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Abstract: Many approaches to time series classification rely on machine learning methods. How-
ever, there is growing interest in going beyond black box prediction models to understand discrim-
inatory features of the time series and their associations with outcomes. One promising method is 
time-series shapelets (TSS), which identifies maximally discriminative subsequences of time series. 
For example, in environmental health applications TSS could be used to identify short-term patterns 
in exposure time series (shapelets) associated with adverse health outcomes. Identification of can-
didate shapelets in TSS is computationally intensive. The original TSS algorithm used exhaustive 
search. Subsequent algorithms introduced efficiencies by trimming/aggregating the set of candi-
dates or training candidates from initialized values, but these approaches have limitations. In this 
paper, we introduce Wavelet-TSS (W-TSS) a novel intelligent method for identifying candidate 
shapelets in TSS using wavelet transformation discovery. We tested W-TSS on two datasets: (1) a 
synthetic example used in previous TSS studies and (2) a panel study relating exposures from resi-
dential air pollution sensors to symptoms in participants with asthma. Compared to previous TSS 
algorithms, W-TSS was more computationally efficient, more accurate, and was able to discover 
more discriminative shapelets. W-TSS does not require pre-specification of shapelet length. 
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1. Introduction 
Time series classification methodology is of growing interest in health research, es-

pecially given recent advances in sensor technology. For example, environmental health 
researchers may be interested in using daily exposure time series to distinguish between 
days a study participant does or does not report respiratory symptoms. Many time series 
classification methods distinguish between classes using global summary statistics (e.g., 
mean, standard deviation) or global shapes (e.g., dynamic time warping methods) [1,2]. 
However, there may be discriminative local shapes (e.g., peaks in exposure indicating 
proximity to a source) missed by methods using global summaries. One promising 
method using local features is time series shapelets (TSS), first introduced by Ye and 
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Keogh [3]. Shapelets are defined as maximally discriminative subsequences of a set of la-
belled time series. TSS classifies time series based on similarity to local shapes and has the 
potential to outperform other state-of-the-art time series classifiers using global features, 
especially in applications with discriminative local shapes and in the presence of general 
noise and distortion [4]. 

Shapelets have only recently been applied to studies of human health, with applica-
tions including identification of: temporal patterns (over months) of regional PM2.5 and 
PM10 related to US counties with higher or lower lung cancer incidence [5], temporal pat-
terns (over hours) of heart rate, respiratory rate, and systolic blood pressure predictive of 
the severity of future sepsis events in ICU patients [6], and temporal patterns (over hours) 
in sequential organ failure assessment score related to mortality in ICU patients [7]. The 
discriminative local shapes identified by TSS have the potential to be of scientific interest 
(e.g., peaks related to exposure to air pollution sources). 

TSS algorithms can be summarized by the following basic steps: (1) identify a candi-
date shapelet S defined as a contiguous time series subsequence of length L starting at 
position i, which can be written as S =  t௜, t௜ାଵ, … , t௜ା௅ିଵ, (2) calculate the Euclidean or dy-
namic time warping distance between S and all possible subsequences of the same length 
from each time series in the training data, (3) calculate the minimum distance between S 
and all subsequences of the same length from a given time series T, (4) repeat steps 1-3 for 
many candidate shapelets, (5) use the minimum distances to the large set of candidate 
shapelets as features and build a machine learning model (e.g., tree-based classifier) to 
discover the most important features (i.e., shapelets) for predicting the class of each time 
series. 

Identifying shapelets is the most computationally intensive aspect of TSS algorithms 
due to the huge number of potential candidate shapelets of a given length L, and the even 
larger number when L is tuned. Using exhaustive search to discover shapelets with a 
given length L requires examination of (ATL+1-L)n candidate shapelets, where ATL de-
notes the average total length of all time series and n is the number of time series. For 
example, in a dataset with 1000 time series each of length 1440 (number of minutes in a 
day), there would be 1.381 million potential candidate shapelets of length 60 and 1.421 
million potential candidate shapelets of length 20. Previous efforts to speed up shapelet 
discovery can be summarized into three categories: (1) upscaling the time series by aggre-
gating some continuous timestamps of the time series to reduce the average total length 
(e.g., using symbolic aggregate approximation (SAX) to convert the time series and then 
using the SAX conversions to calculate the similarities and to find the shapelets [8]), (2) 
using a certain threshold to prune or sample from the shapelet candidates (e.g., [9] pro-
posed a fast shapelet discovery algorithm based on important data points (IDPs) and only 
the subsequence containing one or more identified IDPs will be selected as a candidate 
shapelet), (3) building neural networks or other learning approaches to learn the shapelets 
with learning objectives of minimizing the distances between the time series and the can-
didate shapelets [10–13]. In the third method, the final shapelets are no longer actual sub-
sequences of observed time series in the training data, but rather optimized sequences 
based on either actual subsequences or cluster centers of actual subsequences (e.g., k-
means cluster centers). 

These fast shapelet discovery algorithms each have limitations. For example, upscal-
ing/aggregating methods may lose temporal details due to the coarser temporal granular-
ities, pruning/sampling methods have larger chance of missing the real underlying maxi-
mally discriminative shapelets, and learning methods can be sensitive to the initial values 
of the candidate shapelets. Additionally, all these methods rely on the proper tuning of 
the hyperparameter L (shapelet length). To discover the most discriminative subse-
quences of the time series, various lengths of shapelets need to be tested. In this study, we 
propose a novel approach (W-TSS) that leverages wavelet transformations to intelligently 
and quickly discover shapelets of various lengths. We tested W-TSS in three case studies 
with increasingly difficult classification tasks: (1) discriminating four classes of synthetic 
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time series from the UCR Time Series Archive [14], (2) discriminating indoor vs. outdoor 
PM2.5 time series from measurements made at the residences of participants in a pediatric 
asthma panel study conducted by our research group, and (3) in the same panel study 
discriminating days with vs. without asthma inhaler usage based on residential indoor 
PM2.5 time series. In Section 2, we describe the proposed automated method combining 
wavelet transformations, extraction of candidate shapelets, and machine learning predic-
tions. In Section 3, we compare W-TSS with learning TSS in Task 1 and examine the per-
formance of W-TSS in Tasks 2 and 3. In Section 4, we discuss the strengths and limitations 
of W-TSS. 

2. Materials and Methods 
2.1. Learning TSS 

We will use learning TSS as a comparator to W-TSS, so we briefly summarize the 
learning TSS algorithm proposed by Grabocka et al. [13]. Learning TSS focuses on learning 
a local discriminative pattern rather than identifying it through search. The algorithm be-
gins with an initial guess of the shapelets, which could either be arbitrary values or results 
from preliminary data exploration (e.g., k-means cluster centers from a sample of subse-
quences of the pre-specified length). The number of shapelets to be initialized and their 
length are set as hyperparameters. At each step of the algorithm, we calculate a Soft-Min-
imum Distance matrix (M) between each of the current shapelets and each of the observed 
time series. The distance between a shapelet and a time series is defined as the minimum 
distance between the shapelet and all sliding window segments of that size from that time 
series. Then M is used to predict the time series classes in a regularized linear model. A 
stochastic gradient descent algorithm is used to calibrate (update) the shapelets as 
weights, and the algorithm repeats until convergence. Figure 1 demonstrates the iterative 
process of learning TSS. The upper left panel shows an observed time series (from the 
TRACE data, described later) in blue, and the best matching locations of eight shapelets 
(multiple colors), four with fixed length of 25 and four with fixed length of 50. The upper 
right panel zooms into a subsequence of the original time series, and the lower panels 
demonstrate, for three selected shapelets, the step-by-step progression from initialized 
values (blue) to final values (red) in the learning TSS algorithm. Note that all three of these 
shapelets contain a sharp decreasing shape which matches with the decrease in the ob-
served time series at time ~217. 

 
Figure 1. Example of applying Grabocka’s learning TSS method to identify 8 shapelets in the TRACE 
data. The bottom three subplots demonstrate the step-by-step learning of three selected shapelets, 
with blue denoting the initial value and red denoting the final trained value of the shapelets. 
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2.2. Wavelet-Based Discovery for TSS (W-TSS) 
The wavelet transform is a signal processing method developed as a localized alter-

native to the Fourier transform [15]. The Fourier transform identifies global frequencies 
using sums of infinite sinusoidal functions and can perform poorly in time series with 
certain characteristics, including discontinuities and sharp spikes. In contrast, the wavelet 
transform identifies local frequencies present in a time series and the time at which these 
frequencies occurred. The wavelet transform has proven very useful in analyses of time 
series with brief characteristic oscillation (e.g., electrocardiography (ECG)) [16]. Wavelets 
are functions constructed with specific mathematical properties which begin and end at 
zero, with a brief wave-like oscillation in between. For example, the Morlet wavelet as a 
member of continuous wavelets mathematically is composed of a complex exponential 
function multiplied by a Gaussian window. In comparison, Daubechies wavelet as one of 
the most used discrete wavelets is based on the use of recurrence relations to generate 
progressively finer discrete samplings from an implicit mother wavelet function. Exam-
ples of some iconic wavelet functions are shown in Figure 2. 

 
Figure 2. Examples of wavelet functions that are discrete (top row) or continuous (bottom row). 

A wavelet transformation can be written in the following general form: 𝑌(𝑎, 𝑏) =  1𝑎ଵ/ଶ න 𝑋(𝑡)¦ × ൬𝑡 − 𝑏𝑎 ൰ 𝑑𝑡ஶ
ିஶ  (1)

where ¦× is the wavelet function which gets scaled by factor a and translated by factor b, 
Y is the transformed time series, and X is the original time series. The scale factor a is 
inversely proportional to the frequency of the wavelet function and has a similar meaning 
to period, commonly used in other time series analysis. Conversion to pseudo-frequencies 
is possible by taking: 𝑓௔ = 𝑓௖ 𝑎⁄ , where 𝑓௔ is the pseudo-frequency, and 𝑓௖ is the central 
frequency of the wavelet function. Wavelet function families are divided into continuous 
(as examples shown in the bottom row of Figure 2) and discrete (as examples shown in 
the top row of Figure 2) based on whether the scale can be decimal numbers. For discrete 
wavelet transformation, the scale factor a increases by powers of two (e.g., a = 1, 2, 4,...) 
and the translation factor b increases by integer values (e.g., b = 1, 2, 3,...). Since all wavelet 
functions must be finite in energy, there always exists a “window” of non-zero magnitude 
in the wavelet function. The translation factor b is how far we slide the “window” from 
the starting of the time series. Different wavelet functions have their own unique suitabil-
ity to examine different types of abrupt changes that occur in the signals. 

The wavelet transforms outputs both frequency-domain and time-domain infor-
mation. This is accomplished by working with a set of different scales (a) from large to 
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small. A scalogram is a representation of the 2-dimensional time-scale output of the wave-
let transformation of a 1-dimensional signal. Figure 3 shows scalograms for four different 
wavelet transformations (top four panels) applied to a single time series from the TRACE 
dataset (bottom panel). Note that the time series is generally flat with a single large in-
crease centered at time ~100, with a total duration of ~20. If we pick a scale and segment 
the time series according to its scalogram power (higher power indicated by red in Figure 
3), we can find subsequences where the time series has high energy of that scale. For ex-
ample, all four wavelet functions in Figure 3 identify high power for low scale signals 
(~32) occurring near time 100, though the Mexican Hat and Morlet wavelet function iden-
tify the low scale on either side of 100 while Gaussian and Complex Gaussian identify the 
low scale signal at ~100. By picking a scale of 32 in Figure 3, we find subsequences corre-
sponding to where the time series increased at time ~100. For the Morlet and Mexican Hat 
wavelet transformations, we would have ~2 subsequences clipped near 100 for candidate 
shapelets, whereas for the Gaussian and Complex Gaussian transformations, we would 
have a single subsequence. This result highlights the importance of trying different wave-
let function. 

 
Figure 3. Scalogram representation of the 2-dimensional time-scale output of four different wavelet 
transformations (top four panels) of a single time series (bottom panel) from the TRACE dataset. 
The red color shows where the power of the transformed signal is concentrated. 
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This intuition motivates our approach for W-TSS. To automate the process of extract-
ing subsequences with high energy at the identified scales for W-TSS, we convert the sca-
logram to a binary image containing only 0′s and 1′s according to the following procedure: 
(1) for a given scale, standardize the power values of the transformed time series, (2) set a 
threshold hyperparameter (1 as default, but could be modified), and (3) dichotomize the 
scalogram with 0 indicating the standardized value < threshold and 1 indicating ≥ thresh-
old. Based on the dichotomized scalogram, we extract the subsequences of 1s, which rep-
resent the parts of the time series having higher energy at the selected scales. To minimize 
the inclusion of short subsequences arising from noise, we also set a minimum length 
threshold to remove subsequences with insufficient length. This is especially important 
with small scales which have the potential to introduce many candidates from random 
noise. With the extracted subsequences from the binary scalogram, we created the initial 
pool of W-TSS candidate shapelets. Based on the size of the initial pool, we could either 
directly use all candidate shapelets or reduce the number of candidate shapelets (Figure 
4 shows the workflow chart of selecting shapelets using W-TSS) 

 
Figure 4. Workflow chart of applying W-TSS to select shapelets. 

In the following data analysis sections, we implemented W-TSS using: complex 
Gaussian wavelet functions, two selected scales (based on visualization of scalogram), 
minimum length of 3 to filter out noises; and reduced the number of resultant candidate 
shapelets using two simple methods: a variant of k-means clustering or by filtering out 
low variation shapelets. Similar to other TSS-based algorithms, we finally built machine 
learning models using input features based on Euclidean distances (future work could use 
DTW) between the final TSS and the input time series. For the simple synthetic data ex-
ample in Section 3.1 we used a multiclass logistic regression model. For the more complex 
real data analyses in Sections 3.2.1 and 3.2.2, we used a gradient boosted trees classifier 
(Xgboost) [17]. Key hyperparameters and their tuning ranges are listed in Table A1. 

2.3. Datasets 
Synthetic TRACE dataset from UCR Time Series Archive. The TRACE dataset con-

tains four classes of synthetic time series designed to simulate instrumentation failures in 
a nuclear power plant [18]. Each class of time series has unique local discriminative pat-
terns, but with shifts in the exact timing of the local patterns for each time series in a given 
class (Figure 4). The length of each time series is 275. There are 100 time series in the train-
ing dataset and 100 time series in the test dataset, roughly balanced by class. 

Pediatric Research Using Integrated Sensor Monitoring Systems (PRISMS) dataset 
from the Utah Informatics Platform Center. A panel study of 10 participants with asthma 
(ages 5-51, four children and six adults) in seven households near Salt Lake City, Utah 
was conducted from April 2017 to April 2018. The study was approved by the University 
of Utah Institutional Review Board (IRB) with study number IRB_00086107. The original 
approval dated 28 April 2016, and the study maintained ongoing approval with the most 
recent approval on 21 March 2020. Data were shared as per the PRISMS Consortium Data 
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Use Agreement with the University of Southern California and other PRISMS collabora-
tors. Participants signed informed consent documents that included sharing the data used 
in this analysis. Particulate matter air pollution less than 2.5 microns in aerodynamic di-
ameter (PM2.5) was measured both inside and outside of each household. Both indoor and 
outdoor PM2.5 were collected by the deployed sensors (commercial Dylos Corporation 
particle counters, modified to include sensors for humidity and temperature, and to in-
clude wi-fi communications). The conversion of particle counts to mass concentrations (in 
μg/m3) followed rules suggested previously [19]. We then separated the sensor signals 
into daily time series, with each day starting at 8 p.m. (the approximate time of the patients 
to take the questionnaires) and ending at 8 p.m. the next day. Participants (or their guard-
ians, for some child participants) from these households were asked to submit daily ques-
tionnaires about their asthma symptoms and medication usage in the past 24 h, including 
frequency of use of rescue medication (“How often did you use an albuterol or Xopenex 
inhaler or received a nebulized treatment in the last 24 h?”). There were 823 days with 
complete data for indoor and outdoor minute-level PM2.5 exposure time series and asthma 
medication use. In Section 3.2.1, we discriminated between indoor vs. outdoor PM2.5 time 
series (each day treated as a separate 24 h-long time series). In Section 3.2.2, we discrimi-
nated between days with and without rescue medication use based on the corresponding 
24-h residential indoor PM2.5 time series before the daily submitted questionnaires. For 
each PRISMS data application, we randomly selected 33% of days for holdout test data 
(311 testing data samples in Section 3.2.1 and 272 testing data samples in Section 3.2.2). 
We used random five-fold cross validation to train the model and evaluated performance 
of the final model in the test data. 

3. Results 
3.1. Synthetic TRACE dataset 

Applying W-TSS with scales of 32 and 64 to the TRACE dataset produced candidate 
shapelets of various lengths (Figure 5, right panel). There were clearly different groups of 
candidate shapelets, and each group appeared to represent an iconic local shape from the 
four time series classes. 

 
Figure 5. Time series from the four classes in the synthetic TRACE dataset (left panels) and the 
initial set of candidate shapelets identified by W-TSS (right panel). X-axis: time, Y-axis: risk of in-
strumentation failures. 

While it could be feasible to input all candidate shapelets into a prediction model 
which can handle high dimensional data, the clear groupings of the candidate shapelets 
suggested that preliminary dimension reduction would be reasonable and would likely 
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improve interpretation. We reduced the number of candidate shapelets using global align-
ment kernel k-means [20], with the number of clusters arbitrarily set to k = 12. Our final 
set of candidate shapelets were the center lines of the 12 resultant clusters (Figure 6). 

 
Figure 6. Final set of 12 shapelets for W-TSS in the TRACE dataset, identified as the center lines (red) 
from global alignment kernel k-means clustering results on the W-TSS candidate shapelets, with 
time series members (grey solid line) and centerlines (red dash line). X-axis: time, Y-axis: risk of 
instrumentation failures. 

The minimum distances of each time series to each of the 12 shapelets were used as 
features in a multiclass logistic regression model fit to the training dataset. In the test da-
taset, time series from all four classes were perfectly classified (Table 1). 

Table 1. Confusion matrix for predicting the four types of TRACE time series, with F1 score. 

Test N = 100 True Class 1 True Class 2 True Class 3 True Class 4 Total 
Predicted class 1 24 0 0 0 24 
Predicted class 2 0 29 0 0 29 
Predicted class 3 0 0 28 0 28 
Predicted class 4 0 0 0 19 19 

Total 24 29 28 19 F1=1 

The synthetic TRACE data is well-suited to TSS applications, and both W-TSS and 
learning TSS were highly accurate. Grabocka et al. have previously applied learning TSS 
to the TRACE data and reported a test accuracy of 98% [13]. However, the shapelets iden-
tified by W-TSS better matched the iconic local patterns of the four time series classes than 
did the shapelets identified by learning TSS (Figure 7). Each of the W-TSS shapelets closely 
matched a subset of classes of time series and poorly matched other classes, indicating 
better discriminative ability, whereas the shapelets by learning TSS are more randomly 
matched to places of the original timeseries 
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Figure 7. Shapelets (in red) discovered in the TRACE dataset by W-TSS (left) and learning TSS 
(right), displayed at the best matching location of an example time series (in blue) from each of the 
four classes. 

3.2. PRISMS Dataset From Pediatric Asthma Study 
Unlike the synthetic TRACE data, the real-world PRISMS PM2.5 data show much 

more variation in both global and local patterns, posing a greater challenge for the classi-
fication tasks. 

3.2.1. PRISMS: Daily Indoor PM2.5 vs. Outdoor PM2.5 Time Series 
The set of daily outdoor PM2.5 time series had higher variation and fewer apparent 

baselines than the set of indoor PM2.5 time series (Figure 8). 

 
Figure 8. The 823 daily indoor (left) and outdoor (right) PM2.5 time series, each 1440 min long (24 x 
60), with the PM values scaled to min-max to plot on a unit interval. 

After applying W-TSS with scales of 256 and 512, we extracted a total of 6,179 candi-
date shapelets: 2,983 from indoor PM2.5 time series and 3,196 from outdoor PM2.5 time se-
ries (Figure 9, top panels). Alternatively, a brute force method using two fixed lengths of 
256 and 512 would have produced 975,255 candidate shapelets of length 256 for both in-
door and outdoor PM2.5 and 764,567 candidate shapelets of length 512 for both indoor and 
outdoor PM2.5. W-TSS rapidly identified <0.2% of those total possible candidate shapelets, 
dramatically reducing computational load. 
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Figure 9. W-TSS shapelets for the PRISMS indoor and outdoor PM2.5 time series, before filtering 
(top row) and after filtering (bottom row). 

However, 6,179 candidate shapelets is still a large number of input features, espe-
cially given that the training data has much less (1646) time series. Reducing the number 
of candidate shapelets using clustering methods (e.g., global alignment kernel k-means) 
would not be appropriate here given the large variation in shapes. However, we noticed 
that many of 6,179 candidate shapelets were quite “flat”, with similar levels in both clas-
ses. Hence, we decided to filter by removing low variation candidate shapelets. We arbi-
trarily chose a threshold on the candidate shapelet variance which retained 20 candidate 
shapelets from the outdoor PM2.5 time series. Applying this same threshold to the indoor 
data retained 59 candidate shapelets from the indoor PM2.5 time series (Figure 9, bottom 
panels). Filtering by variance may have eliminated some truly discriminatory shapelets, 
but in this application we were more interested in high-variation shapelets. Future anal-
yses might consider combining the unsupervised W-TSS candidate shapelet discovery 
with other supervised TSS discovery methods. An Xgboost model, using minimum dis-
tances to the 79 shapelets (59 indoor, 20 outdoor) as input features, perfectly classified the 
test data (Table 2). 

Table 2. Confusion matrix for predicting indoor PM2.5 vs. outdoor PM2.5, with F1 score. 

Total Days = 544 True Indoor PM2.5 True Outdoor PM2.5 Total 
Predicted Indoor PM2.5 266 0 266 

Predicted Outdoor PM2.5 0 278 278 
Total 266 278 F1 = 1 

Feature importance of the top-10 shapelets is shown in Figure 10 (Figure A1 in Ap-
pendix A shows feature importance of all the shapelets). Shapelets were assigned numer-
ical names according to the ranking of the shapelets’ variance from 0 to 78, with a low 
number indicating larger variance. The most important shapelets were neither the most 
nor the least variable (e.g., variance ranking of the top six shapelets was 11 to 48). The top 
six shapelets (Figure 11, top panels) represented transient spikes in PM2.5 (Shapelets 11 and 
13), a transient spike followed by a gradual decline (Shapelet 48) and sharp increases 
(Shapelets 30, 35, 31). Partial dependence plots (Figure 11, bottom panels) indicated that 
PM2.5 time series with close matches to each of these top six shapelets had a higher prob-
ability of being from the indoors (vs the outdoors). We inspected the top six shapelets and 
confirmed that they had all been identified from indoor PM2.5 time series. Given these re-
sults (top shapelets coming from indoors time series and perfect classification in test data), 
we conclude that in the PRISMS data indoor PM2.5 time series tend to display unique dis-
criminative local patterns not observed in outdoor PM2.5 time series. 
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Figure 10. Feature importance for top-10 W-TSS shapelets in predicting indoor vs. outdoor time 
series PM2.5 in PRISMS. 

 
Figure 11. Top 6 shapelets predicting indoor vs. outdoor PM2.5 in PRISMS. Top panels display the 
shapelets along with their feature importance and bottom panels display partial dependence plots 
with x-axes representing the minimum distance to the shapelet and y-axies representing predicted 
probability of indoor (vs outdoor). 

3.2.2. PRISMS: Daily Indoor PM2.5 Time Series With and Without Rescue Medication Us-
age 

Rescue medication use was reported on 60 (7.3%) of the 823 days. There were no 
obvious differences between residential indoor PM2.5 time series with and without rescue 
medication usage (Figure 12). 
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Figure 12. Daily indoor PM2.5 time series from the 763 days without rescue medicine use (left) and 
the 60 days with rescue medicine use (right). Each time series is 1440 min long and the PM values 
have been min-max scaled to lie on the unit interval. 

After applying W-TSS with scales of 256 and 512, we extracted 2,815 candidate shape-
lets from indoor PM2.5 time series on the 763 days without rescue medicine use, and 168 
candidate shapelets from the 60 days with use (Figure 13, top panels). The imbalance in 
the number candidate shapelets was due to the imbalance in rescue medicine use days. In 
addition, note that the 2815 plus 168 candidate shapelets are the same as the 2983 candi-
dates for indoor PM2.5 from Section 3.2.1 since the settings of our unsupervised W-TSS 
discovery algorithm were the same. To reduce the size of the set of candidate shapelets, 
we again applied a variance filter selecting a threshold to retain at least 20 candidate 
shapelets with high variation in the minority class (days with rescue medicine use). Ap-
plying the same filter to days without rescue medicine use retained 38 candidate shapelets 
(Figure 13, bottom panels). Note that our simple approach to determining a filtering 
threshold is supervised and could be substituted by more complex supervised methods. 

 
Figure 13. W-TSS shapelets from indoor PM2.5 time series before filtering (top row) and after filter-
ing (bottom row) for days without rescue medicine use (left) and days with use (right). 

The Xgboost model using minimum distance to the 58 shapelets as input features had 
relatively poor performance in the test dataset, with an F1 score of 0.26 and only four out 
of 12 rescue medicine use days correctly classified (Table 3). Figure 14 shows the feature 
importance of the top-10 shapelets (Figure A2 shows feature importance of all the shape-
lets). The top six shapelets all represented patterns of quick to more gradual increases in 
PM2.5 concentrations of at least an hour in duration (Figure 15, top panels). Partial depend-
ence plots (Figure 15, bottom panels) only showed a clearly increased probability of a res-
cue medicine use on days with close matches to Shapelet 42, which was the shapelet with 
the highest feature importance. Additionally, the minimum distances of the time series 
from the shapelets were small (<0.02) compared to what was observed in Section 3.2.2 
(between 0 and 10), suggesting that all the time series have a relatively close match to the 
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top shapelets. This likely indicates the lack of a single discriminative local pattern for res-
cue medication use, and partially explains the poor prediction performance. 

Table 3. Confusion matrix for predicting daily indoor PM2.5 time series with vs. without rescue medicine use, with F1 score. 

Total Days = 272 True Use Days True no Use Days Total 
Predicted use days 4 15 19 

Predicted no-use days 8 245 253 
Total 12 260 F1 = 0.26 

 
Figure 14. Feature importance for top-10 W-TSS shapelets predicting days with and without inhaler 
use in PRISMS. 

 
Figure 15. Top 6 shapelets predicting days with vs. without rescue medication in PRISMS based on 
residential indoor PM2.5 time series. Y-axis of partial independence plots: predicted probability. Red 
label in shapelet plots: feature importance value. Top panels display the shapelets along with their 
feature importance and bottom panels display partial dependence plots with x-axes representing 
the minimum distance to the shapelet and y-axies representing predicted probability of rescue med-
ication use (vs. no use). 
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4. Discussion 
In this study, we demonstrated in the synthetic TRACE dataset that W-TSS produced 

a reasonably sized set of candidate shapelets (<0.2% of the brute force method) and led to 
a set of final shapelets which more closely matched the discriminative iconic local patterns 
and had better (perfect) accuracy than learning TSS. In the PRISMS panel study data, W-
TSS was able to perfectly predict indoor vs. outdoor PM2.5 daily time series. In the more 
challenging application of identifying days with rescue medication use using daily resi-
dential indoor PM2.5 time series, W-TSS identified patterns of exposure (even though not 
discriminating), which could be investigated in future studies. The association between 
asthma rescue medicine use and residential indoor PM2.5 is complex and careful study of 
this association requires accounting for potential confounding variables and exposure 
misclassification, including time spent away from home. It is not expected that indoor 
PM2.5 can perfectly predict asthma medication use, but the patterns of PM2.5 discovered by 
the data-driven W-TSS method are suggestive of indoor sources and are of scientific in-
terest. 

In many applications with small number of data samples, it may make sense to filter 
the initial set of candidate shapelets produced by W-TSS before they are input as features 
in machine learning algorithm for predicting the time series classes. We implemented two 
such methods: a variant of k-means clustering (global alignment kernel k-means) to find 
common representative shapelets and a simple filter to remove shapelets with low vari-
ance. When implementing the k-means clustering, the number k of clusters must be spec-
ified in advance. Thus, there would be risks of the chosen number k not reflecting the data. 
Moreover, as a nonparametric algorithm, the outcomes depend on the initial cluster cen-
ters. To over the challenges, a useful heuristic is to use several random initial center as-
signments and select the best result according to some criteria, e.g., using the intraclass 
inertia or using hierarchical clustering algorithm in conjunction with k-means [21]. Other 
reduction methods could also be applied (e.g., removing highly correlated shapelets or all 
the initial W-TSS candidate shapelets could be input into a machine learning algorithm 
tailored for supervised feature selection). The W-TSS approach for candidate shapelet dis-
covery could also be combined with features of other TSS methods. For example, W-TSS 
candidate shapelets could be pro-vided as initial values in the learning TSS algorithm. 

Besides of wavelet transformation, there are other popular time-frequency decompo-
sition methods for processing time series, e.g., Short-Time Fourier Transform, Hilbert–
Huang Transform, Constrained Least-Squares Spectral Analysis, and Least-Squares 
Wavelet Analysis [22]. Future work will focus on evaluating different time-frequency de-
composition methods, providing more accurate and reliable estimates of change or break-
point detection especially in non-stationary time series, as well as more intelligent meth-
ods to choose scales based on the time-frequency decomposition (e.g., the scalogram). Fu-
ture work will also involve extraction of multivariate patterns for the needs of using com-
plex high-dimensional temporal data to support health care decisions. A promising future 
investigation will combine W-TSS with existing multivariate shapelets discovery algo-
rithms based on fast shapelets discovery algorithms [23] to more efficiently identify mul-
tivariate shapelets. 

5. Conclusion 
This study focused on extraction of univariate interpretable patterns from time series 

and developed the novel W-TSS approach for unsupervised discovery of candidate shape-
lets for TSS using wavelet transforms with key acronyms listed in Table A2. Discovering 
the localized temporal patterns could be extremely important in many realms (i.e., envi-
ronmental health) that needs to associate timeseries data with sparse outcomes. Com-
pared to the other methods, the advantages of W-TSS include: (1) no loss of time resolution 
compared to the other TSS algorithms using aggregation/upscaling, (2) the initial candi-
date shapelet discovery is unsupervised leading to greater computational efficiency since 
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there is no need to run a machine learning model, and (3) no need to pre-specify the length 
of the candidate shapelets. Even though the wavelet function and scales do need to be 
specified, but these can be informed through examination of the scalogram. The examina-
tion of several wavelet functions and several different randomly selected scalograms is 
recommended, but this procedure is still less time consuming than tuning the fixed 
lengths of the candidate shapelets. In summary, W-TSS offers a computationally efficient 
unsupervised method for automatic discovery of candidate shapelets of different lengths 
in TSS without degrading temporal resolution. 

Author Contributions: Conceptualization, K.L. and S.P.E.; methodology, K.L.; software, K.L.; vali-
dation, K.L.; formal analysis, K.L.; investigation, K.L., H.D., J.M., R.H. and S.P.E.; resources, K.S., 
F.D.G., J.L.A. and S.P.E.; data curation, K.S.; writing—original draft preparation, K.L.; writing—
review and editing, K.L., H.D., J.M., R.H., M.F., Y.-Y.C., K.S., F.D.G., J.L.A. and S.P.E.; visualization, 
K.L.; supervision, F.D.G. and S.P.E.; project administration, S.P.E.; funding acquisition, K.S., F.D.G., 
J.L.A. and S.P.E. All authors have read and agreed to the published version of the manuscript. 

Funding: Please add: This research was funded by NIH/NIBIB (National Institutes of Health/Na-
tional Institute of Biomedical Imaging and Bioengineering), grant number (1) U24EB021996, (2) 
U54EB021973, (3) U54EB022002, and NIEHS (National Institute of Environmental Health Sciences), 
grant number (4) R01ES027860 

Institutional Review Board Statement: This study was carried out in consent with all the relevant 
guidelines and regulations by the University of Utah and the University of Southern California. All 
methods and experimental protocols were reviewed and approved by the Institutional Review 
Boards (IRBs). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Data Availability Statement: The datasets generated during and/or analyzed during the current 
study are available from the corresponding author on reasonable request. The data are not publicly 
available due to IRB concerns. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script, or in the decision to publish the results. 

Appendix A 
Table A1 described the hyperparameters that we used in the Xgboost models of Sec-

tion 3.2 and their tuning ranges. Table 2 summarized and described the acronyms and 
abbreviations that we used in this paper. Figures A1 and A2 showed the feature im-
portance of all the W-TSS shapelets in the prediction models of Section 3.2. 

Table A1. Xgboost hyperparameters and tuning ranges for PRISMS data analyses. 

Hyperparameter Name Description Tuning Range 

n_estimators 
Number of gradient boosted 
trees. Equivalent to number 

of boosting rounds. 

Randomly picked from 150 
to 500 in each run. 

learning_rate Boosting learning rate. Uniformly picked from 0.01 
to 0.07 in each run. 

subsample 
Subsample ratio of the train-

ing instance. 
Uniformly picked from 0.3 to 

0.7 in each run. 

max_depth Maximum tree depth for 
base learners. 

3;4;5;6;7;8;9. 

colsample_bytree Subsample ratio of columns 
when constructing each tree. 

Uniformly picked from 0.45 
to 0.5 in each run. 
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min_child_weight Minimum sum of instance 
weights needed in a child. 1;2;3. 

scale_pos_weight 
Balancing of positive and 

negative weights. 
1 for Section 3.2.1; 12.05 for 

Section 3.2.2. 

Table A2. List of abbreviations and acronyms used in this paper. 

Abbreviation Description 
TSS Time series shapelets 

W-TSS Wavelet-based time series shapelets discovery algorithms 
PRISMS Pediatric Research Using Integrated Sensor Monitoring Systems 

TRACE 
A Synthetic dataset from University of California Riverside Time Se-

ries Archive 

Xgboost 
An implementation of gradient boosted decision trees named eXtreme 

Gradient Boosting  
SAX Symbolic aggregate approximation 
IDP Important data points 

 
Figure A1. Feature importance for W-TSS shapelets in predicting indoor vs. outdoor time series PM2.5 in PRISMS. 

 
Figure A2. Feature importance for W-TSS shapelets predicting days with and without inhaler use in PRISMS. 
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