always be a decade smaller than the accuracy threshold [3], but is hard to
achieve and validate). The lane-centerline method uses the centerline as ‘ideal’ driving
path and estimates a combined error distance of the driving and the localization-induced
deviations from the centerline. This method is especially useful in order to determine
whether the localization system is capable to localize the AV within the lane boundaries.
However, in contrast to the driving-path evaluation, only the combined error distance
(deviation from the centerline and localization error) can be evaluated. The localization
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error cannot be evaluated separately. Therefore, if the driving path is not known, the lane-
boundary overlap method is more appropriate since it evaluates the exact overlaps of the
localized oriented vehicle body in relation to hard or soft lane boundaries. If the types of
lane boundaries are available, the last method allows for a semantically richer accuracy
evaluation. Furthermore, if the localization system is capable of high accuracy below 0.1 m,
the evaluation of hard lane-boundary overlaps can also be used to evaluate whether an AV
adheres to driving rules.

Concerning the differences between the measurement- or distance-based evaluation
methods, results do not show a clear advantage for one of the two methods. It depends
what actually should be measured. In case of highly-precise localization systems, increasing
distance errors at low speeds or vehicle stops will typically not occur. However, the results
of the C-ITS dataset indicate that especially for higher speeds, the weighting of lateral
distance errors with the longitudinal driving distance can lead to lower overall distance
errors at different confidence levels. Since key performance indicators for AVs such as
disengagements are also measured distance-based, the distance-based evaluation of lo-
calization accuracy seems more appropriate. Related works also propose to use vehicles’
operation hours as reference for calculating localization integrity [3]. While easily to be
calculated, this metric only makes sense for large datasets with millions of driving hours.

Concerning the results of the different localization systems, only the EZ10-Gen3 and
the Leica Zeno GG04 plus systems are showing results coping with the requirements of
AVs proposed by [3], at least at rather low driving speeds up to 15 km/h. Only these
highly-accurate localization systems achieve accuracies below 0.1 m at a confidence level of
95%. However, since the accuracy of localization systems has been tested in an intermediate
environment (between open and urban) and not in an urban environment, it gets clear
how challenging the localization requirements for an AV are. While an accuracy of 0.1 m at
95% confidence seems feasible under good conditions, achieving these confidence levels
under all possible situations and environments challenges the localization systems, even if
they are fusing data from several sensor systems such as the EZ10-Gen3. However, since
similar localization accuracies as for AVs are also needed for C-ITS use cases of manually-
driven vehicles such as Intersection Collision Risk Warning (ICRW), it makes sense to
apply the proposed method to localization data of manually driven connected vehicles as
well. Results show that the achieved localization accuracies of the current C-ITS-equipped
vehicles are not coping with the localization accuracy requirements of AVs. Even lane-level
accuracies below 0.75 m at 95% confidence are out of scope for current vehicles on the road.
One promising approach is to augment the position measurements with GNSS correction
data provided via roadside ITS stations. Given the used consumer grade GNSS receiver in
the OBU, the achieved results indicate the potentials of this approach for the future. Using
geodetic grade GNSS receivers can further improve localization accuracy as indicated by a
related study [33]. Since C-ITS-originated data will be broadly available via ETSI ITS-G5
CAM messages in the future, the study can be repeated at any time in order to evaluate
localization accuracies of future C-ITS-enabled vehicles.

5. Conclusions

Connected and automated vehicles are in need of accurate and reliable localiza-
tion. While numerous localization techniques have been proposed during the last decade,
the question of how to validate accuracy and reliability of these techniques in real-world
environments remains unaddressed. The current work closes this gap by not focusing
on new localization techniques, but by proposing and evaluating methods which can
be used for validating localization accuracy of AVs in relation to ground truth datasets.
Therefore, the main contribution of this work is on the accuracy evaluation methodologies,
while two trajectory test datasets demonstrate the broad applicability of the approach.
Furthermore, the proposed evaluation methods complement the work by [3] allowing
to evaluate the proposed accuracy and confidence requirements of automated vehicles
(it also complements the work by [12] proposing algorithms to calculate integrity levels).
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Therefore, together with [3] and [12], the current work can act as a welcome foundation for
localization performance validation for AVs and connected vehicles.

Beside the aforementioned contributions, the proposed approach also has some limi-
tations. One of the main challenges arises from treating the localization system of an AV
as black box. While the approach to relate the location measurements to a static driving
path allows accuracy evaluations for arbitrary position trajectories, the ambiguity of the
relation between the localization error and the path-following capability (actuation error)
of the AV remains. Another challenge arises from the chart or map error. Since also a
HD map typically contains a certain location error, it may only hardly be considered as
ground truth and for the accuracy evaluation the map error has to be considered as well.
However, since the error varies between different sections and elements of the HD map,
it can hardly be determined. Also, achieving HD map accuracies at 0.01 m (which is
needed for validating localization accuracies of 0.1 m) is an outstanding challenge, even for
professional mapping agencies. A third challenge arises from the test environment and
the amount of test data being used for the accuracy evaluation. In this study, only one
test track in a rural area and a limited number of test drives has been used. In order to
gain broader results, a larger amount of test drives in more complex urban and non-urban
environments has to be conducted.

Concerning future work, it would be worthwhile to evaluate additional parameters
such as vertical error distances or the accuracy of vehicle orientations. Moreover, the study
should be repeated with different autonomous vehicles on different test tracks in more
challenging environments. Generally, due to the continuous progress in localization tech-
nologies, it makes sense to regularly repeat the study including future localization systems
or data from partly or highly automated and connected vehicles. Moreover, in future
studies, it would be worth to apply the method to other connected traffic participants such
as bicyclists.
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