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Citation: Ławryńczuk, M.; Nebeluk,

R. Computationally Efficient

Nonlinear Model Predictive Control

Using the L1 Cost-Function. Sensors

2021, 21, 5835. https://doi.org/

10.3390/s21175835

Academic Editor: Alex Alexandridis

Received: 26 July 2021

Accepted: 25 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Control and Computation Engineering, Faculty of Electronics and Information Technology,
Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland;
R.Nebeluk@ia.pw.edu.pl
* Correspondence: M.Lawrynczuk@ia.pw.edu.pl

Abstract: Model Predictive Control (MPC) algorithms typically use the classical L2 cost function,
which minimises squared differences of predicted control errors. Such an approach has good
numerical properties, but the L1 norm that measures absolute values of the control errors gives better
control quality. If a nonlinear model is used for prediction, the L1 norm leads to a difficult, nonlinear,
possibly non-differentiable cost function. A computationally efficient alternative is discussed in this
work. The solution used consists of two concepts: (a) a neural approximator is used in place of the
non-differentiable absolute value function; (b) an advanced trajectory linearisation is performed
on-line. As a result, an easy-to-solve quadratic optimisation task is obtained in place of the nonlinear
one. Advantages of the presented solution are discussed for a simulated neutralisation benchmark.
It is shown that the obtained trajectories are very similar, practically the same, as those possible
in the reference scheme with nonlinear optimisation. Furthermore, the L1 norm even gives better
performance than the classical L2 one in terms of the classical control performance indicator that
measures squared control errors.

Keywords: process control; model predictive control; L1 cost function; optimisation

1. Introduction

In Model Predictive Control (MPC), a dynamical model of the process is used on-
line to repeatedly make predictions of the future values of the controlled variables and
to optimise the current and future control policy [1,2]. Due to such a formulation, very
good closed-loop control accuracy is obtained and all necessary constraints may be easily
imposed on process variables. MPC algorithms are utilised for industrial process control,
e.g., chemical reactors [3] and distillation columns [4]. In addition to that, MPC algorithms
are also used for fast dynamical systems, e.g., electromagnetic mills [5], electromechanical
systems [6], servomotors [7], quadrotors [8], autonomous vehicles [9–11], unmanned aerial
vehicles [12] and stochastic systems [13]. Four conditions must be fulfilled to obtain good
control quality: good measurements, a precise model, an adequate choice of the MPC cost
function and a fast MPC computation scheme carried out on-line.

MPC algorithms depend heavily on precise measurements of process variables that
are provided by sensors. In some versions of automatic control systems, e.g., those de-
scribed in [12,14,15], it is stressed that all necessary variables must be measured because
otherwise, a significant loss in control performance is unavoidable. If the measurements
are not available, the typical approach is to perform on-line estimation using Kalman
or Extended Kalman filters [16]. Furthermore, there are other alternative approaches to
solve this problem to some extent. They are usually developed for particular applications.
For example, when the measurement of lateral vehicle speed is not available, it can be
estimated from other measurable parameters [10]. The study presented in [17] shows
another approach of dealing with faulty sensors for linear systems by changing the rep-
resentation of the process model. The work in [18] presents a real vehicle that uses an
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external camera to detect obstacles and lanes on the road as well as external rear-corner
radars to detect objects coming from the rear. An interesting example is presented in [19],
where an anemometer is used to measure external disturbances such as wind force and
direction. In [20], a depth sensor is installed for sea ship depth measurement. Moreover,
the heave speed is obtained by calculating the derivative from depth sensor data. Finally,
an example outside the vehicle field where fault-tolerant control is handled using MPC is
stiction in control valves [21].

Typically, the minimised cost function used in MPC measures the sum of squared
control errors predicted over some time horizon (the MPC-L2 algorithm). Such a for-
mulation is computationally simple and has good numerical properties. The use of the
sum of absolute values of the predicted control errors (the MPC-L1 algorithm) is much
less popular. However, it may be easily verified that the second approach leads to better
control quality [22–25]; the result is independent of the indicator used [23]. Furthermore,
the classical L2 cost function is not always suitable from the point of stability, as pointed
out in [26]. It must be also stressed that in regression (model identification), the classical L2
approach yields solutions fragile to outliers, while the L1 norm leads to robustness [27].

It is important to emphasise that the numerical difficulty associated with the MPC-L1
optimisation task depends on the type of dynamical model used for prediction. Provided
that a linear model is used, one obtains a linear optimisation task [2,22], which can be
solved very efficiently using the classical simplex method. Unfortunately, it is not possible
when a nonlinear model is used. In such a case, a nonlinear optimisation problem with
constraints must be solved at each sampling instant on-line, which may be computationally
too demanding or completely impossible. Examples of nonlinear MPC-L1 algorithms in
which the Sequential Quadratic Programming algorithm is used are described in [23,24].
A trust-region sequential quadratic programming method is used in [28].

This work describes computationally efficient approaches to the MPC-L1 algorithms
for nonlinear processes. In spite of the fact that a nonlinear model is used for prediction,
a computationally simple quadratic optimisation task is solved at each sampling instant
on-line, and nonlinear optimisation is not used. The proposed solution is based on two
concepts: a neural approximator and advanced on-line linearisation. A practical approach
to nonlinear MPC is to perform model or trajectory linearisation on-line. As a result, an easy-
to-solve quadratic optimisation problem is obtained. Details of a few such algorithms may
be found in [29]. An alternative is to use the fuzzy approach, in which a combination of
multiple linear models approximates the nonlinear process, which also results in quadratic
optimisation, e.g., [30,31]. Unfortunately, in research carried out so far, only the classical
MPC-L2 cost function has been used. The main difficulty is the fact that the cost function in
the rudimentary MPC-L1 optimisation task is not differentiable. To make it possible, in the
presented approach, the classical MPC-L1 cost function is replaced by its differentiable
representation. Such a representation is obtained by means of the neural approximator.
Neural networks of the Multi Layer Perceptron (MLP) structure with two layers are used
for two reasons. Firstly, they are universal approximators, capable of approximating
nonlinear relations with great accuracy. Secondly, the obtained neural approximation is
differentiable and poses no numerical problems for the presented computational scheme.
The efficiency of the presented approaches is demonstrated for a simulated neutralisation
process. In particular, the discussed MPC-L1 algorithms are compared with the classical
MPC-L2 ones.

It is worth stressing that different neural structures have been used in MPC for
different purposes. First of all, they may be used for prediction:

(a) Neural networks are most often used as black-box models of dynamical processes.
Various structures are used: the classical MLP networks [29,32,33], Radial Basis
Function (RBF) networks [34–36], Long Short-Term Memory (LSTM) [37–39] and
Gated Recurrent Unit (GRU) [39] structures. Typically, the input–output neural
models are used. The state–space neural models [29,40,41] are used when the state–
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space process description is necessary, although such an approach is significantly
less popular.

(b) Neural networks are also used in block-oriented cascade dynamical models, which
consist of neural static blocks and linear dynamic blocks connected in series. Hammer-
stein [42–44] and Wiener [45–47] models are the most frequently used cascade models.

(c) Quasi-linear neural models [48,49]. In this approach, the dynamical model has the
classical linear form, but its parameters depend on the operating point of the process
and their values are determined on-line by neural networks.

(d) Neural step response models [50]. In this approach, time-varying coefficients of the
model are computed on-line by a neural network.

(e) Neural multi-models [51,52]. In this approach, separate networks calculate the pre-
dictions for the consecutive sampling instants over the prediction horizon. As a
result, the neural model is not used recurrently, which significantly simplifies training.
Additionally, prediction errors are not propagated.

(f) Hybrid neural models [53]. In this approach, neural networks are used to calculate
the parameters of the first-principle models.

(g) Neural networks may be used for modelling and MPC of distributed parameter
systems [54–56].

Additionally, neural networks may be utilised to accelerate and simplify on-line
calculations in MPC:

(a) Neural inverse static models are used to try to cancel process nonlinearity. In particular,
such a method is frequently used when Wiener cascade models are considered [47,57].
As a result, a quadratic optimisation task is obtained in place of a nonlinear one.

(b) A neural approximator may be used to find the initial solution of the MPC optimisa-
tion problem, which speeds up calculations [58,59].

(c) Neural networks are able to approximate the MPC control law [60–62]. For training,
sufficiently rich data sets are necessary, obtained for different operating points.

(d) Specialised recurrent neural networks may be used to solve the MPC optimisation
task on-line [63,64]. As a result, numerical optimisation is not necessary.

The article is organised in the following way. Section 2 recalls the general MPC-L1
and MPC-L2 optimisation tasks. The main part of the article, given in Section 3, details the
computationally efficient nonlinear MPC schemes in which the L1 cost function is used.
Section 4 thoroughly discusses simulation results for a neutralisation reactor. In partic-
ular, MPC-L1 and MPC-L2 algorithms are compared. Finally, Section 5 summarises the
whole article.

2. Problem Formulation

In this work, MPC of a Single-Input Single-Output processes is considered. The in-
put of the process, i.e., the manipulated variable, is denoted by u. The output of the
process, i.e., the controlled variable, is denoted by y. The vector of decision variables calcu-
lated on-line at each sampling instant of MPC is defined as a set of Nu increments of the
manipulated variable:

4u(k) =

 4u(k|k)
...

4u(k + Nu − 1|k)

 (1)
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where Nu is named the control horizon. The decision variables (1) are computed from a con-
strained MPC optimisation task. The general form of the rudimentary MPC optimisation
task considered in this work is:

min
4u(k)

{J(k)}

subject to (2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1

In this work, two types of constraints are considered: the magnitude constraints imposed
on the manipulated variable, defined by umin and umax, and the constraints imposed on the
increments of that variable, defined by4umin and4umax. These constraints are considered
over the control horizon, Nu. Having calculated the decision vector (1) from the MPC
optimisation problem (2), the first element of the obtained sequence is applied to the process
and the whole computational scheme is repeated at the consecutive sampling instant.

The classical minimised cost function used in MPC (the MPC-L2 algorithm) has
the form:

J2(k) =
N

∑
p=1

(ysp(k + p|k)− ŷ(k + p|k))2 + λ
Nu−1

∑
p=0

(4u(k + p|k))2 (3)

The first part of the cost function measures the sum of squared control errors predicted over
the prediction horizon N; the symbols ysp(k + p|k) and ŷ(k + p|k) denote the set-point and
the predicted value of the controlled variable, respectively, both for the future sampling
instant k + p known (it refers to the set-point) or calculated (it refers to the predictions) at
the current sampling instant k. The predictions, ŷ(k+ p|k), are calculated using a dynamical
model of the controlled process. The second part of the cost function is used to minimise
excessive changes of the manipulated variable; λ is a weighting coefficient. Additionally, it
provides good numerical properties.

In the the MPC-L1 algorithm, the sum of absolute values of the predicted control
errors over the prediction horizon are taken into account rather than the sum of squared
errors. Hence, the minimised cost function is:

J1(k) =
N

∑
p=1
|ysp(k + p|k)− ŷ(k + p|k)|+ λ

Nu−1

∑
p=0

(4u(k + p|k))2 (4)

To penalise significant changes of the manipulated variable and to obtain good numerical
properties, the second part of the cost function is the same as in the MPC-L2 formula-
tion [23].

3. Computationally Efficient Nonlinear MPC Using the L1 Cost-Function

Let us formulate the MPC-L1 optimisation task. Taking into account the general MPC
problem (2) and the MPC-L1 cost function (4), we obtain:

min
4u(k)

{
J1(k) =

N

∑
p=1
|ysp(k + p|k)− ŷ(k + p|k)|+ λ

Nu−1

∑
p=0

(4u(k + p|k))2

}
subject to (5)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1

The use of a nonlinear model for prediction leads to two computational difficulties. Firstly,
predictions ŷ(k + p|k) are nonlinear functions of the calculated decision vector (1), which
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means that the cost function is nonlinear. As a result, we obtain a nonlinear optimisation
task that must be repeated at each sampling instant. Secondly, the absolute value function
is not differentiable, which means that the classical gradient-based optimisation method
cannot be used. In spite of the second of the mentioned computational difficulties, in the
literature, is it possible to find applications of gradient-based nonlinear optimisation
methods to solve the MPC-L1 optimisation task (5) [23,24,28]. The objective of this work is
to derive a much more computationally simple approach to the MPC-L1 problem in which
nonlinear optimisation is not used. To achieve this result, two concepts are used:

(a) The first part of the non-differentiable cost function (4) is replaced by its differentiable
representation. For this purpose, a neural network approximation of the absolute
value function is used.

(b) The J1(k) cost function with a neural approximator is differentiable but nonlinear
in terms of the computed control moves (1). To simplify the calculation scheme,
an advanced trajectory linearisation method is used. As a result, a simple-to-solve
quadratic optimisation task is obtained in place of the nonlinear one. Quadratic
optimisation problems, for λ > 0, have only one minimum, which is the global one.

3.1. Neural Approximation of the MPC-L1 Cost-Function

Only the first part of the cost function J1(k) defined by Equation (4) is not differentiable.
Hence, a differentiable approximator of the first part is only necessary. At first, let us define
the predicted control error for the future sampling instant k + p computed at the current
instant k:

e(k + p|k) = ysp(k + p|k)− ŷ(k + p|k) (6)

where p = 1, . . . , N. Hence, the cost function J1(k) may be rewritten compactly:

J1(k) =
N

∑
p=1
|e(k + p|k)|+ λ

Nu−1

∑
p=0

(4u(k + p|k))2 (7)

In order to use quadratic optimisation in MPC, it is postulated to use the general form of
the differentiable approximation of the cost function (7):

J1(k) =
N

∑
p=1

(α(e(k + p|k)))2 + λ
Nu−1

∑
p=0

(4u(k + p|k))2 (8)

where α(e(k + p|k)) describes some nonlinear function of the predicted control error. Com-
paring the cost functions (7) and (8), it is clear that the following approximation of the
absolute value function is required:

(α(e(k + p|k)))2 = |e(k + p|k)| (9)

for all p = 1, . . . , N. In order to obtain a differentiable approximation of the absolute
value function, the neural network of a Multi Layer Perceptron (MLP) type is used [65].
The network has two layers, the first of which (the hidden one) is nonlinear, and a linear
output. It is defined by the following equation:

α(e(k + p|k)) = w2
0 +

K

∑
i=1

w2
i ϕ
[
w1

i,0 + w1
i,1(e(k + p|k))

]
(10)

where K denotes the number of hidden neurons and ϕ is a nonlinear activation function.
The weights of the first layer of the network are denoted by w1

i,0 and w1
i,1 for i = 1, . . . , K.

The weights of the second layer are denoted by w2
0 and w2

i for i = 1, . . . , K. Provided that a
differentiable activation function ϕ is used, the function α(e(k + p|k)) is also differentiable.
It is of course true for the tanh function, which is used in this work.
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3.2. Advanced Trajectory Linearisation of the MPC-L1 Cost-Function

Thanks to the use of neural approximation (10) of the absolute value function, the cost
function J1(k) defined by Equation (8) is differentiable, but still nonlinear. Additionally,
the model of the controlled process is nonlinear. As a result, the cost function J1(k) is
nonlinear in terms of the calculated future control increments (1). To simplify the problem,
we use the advanced on-line trajectory linearisation approach. Linearisation is not carried
out in a simple way, for the current or past operating point of the process, but for some
assumed future trajectory of the manipulated variable, defined over the control horizon:

utraj(k) =

 utraj(k|k)
...

utraj(k + Nu − 1|k)

 (11)

Using the Taylor series expansion formula, the linear approximation of the multivariable
function α(e(k + p|k)) that has Nu arguments, defined by the vector utraj(k), is:

α(e(k + p|k)) = α(etraj(k + p|k))

+
Nu−1

∑
r=0

∂α(etraj(k + p|k))
∂utraj(k + r|k)

(u(k + r|k)− utraj(k + r|k)) (12)

for p = 1, . . . , N. In order to find the partial derivatives in the right side of Equation (12),
the neural approximator defined by Equation (10) is differentiated with respect to the
assumed future trajectory of the manipulated variable (11), which gives:

∂α(etraj(k + p|k))
∂utraj(k + r|k)

=
K

∑
i=1

w2
i

dϕ(ztraj
i (k + p|k))

dztraj
i (k + p|k)

∂ztraj
i (k + p|k)

∂utraj(k + r|k)
(13)

for all p = 1, . . . , N, r = 0, . . . , Nu − 1. The inputs of the hidden nodes of the neural
network are:

ztraj
i (k + p|k) = w1

i,0 + w1
i,1(y

sp(k + p|k)− ŷtraj(k + p|k)) (14)

where i = 1, . . . , K, p = 1, . . . , N. If the tanh function is used in the hidden layer of the
neural network:

dϕ(ztraj
i (k + p|k))

dztraj
i (k + p|k)

= 1− (ϕ(ztraj
i (k + p|k)))2 (15)

Finally, from Equations (13)–(15), we obtain:

∂α(etraj(k + p|k))
∂utraj(k + r|k)

= −
K

∑
i=1

w1
i,1w2

i

(
1− (ϕ(ztraj

i (k + p|k)))2
)∂ŷtraj(k + p|k)

∂utraj(k + r|k)
(16)

for all p = 1, . . . , N, r = 0, . . . , Nu− 1. The partial derivatives in the right side of Equation (16)
are derived for a particular model structure used for prediction. Differentiability of the model
is required.

Let us stress that in Equation (12), independent linear approximations are obtained
for the consecutive sampling instants over the prediction horizon, i.e., for p = 1, . . . , N.
In MPC, we need approximations of the absolute value of the predicted error over the whole
prediction horizon. In order to simplify derivations, a compact vector matrix notation is used.
The predicted trajectory of the function α, i.e., the vector form of Equation (12), is the following:

α(k) = α(etraj(k)) +
dα(etraj(k))

dutraj(k)
(u(k)− utraj(k)) (17)
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where vectors of length N have the forms:

α(k) =

 α(e(k + 1|k))
...

α(e(k + N|k))

 (18)

and

α(etraj(k)) =

 α(etraj(k + 1|k))
...

α(etraj(k + N|k))

 (19)

the vector of length Nu, corresponding to the vector of increments (1), is:

u(k) =

 u(k|k)
...

u(k + Nu − 1|k)

 (20)

and the N × Nu matrix of partial derivatives has the structure:

dα(etraj(k))
dutraj(k)

=


∂α(etraj(k + 1|k)

∂utraj(k|k)
· · · ∂α(etraj(k + 1|k)

∂utraj(k + Nu − 1|k)
...

. . .
...

∂α(etraj(k + N|k)
∂utraj(k|k)

· · · ∂α(etraj(k + N|k)
∂utraj(k + Nu − 1|k)

 (21)

The matrix (21), where its entries are defined by Equation (16), is calculated for the specific
neural approximator and the nonlinear model used. Because in MPC we calculate not the
future values of the manipulated variables (Equation (20)) but the corresponding incre-
ments (1), we have to express the vector equation of the linearised trajectory (Equation (17))
in terms of the vector of control increments4u(k). We obtain:

α(k) =
dα(etraj(k))

dutraj(k)
J4u(k) + α(etraj(k)) +

dα(etraj(k))
dutraj(k)

(u(k− 1)− utraj(k)) (22)

where the auxiliary matrix of dimensionality Nu × Nu is:

J =


1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

 (23)

and the vector of length Nu has the structure:

u(k− 1) =

 u(k− 1)
...

u(k− 1)

 (24)

3.3. Formulation of the Computationally Simple MPC-L1 Quadratic Optimisation Task

In order to obtain a quadratic optimisation MPC-L1 optimisation problem, we take
into account the general nonlinear MPC-L1 optimisation task defined by Equation (5) in
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which the first part of the minimised cost function is approximated by Equation (22). As a
result, we obtain:

min
4u(k)

{
J1(k) =

∥∥∥∥∥dα(etraj(k))
dutraj(k)

J4u(k) + α(etraj(k))

+
dα(etraj(k))

dutraj(k)
(u(k− 1)− utraj(k))

∥∥∥∥∥
2

+ ‖4u(k)‖2
Λ

}
subject to (25)

umin ≤ J4u(k) + u(k− 1) ≤ umax

4umin ≤ 4u(k) ≤ 4umax

The matrix Λ = diag(λ, . . . , λ) is of dimensionality Nu × Nu. Thanks to linearisation,
the minimised cost function is quadratic in terms of the decision vector, 4u(k), and all
the constraints are linear with respect to the vector4u(k). The auxiliary vectors of length
Nu are:

umin =

 umin

...
umin

, umax =

 umax

...
umax

, 4umin =

 4umin

...
4umin

, 4umax =

 4umax

...
4umax

 (26)

The obtained optimisation problem (25) can now be transformed into the standard
form, typical of quadratic optimisation tasks:

min
x(k)

{
0.5xT(k)HQP(k)x(k) + f T

QP(k)x(k)
}

subject to (27)

A(k)x(k) ≤ b(k)

LB ≤ x(k) ≤ UB

where the inequality constraints are defined by the matrix:

A(k) =
[
−J
J

]
(28)

and the vector:

b(k) =
[
−umin + u(k− 1)
umax − u(k− 1)

]
(29)

while the box constraints imposed on the decision vector are:

LB = 4umin, UB = 4umax (30)

By differentiating the cost function J1(k) used in the quadratic optimisation problem (25)
with respect to the decision variables,4u(k), we obtain:

dJ(k)
d4u(k)

= 2

(
JT
(

dα(etraj(k))
dutraj(k)

)T dα(etraj(k))
dutraj(k)

J + Λ

)
4u(k) (31)

+ 2JT
(

dα(etraj(k))
dutraj(k)

)T(
α(etraj(k))

+
dα(etraj(k))

dutraj(k)
(u(k− 1)− utraj(k))

)
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Hence, the Hessian matrix necessary in the classical form of the quadratic optimisation
task (27) is:

HQP(k) = 2JT
(

dα(etraj(k))
dutraj(k)

)T dα(etraj(k))
dutraj(k)

J + 2Λ (32)

while the vector f QP is:

f QP(k) = 2JT
(

dα(etraj(k))
dutraj(k)

)T(
α(etraj(k)) +

dα(etraj(k))
dutraj(k)

(u(k− 1)− utraj(k))

)
(33)

Calculation of the matrix of derivatives, as well as the trajectory, are explained for the
specific form of the model used in simulations presented in Section 4.

In general, two versions of the presented algorithm are possible. Firstly, in the MPC
algorithm with nonlinear prediction and linearisation along the trajectory (MPC-NPLT-L1),
trajectory linearisation may be executed once at each sampling instant for the assumed
trajectory utraj(k). It means that only one quadratic optimisation problem is solved at
every sampling instant. Alternatively, in the MPC algorithm with nonlinear prediction and
linearisation along the predicted trajectory (MPC-NPLPT-L1), a few internal iterations are
possible at each sampling instant. The first internal iteration is the same as in the MPC-
NPLT-L1 scheme. In the consecutive ones, the optimal solution obtained in the previous
internal iteration is used for linearisation.

4. Simulations
4.1. The Neutralisation Reactor

In this work, the neutralisation reactor is used as a benchmark to evaluate and compare
all considered MPC methods. The process has one manipulated variable, which is a base
(NaOH) stream q1 (mL/s) and one controlled variable, which is the value of pH of the
product. The detailed fundamental model of the process is given in [66]. The process is
nonlinear, since its static and dynamic properties depend on the operating point. Hence, it
is frequently used as a good benchmark to evaluate model identification algorithms and
advanced nonlinear control methods.

4.2. Neutralisation Reactor Modelling for MPC

In this work, a Wiener model [67] of the neutralisation reactor is used in MPC for
prediction. Such a block-orientated model is composed of two parts: a linear dynamic
block followed by a nonlinear static one. The first part of the Wiener model is described by
second-order dynamics:

v(k) = b1u(k− 1) + b2u(k− 2)− a1v(k− 1)− a2v(k− 2) (34)

The auxiliary variable between two model blocks is denoted by v. The second part of the
model is represented by a differentiable function:

y(k) = g(v(k)) (35)

Combining Equations (34) and (35), we obtain the output of the Wiener model for the
sampling instant k:

y(k) = g(v(k)) = g(b1u(k− 1) + b2u(k− 2)− a1v(k− 1)− a2v(k− 2)) (36)

The relations between the process input and output variables, i.e., q1 and pH, respec-
tively, and the input and output of the model, i.e., u and y, respectively, are given by the
following relations:

u = q1 − q1,0, y = pH− pH0 (37)
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where in the nominal operating point, q1,0 = 15.5 and pH0 = 7. In this study, a sigmoid-
like neural network is used to represent the nonlinear static part of the model. Details of
model training, validation and selection are given in [68]. An alternative, a Support Vector
Machine (SVM) Wiener model, is presented in [69]. The sampling time of the Wiener model
is 10 s.

4.3. Calculation of the Predicted Trajectories for the Wiener Model of the Neutralisation Reactor

The trajectory α(etraj(k)), defined by Equation (19), is calculated using the neural
approximator from Equation (10). The predicted control errors, e(k + p|k), are computed
from Equation (6). The predicted values of the controlled variable, ŷtraj(k + p|k), are
calculated from the Wiener model in the following way. From the linear block of the model
(Equation (34)), we have:

vtraj(k + 1|k) = b1utraj(k|k) + b2u(k− 1)− a1v(k)− a2v(k− 1) (38)

vtraj(k + 2|k) = b1utraj(k + 1|k) + b2utraj(k|k)− a1vtraj(k + 1|k)− a2v(k) (39)
...

vtraj(k + p|k) = b1utraj(k− 1 + p|k) + b2utraj(k− 2 + p|k)
− a1vtraj(k− 1 + 1|k)− a2vtraj(k− 2 + p|k), p = 3, . . . , N (40)

From the nonlinear block of the model (Equation (36)), the output predictions are:

ŷtraj(k + p|k) = g(vtraj(k + p|k)) + d(k) (41)

for any sampling time instant k + p|k, where p = 1, . . . , N. The disturbance estimate is
calculated using Equation (36), which yields:

d(k) = y(k)− g(b1u(k− 1) + b2u(k− 2)− a1v(k− 1)− a2v(k− 2)) (42)

4.4. Calculation of the Matrices of Derivatives for the Wiener Model of the Neutralisation Reactor

The elements of the matrix dα(etraj(k))
dutraj(k) defined by Equation (21) can be found using

Equation (16). The derivatives ∂ŷtraj(k+p|k)
∂utraj(k+r|k) for all p = 1, . . . , N and r = 0, . . . , Nu − 1 are

calculated for the Wiener model used in the following way. By differentiating Equation (41),
the following formula is obtained:

∂ŷtraj(k + p|k)
∂utraj(k + r|k)

=
dg(vtraj(k + p|k))

dvtraj(k + p|k)
∂vtraj(k + p|k)
∂utraj(k + r|k)

(43)

The first derivative in Equation (43) depends on the type of nonlinear static function.
The second is calculated recursively for k + 1|k, . . . , k + N|k. For the first sampling time
instant, k + 1, calculated at the current time instant, k; by differentiating the formula (38),
the following formula is acquired:

∂vtraj(k + 1|k)
∂utraj(k + r|k)

=

{
b1 for r = 0
0 for r > 0

(44)

Prediction ŷ(k+ 1|k) does not depend on control signals u(k+ 1|k), u(k+ 2|k), . . .. With that
in mind, the following formula is obtained:

∂ŷtraj(k + 1|k)
∂utraj(k + r|k)

= 0 for all r > 0 (45)
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For the next time instant, k + 2, by differentiating Equation (39), the following is acquired:

∂vtraj(k + 2|k)
∂utraj(k + r|k)

= b1
∂utraj(k + 1|k)
∂utraj(k + r|k)

+ b2
∂utraj(k|k)

∂utraj(k + r|k)
− a1

∂vtraj(k + 1|k)
∂u(k + r|k) (46)

where the derivatives ∂utraj(k+p|k)
∂utraj(k+r|k) can only take the values 0 or 1:

∂utraj(k + p|k)
∂utraj(k + r|k)

=

{
1 for p = r or (p > r and r = Nu − 1)
0 otherwise

(47)

For the time instant k + p|k, where p = 3, . . . , N, by differentiating Equation (40), we obtain:

∂vtraj(k + p|k)
∂utraj(k + r|k)

= b1
∂utraj(k− 1 + p|k)

∂utraj(k + r|k)
+ b2

∂utraj(k− 2 + p|k)
∂utraj(k + r|k)

− a1
∂vtraj(k− 1 + p|k)

∂utraj(k + r|k)
− a2

∂vtraj(k− 2 + p|k)
∂utraj(k + r|k)

(48)

Analogously, using Equation (45), a general regularity can be observed:

∂ŷtraj(k + p|k)
∂utraj(k + r|k)

= 0 for r ≥ p (49)

4.5. Organisation of Calculations

1. For the Wiener model, the disturbance estimate is calculated from Equation (42).
2. The trajectory of the manipulated variable, utraj(k), that defines the linearisation point

(Equation (11)), is formed. Three possible choices are discussed in the next section.

3. For the Wiener model, the derivatives ∂ŷtraj(k+p|k)
∂utraj(k+r|k) , for all p = 1, . . . , N and r = 0, . . . ,

Nu − 1, are calculated using Equations (43)–(49).

4. The matrix dα(etraj(k))
dutraj(k) defined by Equation (21) is calculated using Equation (16).

5. The quadratic optimisation task (25) is solved.
6. In the case of the MPC-NPLT-L1 algorithm, the first element of the obtained decision

vector,4uopt(k), is applied to the process, i.e., u(k) = 4uopt(k|k) + u(k− 1).
7. In the case of the MPC-NPLPT-L1 algorithm, steps 2–5 are repeated a few times (in

this work, maximally five times). The trajectory used for linearisation is defined
as utraj(k) = J4uopt(k) + u(k− 1), where the matrix J and the vector u(k− 1) are
defined by Equations (23) and (24), respectively, and4uopt(k) denotes the optimal
solution calculated in the previous internal iteration (for the current sampling instant
k). When the internal iterations are terminated, the first element of the decision vector
computed in the last internal iteration is applied to the process.

4.6. Comparison of MPC-L1 and MPC-L2 Algorithms for the Neutralisation Reactor

At first, let us verify the usefulness of the MLP neural network to serve as an ap-
proximator of the absolute value function of the predicted control error (Equation (10)).
The neural network with K = 10 hidden nodes of the tanh type is used. Figure 1 compares
the non-differentiable absolute value (abs) function and its differentiable neural approxima-
tion. The range of the control error, e, is adequate for further use of the neural approximator
in MPC for the considered neutralisation reactor. For the chosen neural network structure
and the number of hidden nodes, the obtained approximation accuracy is very good.
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Figure 1. The absolute value function vs. its neural approximation.

In the following part of the article, the following MPC algorithms are considered:

• MPC-NO-L1: the MPC algorithm with nonlinear optimisation with the L1 norm used
in the first part of the minimised cost function defined by Equation (4). The resulting
nonlinear optimisation task is given by Equation (5). Two versions of the MPC-NO-L1
are considered: the non-differentiable absolute value function or its differentiable
neural approximation may be used.

• MPC-NPLT1-L1: the discussed MPC algorithm with nonlinear prediction and lin-
earisation along the trajectory. The neural network is used to approximate the non-
differentiable absolute value function. Moreover, a linear approximation of the non-
linear trajectory of the predicted control errors over the prediction horizon is used in
the cost function. The resulting quadratic optimisation task is given by Equation (25).
The trajectory used for linearisation, i.e., utraj(k) (Equation (11)) is constant; all its
elements are equal to the value of the manipulated variable calculated at the previous
sampling instant, i.e., u(k− 1), and applied to the process.

• MPC-NPLT2-L1: the trajectory used for linearisation is defined by the last Nu − 1
elements of the optimal solution4u(k) computed at the previous sampling instant.
Only the first element of this sequence is actually used for control.

• MPC-NPLT3-L1: the trajectory used for linearisation is constant, all its elements are
equal to the value of the process input corresponding to the current output set-point.
For this purpose, the inverse static model of the process is used: usp(k) = g̃(ysp(k)).
In this work, a neural network of the MLP type with two layers serves as the inverse
model (the first nonlinear layer contains 10 hidden nodes of the tanh type).

• MPC-NPLPT-L1: the discussed MPC algorithm with nonlinear prediction and lin-
earisation along the predicted trajectory. In this case, trajectory linearisation and
quadratic optimisation are repeated maximally five times at each sampling instant.
The trajectory used for linearisation is taken from the previous internal iteration of the
algorithm. In the first internal iteration, for linearisation, the trajectory obtained from
the inverse static model for the current set-point is used, exactly as it is done in the
MPC-NPLT3-L1 scheme.

Similarly, the following MPC algorithms with the L2 cost function (3) are considered:

• MPC-NO-L2: the MPC algorithm with nonlinear optimisation with the L2 norm used
in two parts of the minimised cost function. The resulting nonlinear optimisation task
is given by Equation (2).
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• MPC-NPLT1-L2, MPC-NPLT2-L2 and MPC-NPLT3-L2: the MPC algorithm with non-
linear prediction and linearisation along the trajectory [29]. Trajectory linearisation
and quadratic optimisation are performed once at each sampling instant.

• MPC-NPLPT-L2: the MPC algorithm with Nonlinear Prediction and Linearisation
along the Predicted Trajectory [29]. Trajectory linearisation and quadratic optimisation
are repeated maximally five times at each sampling instant.

In all simulations presented next, the same parameters of MPC are used: N = 10,
Nu = 3, λ = 1. The constraints are imposed on the magnitude of the manipulated
variable: qmin

1 = 0, qmax
1 = 30. All simulations are performed in MATLAB. The fmincon

and quadprog functions are used for nonlinear and quadratic optimisation, respectively;
default parameters are used in both cases.

Firstly, let us evaluate the efficiency of two versions of the MPC-NO-L1 control scheme.
In both of them, nonlinear optimisation is used at each sampling instant on-line, but the
objective of the comparison is to only check the efficiency of the neural approximator of
the absolute value function. In the first case, the non-differentiable absolute value function
is used in the first part of the minimised cost function, while in the second case, a neural
approximator is considered. Figure 2 depicts the obtained results for a few changes of
the set-point. In general, the non-differentiable absolute value function results in some
numerical problems for the optimisation routine. The influence of such problems on the
resulting trajectories of the process is best visible for the second step of the set-point.
For better comparison, two bottom panels of Figure 2 show an enlarged fragment of the
obtained results. For the non-differentiable absolute value function, the sign of the real
control error changes a few times, while the neural approximator smooths the trajectory of
the process output.
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Figure 2. Cont.
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Figure 2. Simulation results: the MPC-NO-L1 algorithm using the non-differentiable absolute value
function vs. the MPC-NO-L1 algorithm using the neural approximation of the absolute value
function; two top panels show the results for the whole simulation horizon, two bottom panels show
an enlarged fragment for the sampling instants 23 ≤ k ≤ 30.

Figure 3 compares the simulation results of three computationally efficient MPC
algorithms with one repetition of trajectory linearisation and quadratic optimisation at
each sampling instant, but the trajectory used for linearisation, i.e., utraj(k), is chosen
in different ways. In all algorithms, the L1 norm cost function is used. The first two
initialisation methods, used in the MPC-NPLT1-L1 and MPC-NPLT2-L1 algorithms, lead to
some problems for the second set-point step. The explanation is the following: when the
set-point changes abruptly, the linear approximation of the predicted trajectory performed
using the past operating point (MPC-NPLT1-L1) or the part of the optimal trajectory for
the past operating point (MPC-NPLT2-L1) differs significantly from the true nonlinear
trajectory, performed in the MPC-NO-L1 algorithm without any linearisation (Figure 2).
Of course, increasing the value of the coefficient λ would solve the problem, but it leads to
slower control. The best results are obtained in the MPC-NPLT3-L1 algorithm, in which
the trajectory used for linearisation is constant, and all its elements are equal to the value
of the process input corresponding to the current output set-point. Such an input value is
calculated using an inverse neural static model of the process usp(k) = g̃(ysp(k)).

Let us remind ourselves that our objective is to obtain an MPC algorithm that uses
the L1 cost function but it should be computationally efficient, i.e., quadratic optimisation
should be used in place of nonlinear optimisation. On the other hand, the “ideal” MPC-
NO-L1 algorithm is treated as the reference. In different words, we develop a method that
is computationally much simpler, but we hope to obtain control accuracy similar to that
possible in the reference MPC-NO-L1 algorithm. Figure 4 compares the best computation-
ally efficient MPC algorithms with one repetition of trajectory linearisation and quadratic
optimisation at each sampling instant, i.e., the MPC-NPLT3-L1 scheme, with the reference
MPC-NO-L1 scheme. We can see that the MPC-NPLT3-L1 algorithm discussed in this work
gives very good trajectories, very similar to those obtained in the MPC-NO-L1 control
approach. However, there are some small discrepancies between the obtained trajectories.
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Figure 3. Simulation results: the MPC-NPLT1-L1, MPC-NPLT2-L1 and MPC-NPLT3-L1 algorithms.
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Figure 4. Simulation results: the MPC-NO-L1 and MPC-NPLT3-L1 algorithms.

Now, let us consider the MPC-NPLPT-L1 algorithm, in which a few repetitions of
trajectory linearisation and quadratic optimisation are possible at each sampling instant.
The maximal allowed number of such repetitions is five. The stopping criteria (continu-
ation and termination of the internal iterations) are defined by an additional parameter
δ [29]. The internal iterations are continued if the sum of squared differences between the
prediction of the model output and the required set-point is greater than δ. The internal
iterations are terminated if the sum of squared differences between the optimal solution
obtained in two consecutive internal iterations is lower than δ. In general, the lower the
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parameter δ, the better control quality we expect to obtain, but the number of repetitions
of the internal iterations increases. Figure 5 shows the obtained trajectories of the MPC-
NPLPT-L1 algorithm for three values of the parameter δ. For the considered neutralisation
process, the obtained differences are small, but the best results are obtained for δ = 10−1,
as it gives the best trajectory for the second set-point step. The considered neutralisation
process is nonlinear. The process gain and its dynamics heavily depend on the current
operating points. Hence, for different operating points, different overshoot and settling
times are observed. Figure 6 depicts the number of internal iterations in the consecutive
sampling instants of the MPC-NPLPT-L1 algorithm for three values of the parameter δ.
More than one internal iteration is necessary when the set-point changes; when the process
is close to the required operating point, one internal iteration is sufficient. It is clear that the
lower the parameter δ, the more internal iterations are necessary. This is true provided that
a perfect model is used in MPC. In reality, the model is an approximation of the process.
In our case, the unavoidable process–model mismatch results in the lowest overshoot for
δ = 10−1.
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Figure 5. Simulation results: the MPC-NPLPT-L1 algorithm for three values of the parameter δ.
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Figure 6. Simulation results: the number of internal iterations (NII) in the consecutive sampling
instants of the MPC-NPLPT-L1 algorithm for three values of the parameter δ.

Remembering our objective the most important issue is to compare the trajectories
of the reference MPC-NO-L1 algorithm and the computationally efficient MPC-NPLPT-L1
scheme in the latter one, δ = 10−1. Figure 7 shows the obtained trajectories. It is very
important to note that the recommended MPC-NPLPT-L1 algorithm with on-line trajectory
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linearisation and quadratic optimisation gives very similar, practically the same, trajectories
as the algorithm with nonlinear optimisation. It is necessary to recall Figure 4, which
compares the performance of the MPC-NPLT3-L1 algorithm in which linearisation and
optimisation are performed only once at each sampling instant. Comparing Figures 4 and 7,
it is clear that multiple linearisation and optimisation possible at each sampling instant in
the MPC-NPLPT-L1 approach is really beneficial for the considered process.
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Figure 7. Simulation results: the MPC-NO-L1 algorithm vs. MPC-NPLPT-L1 algorithm.

In Figure 8, the recommended MPC-NPLPT-L1 algorithm, which uses the L1 norm, is
compared with its counterpart, MPC-NPLPT-L2, in which the classical L2 norm is used.
The use of the L1 norm leads to a lower overshoot and shorter setting time.
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Figure 8. Simulation results: the MPC-NPLPT-L1 algorithm vs. MPC-NPLPT-L2 algorithm.
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Having visually compared the obtained trajectories of the discussed MPC algorithms,
it is interesting to analyse their performance and differences using some numerical control
quality indicators [70]. We consider the following indices:

• The sum of absolute values of control errors for the whole simulation horizon defined as:

E1 =
120

∑
k=0
|ysp(k)− y(k)| (50)

where y(k) denotes the real value of the process output obtained in simulation.
• The sum of absolute values of differences between the output of the process when it is

controlled by the “ideal” MPC-NO-L1 algorithm (yMPC-NO-L1(k)) and the output of
the process when it is controlled by a compared MPC scheme (y(k)). These differences
are considered for the whole simulation horizon:

EMPC-NO-L1
1 =

120

∑
k=0
|yMPC-NO-L1(k)− y(k)| (51)

• The sum of squared control errors for the whole simulation horizon defined as:

E2 =
120

∑
k=0

(ysp(k)− y(k))2 (52)

• The sum of squared differences between the output of the process when it is con-
trolled by the “ideal” MPC-NO-L1 algorithm and the output of the process when it
is controlled by a compared MPC scheme. These differences are considered for the
whole simulation horizon:

EMPC-NO-L1
2 =

120

∑
k=0

(yMPC-NO-L1(k)− y(k))2 (53)

It is important to stress the fact that the performance criterion E1 is not directly minimised
in MPC algorithms that use the L1 cost function J1 (Equation (4)). This is because the
actually minimised cost function J1 takes into account the absolute value of control errors
predicted over the prediction horizon. The horizon is shifted at each sampling instant.
Moreover, it takes into account the second part of the cost function in which the sum of
squared moves of the manipulated variable of the control horizon is penalised. Similarly,
the performance criterion E2 is not directly minimised in MPC algorithms that use the L2
cost function J2 (Equation (3)).

Let us state our expectations and objectives. When the norm L1 is used in MPC, we
expect to obtain the lowest value of the indices E1 and EMPC-NO-L1

1 . The more similar the
obtained trajectories are to those obtained in the MPC-NO-L1 scheme, the closer the index
EMPC-NO-L1

1 is to 0.
Table 1 presents numerical values of the control quality indices (50)–(53). The following

algorithms are considered: MPC-NPLT1, MPC-NPLT2 and MPC-NPLT3 algorithms, three
versions of the MPC-NPLPT scheme with different stopping criterion defined by the
parameter δ and the MPC-NO approach. The results are divided into two parts: in the first
one, the norm L1 is used in MPC; in the second one, the norm L2 is considered; the cost
function type minimised in MPC is denoted in colour. In addition to the control quality
indices, Table 1 also specifies the relative calculation time of all algorithms; the results
are given in percentages in such a way that the calculation time for the most demanding
algorithm, i.e., MPC-NO-L1, is treated as 100%. Considering the obtained numerical results,
we are able to formulate the following observations concerned with control quality:

1. Comparing the MPC algorithms with the norm L1, in which one trajectory linearisa-
tion and quadratic optimisation are executed at each sampling instant, the best results
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are obtained in the MPC-NPLT3-L1 scheme, in which the trajectory linearisation is
performed using an inverse static model of the process. That algorithm gives the low-
est values of the performance indices E1 and EMPC-NO-L1

1 . It confirms the comparison
given in Figure 3.

2. Better results are possible when a few repetitions of trajectory linearisation and
quadratic optimisation are possible at each sampling instant in the MPC-NPLPT-L1

scheme. The obtained value of the indices E1 and EMPC-NO-L1
1 are lower. It confirms

the comparison given in Figure 7. Moreover, the lower the parameter δ, the more
similar the obtained trajectory is to that possible in the reference MPC-NO-L1 scheme.

3. Bearing in mind our expectations and objectives, the classical MPC algorithms that
use the L2 norm give a worse performance. This confirms the comparison given in
Figure 8. For the corresponding algorithms, the values of both E1 and EMPC-NO-L1

1
performance indices are better (i.e., lower) when the norm L1 is used; the norm
L2 gives worse results. This effect is best visible when we consider the EMPC-NO-L1

1
performance index. For example, comparing the MPC-NPLPT-L1 and MPC-NPLPT-L2
algorithms with δ = 10−5, that index is in the first case approximately 11 times lower.

4. It is very interesting that the use of the L1 norm in place of the classical L2 one leads
to not only better (lower) values of the indices E1 and EMPC-NO-L1

1 , which is natural,
but also makes it possible to reduce the indices E2 and EMPC-NO-L1

2 . For all pairs of
algorithms (with L1 and L2 norms), the E2 index is slightly lower when the L1 norm
is used. This difference is even more clear when we consider the EMPC-NO-L1

2 index. It
confirms the comparison given in Figure 8.

Table 1. Simulation results: the values of the control quality criteria and the scaled calculation time, the cost function type
corresponding to that minimised in MPC is denoted in color; in all cases λ = 1.

Algorithm E1 EMPC-NO-L1
1 E2 EMPC-NO-L1

2 Calculation Time

MPC-NPLT1-L1 7.8818× 101 1.0431× 101 2.2752× 102 4.4144 34.0%
MPC-NPLT2-L1 7.8897× 101 1.5057× 101 2.1985× 102 9.3569 33.7%
MPC-NPLT3-L1 7.1167× 101 7.4706 2.2197× 102 3.6258 33.6%
MPC-NPLPT-L1, δ = 10−1 6.9590× 101 2.7467 2.1626× 102 3.3734× 10−1 40.3%
MPC-NPLPT-L1, δ = 10−3 6.9768× 101 2.6469 2.1435× 102 8.7502× 10−1 49.3%
MPC-NPLPT-L1, δ = 10−5 7.0350× 101 1.5524 2.1573× 102 5.4643× 10−1 60.8%
MPC-NO-L1 7.0371× 101 – 2.1631× 102 – 100.0%
MPC-NPLT1-L2 8.6977× 101 1.8184× 101 2.3746× 102 8.9869 21.0%
MPC-NPLT2-L2 8.3845× 101 1.6043× 101 2.2758× 102 5.8777 20.8%
MPC-NPLT3-L2 8.3647× 101 1.5071× 101 2.3459× 102 6.2455 21.0%
MPC-NPLPT-L2, δ = 10−1 8.3784× 101 1.4916× 101 2.3559× 102 5.5591 23.6%
MPC-NPLPT-L2, δ = 10−3 8.4162× 101 1.6693× 101 2.2885× 102 6.6640 30.9%
MPC-NPLPT-L2, δ = 10−5 8.4795× 101 1.7317× 101 2.2976× 102 7.2166 35.6%
MPC-NO-L2 8.5089× 101 1.7708× 101 2.3033× 102 7.6448 73.3%

Furthermore, it is also possible to put forward the following observations concerned
with computation time:

1. In general, all MPC algorithms with the norm L1 are more computationally demand-
ing than their counterparts that use the norm L2. This is because, in the first case,
in all calculations, i.e., in prediction, linearisation and optimisation, the neural ap-
proximator determines the absolute values of the control errors over the prediction
horizon whereas, in the second case, no approximator is used, the predictions and
control errors are used directly in all calculations.

2. All MPC algorithms with linearisation and quadratic optimisation are less computa-
tionally demanding than the reference “ideal” MPC-NO algorithm.
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3. The more complicated the trajectory linearisation, the longer the calculation time.
The lowest calculation time is observed in the MPC-NPLT1, MPC-NPLT2 and MPC-
NPLT3 algorithms, with one repetition of linearisation and quadratic optimisation
at each sampling instant. The calculation time becomes longer in the MPC-NPLPT
scheme, with a few repetitions of linearisation and optimisation at each instant; the
lower the parameter δ, the longer the calculation time.

Finally, let us compare the results of the MPC-NPLPT-L1 and MPC-NPLPT-L2 algo-
rithms when the penalty coefficient is increased. In our study, the value λ = 5 is considered.
Figure 9 presents the obtained trajectories. Two top panels show the results for the whole
simulation scenario, whereas the bottom ones show enlarged fragments for three set-point
changes. It is interesting to see an additional advantage of the recommended L1 norm
because, in such a case, the overshoot is much lower and the setting time is much shorter
when compared with the trajectories possible when the classical L2 norm is used. In the
considered comparison, for λ = 5, the benefits of using the L1 norm are even more clear
than in the case of the default value of the penalty coefficient, i.e., λ = 1, as presented in
Figure 8.
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Figure 9. Simulation results: the MPC-NPLPT-L1 algorithm vs. MPC-NPLPT-L2 algorithm, in both
cases λ = 5; two top panels show the results for the whole simulation horizon, three bottom panels
show enlarged fragments for the sampling instants 60 ≤ k ≤ 80, 80 ≤ k ≤ 100 and 100 ≤ k ≤ 120.
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5. Conclusions

The presented MPC-L1 algorithms have three essential advantages. Firstly, thanks
to using a neural differentiable approximator of the non-differentiable absolute value
function and on-line advanced trajectory linearisation, computationally simple quadratic
optimisation is used in place of demanding nonlinear optimisation. Secondly, the obtained
trajectories are very similar, practically the same, as those possible in the reference scheme
with nonlinear optimisation. Thirdly, it is shown that the use of the recommended L1
norm gives better results defined using different control quality criteria, such as the sum of
absolute values or squared control errors, overshoot and setting time. Furthermore, it must
be stressed that the L1 norm even gives better results than the classical L2 one in terms of the
classical control performance indicator that measures squared control errors. The discussed
MPC is very universal, it may be used in industrial process control applications and in
fast embedded systems. The only condition is that the model used for prediction and the
neural approximator must be differentiable.

As future works, the following issues are worth investigating: taking into account not
only constraints imposed on the manipulated variable, but also on the predicted controlled
one, the development of nonlinear MPC-L1 algorithms for multivariable processes with
multiple inputs and multiple outputs, considering state–space process description in place
of the input–output one and considering alternative types of the cost function, not only the
discussed L1 norm.
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23. Domański, P.; Ławryńczuk, M. Impact of MPC embedded performance index on control quality. IEEE Access 2021, 9, 24787–24795.

[CrossRef]
24. Fehér, M.; Straka, O.; Šmídl, V. Model predictive control of electric drive system with L1-norm. Eur. J. Control 2020, 56, 242–253.

[CrossRef]
25. Karamanakos, P.; Geyer, T.; Kennel, R. On the choice of norm in finite control set model predictive control. IEEE Trans. Power

Electron. 2018, 33, 7105–7117. [CrossRef]
26. Müller, M.; Worthmann, K. Quadratic costs do not always work in MPC. Automatica 2017, 82, 269–277. [CrossRef]
27. Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge

University Press: Cambridge, UK, 2017.
28. Boiroux, D.; Jørgensen, J.B. Sequential `1 quadratic programming for nonlinear model predictive control. IFAC-PapersOnLine

2019, 52, 474–479. [CrossRef]
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