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Abstract: In order to calibrate the magnetic measurement system used in guided munition on site,
a two-stage calibration (TSC) scheme without reference is proposed in this paper. Analyzing the
interfering magnetic field in the projectile and misalignment angles between the projectile coordinate
system and measurement coordinate system establishes a proper mathematical equivalent model
and derives a calibration method. The first stage is ellipsoid fitting to obtain the equivalent zero-
offset, equivalent sensitivity and equivalent non-orthogonal angles of the sensor; the second stage
is to calibrate the misalignment angles between the projectile coordinate system and the measure-
ment coordinate system with the three-position calibration (TPC) method. Complete calibration
is convenient to operate and does not need an additional reference, which has wide applicability.
The simulation results show that the deviation in the measured value after compensation is within
100 nT. The experiment proves that the error of compensated magnetic value is about 150 nT, which
meets the accuracy of requirements in guided munitions.

Keywords: magnetic measurement system; misalignment angles; three-position calibration;
ellipsoid fitting

1. Introduction

In the field of navigation technology, the triaxial magnetic measurement system,
with the AMR magnetometer as the core sensor which measures the earth’s magnetic field
to obtain precise directional information [1], has been widely applied to vehicle detec-
tion [2], resource exploration [3], magnetic anomaly detection and navigation [4–6], due to
the advantages of using a magnetometer such as small space occupation, fast response
speed, good anti-overload performance, low cost, etc. [4,7]; as well, it is used in guided
munitions. Generally, the magnetic measurement system must be calibrated in advance [8];
many methods need a high-precision turntable or an additional reference, however, in the
field of guided munition, due to the long-term manufacturing, storage, transportation
and assembling, the interfering magnetism of the projectile will change, meaning that the
parameters are inaccurate which are calibrated before, such as zero-offset, sensitivity and
non-orthogonal angles [9]. Besides, there are misalignment angles between the projectile
coordinate system and measurement coordinate system [10]. Theoretically, a one-degree
misalignment angle results in thousands of nT errors of measured value [11], which need
to rotate the sensor coordinate system to coincide with the projectile coordinate system.

Aiming towards the calibration for the magnetometer and the magnetic measurement
system, some scholars has proposed some effective methods. Valérie Renaudin proposed a
complete calibration in magnetic domain in [11], they analyzed the reasons of errors and
fitted the measured value of magnetometer as a sphere; however, the equation represents a
second-order surface: it may be a hyperboloid, a cone surface or an ellipsoid, there is no
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specific restriction, and it cannot judge the validity of the calibration after the process is com-
pleted. Yanxia Liu proposed a two-stage calibration based on particle swarm optimization
in [12]. Particle swarms belong to a stochastic global optimal algorithm, and can calibrate
all parameters of sensors and improve the accuracy of triaxial sensor. Hard magnetism
and soft magnetism were considered when they established the error model; however,
some necessary components are ignored in the analysis, which cannot be estimated and
extra deviations still exist, and the particle swarm optimization algorithm has its disadvan-
tages: the more complex the surrounding environment is, the more samples are needed
to describe the posterior probability distribution, and the higher the complexity of the
algorithm, the less it is suitable for calibrating magnetic measurement systems on guided
munitions on site. Supeng Li proposed a method to calibrate the misalignment angle in [13];
the method is based on the principle that the trajectory of the measurement data analyzes
the graphical feature to obtain the constrained relationship among the components of the
coordinate system. A three-step calibration method for tri-axial sensors was proposed
in [14]; the method aims to calibrate the magnetometer and accelerometer simultaneously,
one of the two kinds of sensors is calibrated first to define an internal reference, which is
not suitable for measurement systems with one sensor. Donghui Liu proposed a simplified
ellipsoid fitting to calibrate magnetometers [15]; however, they could not solve the problem
of misalignment angles. Lee Jung analyzed the misalignment and soft-iron distortion to
calibrate magnetometers, however this is the internal misalignment error of the sensor [16].
Tandon P. proposed a method based on ellipsoid fitting [17]; ellipsoid fitting is a classical
method to calibrate field vector sensors, however, projectiles cannot be installed on the
calibration equipment. The methods above can improve the accuracy of sensors or systems
effectively, however, some of them need additional high-precision equipment or an external
reference, and cannot calibrate the magnetic measurement system on the projectile sepa-
rately. Some scholars proposed some methods with EKF [18–21] or UKF [22–24] to estimate
measured value, however, the nonlinear model has errors in linearization, and magnetic
measurement systems are affected by the hard magnetism and soft magnetism; they are
not applicable for magnetic measurement systems, and the errors need to be eliminated
effectively in advance. Yanke Wang proposed a calibration method of magnetometer based
on a BP neural network [25]; to improve the training speed and convergence of neural
networks, the Levenberg Marquardt backpropagation training algorithm is designed to
calibrate the magnetometer. This method can effectively reduce the error caused by the
change in magnetometer parameters; the measurement error of a magnetometer can be less
than 10 nT, however, the influence of misalignment errors is not considered in their model.
Further, the prediction ability of the neural network is related to the selected training
model; when predicting different measurement systems, the surrounding environment is
different, and the required training models are also different. In addition, the BP neural
network method has an over-fitting phenomenon, and the limit position of over-fitting is
also difficult to determine to ensure the optimal prediction.

Therefore, aiming at the various errors of measurement systems and inconvenient
conditions, this paper proposes a complete calibration scheme without additional reference
and uses ellipsoid fitting based on the Least Square method and TPC method to obtain
equivalent parameters and misalignment angles to finish fast calibration for measurement
systems on site.

2. Model of Measurement System

Although micro-mini magnetic sensors have different sensitivity mechanisms to
magnetic fields and different sensing characteristics, manufacturing errors are related
to various factors. For the convenience of analysis, considering the relationship of the
input–output of the magnetic sensor, the errors on the measurement system mainly include
two types: single-axis sensing error and three-axis coupling error [26].
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2.1. Error of Single-Axis Sensor

The mathematical model of the single-axis magnetic sensor can be expressed as:

Bs
i = (kn,i + δki)Bs

e,i + Bs
0,i = kiBs

e,i + Bs
0,i (1)

where, kn,i (i = x, y, z) is standard sensitivity, δki (i = x, y, z) is deviation of sensitivity,
ki (i = x, y, z) is real sensitivity and Bs

0,i (i = x, y, z) is zero offset.

2.2. Error of Triaxial Sensor

The errors of the triaxial magnetic sensor are mainly the mismatch error of zero-offset
among the three axes, the static sensitivity mismatches error and the non-orthogonal error
among the three axes [27]. The mathematical model of zero-offset and sensitivity can be
expressed as: {

Hs = KM,sensitivityHs
e

KM,sensitivity = kM,n I + diag[δkM,x, δkM,y, δkM,z]
(2)

where kM,n is the theoretical sensitivity of the sensor and kM,x, kM,y and kM,z are real
sensitivities of three axes respectively. Ideally, kM,n = 1.

The non-orthogonal error among the axes is the measurement error caused by the
fabrication that the three sensitive axes cannot be orthogonal completely to each other
during manufacturing [28]. For the convenience of analysis, determine the ideal coordinate
system as ‘s′’ system, determine the real coordinate system as ‘s’ system; Oxs’ coincides
with Oxs, illustrated in Figure 1.

Figure 1. Schematic diagram of non-orthogonal angle.

Considering that the non-orthogonal angles δM,1, δM,2 and δM,3 are all small angles,
the non-orthogonal angle matrix CM,nonorth can be simplified as:

CM,nonorth ≈

 1 −δM,1 −δM,2
0 1 −δM,2δM,3
0 0 1

 (3)

The mechanical misalignment angles of the magnetic sensor mainly consist of welding
alignment errors and assembling alignment errors.

2.3. Misalignment Angles

After orthogonal calibration, the measurement coordinate system and the projectile
coordinate system are both the orthogonal coordinate system. The conversion relationship
between the two can be regarded as the rotation transformation between the two orthogonal
coordinate systems, described by Euler angles. The rotation sequence of the two coordinate
systems is defined as that the projectile coordinate system first rotates αy around the Y-axis,
then rotates αz around the Z-axis and finally rotates αx around the X-axis, then the projectile
coordinate system coincides with the orthogonal magnetic sensitive coordinate system,
as shown in Figure 2. The conversion matrix is defined as Cb

s’.
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Figure 2. Schematic diagram of installation error angle.

Cs′
b = Rx(αx)Rz(αz)Ry(αy)

=

 cos αy cos αz sin αz − sin αy cos αz
sin αx sin αy − cos αx cos αy sin αz cos αx cos αz sin αx cos αy + cos αx sin αy sin αz
cos αx sin αy + sin αx cos αy sin αz − sin αx cos αz cos αx cos αy − sin αx sin αy sin αz

 (4)

2.4. Disturbing of Magnetic Field
2.4.1. Hard Magnetism

The magnetic field is generated by the hard magnetic materials in the projectile [29].
Hard magnetic materials have high coercivity and remanence value. Once magnetized
by an external magnetic field, the remanence can be retained for a long time and will not
disappear easily. The projectile body is mainly made of some ferromagnetic materials such
as steel alloy; the shells of much of the electromechanical equipment on the projectile are
also made of ferromagnetic materials. During the manufacture or storage of the projectile,
it is parked at a fixed position for a long time, and it is continuously magnetized by the
geomagnetic field in that direction at that location, so that the hard magnetic material in
the projectile is magnetized and has strong magnetism. When the sensor on the projectile,
the error of hard magnetic materials can be equivalent to a bias, which can be shown as:

Bb
p =

[
Bb

p,x Bb
p,y Bb

p,z

]T
(5)

2.4.2. Soft Magnetism

Soft magnetism is produced by the soft magnetic materials in the equipment. For the
convenience of analysis, the soft magnetic material in the projectile is decomposed into
countless, infinitely thin soft magnetic wires parallel to the axial, vertical and transverse
directions of the projectile coordinate system equivalently. The axial, vertical and transverse
soft magnetic wires are affected by the geomagnetic field, respectively. The axial soft mag-
netic filament clusters are magnetized by the Ox

b axial component Bb
G,x of the geomagnetic

field in the equipment coordinate system, and the inductive magnetic field is proportional
to Bb

G,x, ‖Bb
xi‖ = lBb

G,x (l is a proportional coefficient). The inductive magnetic field vector
of the axial soft magnetic filament cluster is shown in Figure 3, which is decomposed by
projection on the coordinate axis of the projectile coordinate system Oxb, Oy

b and Oz
b,

respectively, and Hb
xi,x = c11Hb

G,x, Hb
xi,y = c21Hb

G,x and Hb
xi,z = c31Hb

G,x.
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Figure 3. Schematic diagram of decomposition.

In the same way, the vertical soft magnetic filament clusters and transverse soft mag-
netic filament clusters of the projectile are magnetized by the geomagnetic field components
Bb

G,y and Bb
G,z, respectively, and all the vertical soft magnetic filament clusters and trans-

verse soft magnetic filament clusters on the projectile are correspondingly magnetized.
The magnitudes of the induced magnetic field before and after magnetization of the ge-
omagnetic component are ‖Bb

yi‖ = mBb
G,y and ‖Bb

zi‖ = nBb
G,z, respectively, where m and

n are the corresponding proportional coefficients and their orientations are related to the
installation position and attitude of the magnetic sensor in the equipment. Project Bb

yi and

Bb
zi to Ox

b, Oy
b, Oz

b in the projectile coordinate system can be shown as:

Bb
i = CinduceBb

G

Cinduce =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 (6)

2.4.3. Eddy Current Magnetic Field

The eddy current magnetic field is excited by the electric eddy current to generate
a corresponding inductive magnetic field around it. The eddy current magnetic field is
related to factors such as the rate of change of the environmental magnetic field, the motion
parameters of the conductor, the geometry of the conductor, the permeability and the
conductivity of the conductor. During the external ballistic flight of the projectile, the eddy
current magnetic field of the projectile is mainly caused by a series of closed loops in
the metal of the projectile shell when the projectile performs high-speed axial translation,
rotation around the axis or maneuvering in the outer ballistic flight. The magnetic flux
passing through the enclosed area of the closed loop changes with the changes of the three-
axis components of the geomagnetic field in the projectile coordinate system, and then
generates eddy currents in the loop. This electric eddy current generates an eddy current
magnetic field to prevent this change [30,31].

According to the theory about electromagnetic field, the influence of the eddy current
magnetic field on the projectile magnetic sensor can be described as:

Bb
eddy = Eeddy

dBb
G

dt

Eeddy =

 e11 e12 e13
e21 e22 e23
e31 e32 e33

 (7)

The changes in the projectile are mainly caused by the steering gear, the rudder blades
and the attitude adjustment engine, etc. [32]. For the convenience of analysis, the eddy
current magnetic field of the projectile can be described as a three-dimensional random
vector, that is:

Bb
n =

[
Bb

n,x Bb
n,y Bb

n,z

]T
(8)
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It meets the following conditions:

E
[
∆Bb

n

]
= 03×1;

E
[(

∆Bb
n

)(
∆Bb

n

)T
]
= diag

[
σ2

Hb
n,x

σ2
Hb

n,y
σ2

Hb
n,z

]
Therefore, the actual measured magnetic field value of the projectile can be expressed as:

Bb
e = Bb

G + Bb
distrub

= Bb
G +

(
Bb

p + CinduceHb
G + Eeddy

dBb
G

dt + Bb
n + ∆Bb

n

)
= (I3×3 + Cinduce)Bb

G + Eeddy
dBb

G
dt +

(
Bb

p + Bb
n

)
+ ∆Bb

n

(9)

Substituting it into the magnetic sensor measurement model, the mathematical model
of the measurement information of the projectile can be obtained as:

Bs = KM,sensitivityCM,nonorthCs′
b Bb

e + Bs
0 + Bs

n

= KM,sensitivityCM,nonorthCs′
b

(
Bb

G + Bb
distrub

)
+ Bs

0 + Bs
n

= KM,sensitivityCM,nonorthCs′
b

[
(I3×3 + Cinduce)Bb

G + Eeddy
dBb

G
dt +

(
Bb

p + Bb
n

)
+ ∆Bb

n

]
+ Bs

0 + Bs
n

(10)

Then, the relationship of input and output of the magnetic sensor can be simplified as:

Bs = KMBb
G + Keddy

dBb
G

dt
+ Bs

o f f set + Bs
noise (11)

where KM is an equivalent sensitivity matrix, Keddy is an equivalent eddy current sensitivity
coefficient matrix, Bs

offset is an equivalent zero-offset and Bs
noise is an equivalent noise in

output whose mean value is zero.
If the influence of the eddy current magnetic field of the projectile is ignored, it can be

approximated as a linear model:

Bs = KMBb
G + Bs

o f f set + Bs
noise (12)

where:
KM = KM,sensitivityCM,nonorthCs′

b (I3×3 + Cinduce);

Bs
o f f set = KM,sensitivityCM,nonorthCs′

b

(
Bb

p + Bb
n

)
+ Bs

0

Bs
noise = KM,sensitivityCM,nonorthCs′

b ∆Bb
n + Bs

n

The parameters (equivalent sensitivity coefficient matrix KM, equivalent zero-offset
Bs

offset) in the output information of the magnetic sensor are obtained by the first stage cali-
bration method, and the geomagnetic information can be estimated by the following formula:

Bb
G = K−1

M (Bs − Bs
o f f set) (13)

3. Calibration Scheme

According to the analysis above, the calibration process can be decomposed into two
stages: calibration of sensor and calibration of measurement system:

(1) The first stage is to finish the unitization and orthogonalization of the coordinate
system of the sensor;

(2) The second stage is to calibrate misalignment angles between the measurement system
and projectile coordinate system by the TPC method based on the first stage.
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3.1. First-Stage Calibration

In the calibration area where the geomagnetic field is stable, the geomagnetic infor-
mation is measured by an ideal orthogonal magnetometer that does not contain various
measurement error factors. When rotating the sensor in space, the measured value can
be described as a sphere [33]. Then, the measured value of the ideal magnetic sensor in
different attitudes satisfies the following equation:

‖Bb
G‖

2
=
(

Bb
G

)T
· Bb

G =
(

Cb
c Bc

G

)T
·
(

Cb
c Bc

G

)
=
(
Bc

G
)T
(

Cb
c

)T(
Cb

c

)(
Bc

G
)

=
(
Bc

G
)T(Bc

G
)
= ‖Bc

G‖
2

= const

(14)

According to the mathematical model mentioned before in the article, the measured
value of the geomagnetic field is:

Bb
G = K−1

M

(
Bs − Bs

o f f set

)
= Cb

s′C
s′
s

(
Bs − Bs

o f f set

)
(15)

Therefore, there is:

‖Bb
G‖

2
=
(

Bb
G

)T
Bb

G =
(

Bs − Bs
o f f set

)T(
K−1

M

)T(
K−1

M

)(
Bs − Bs

o f f set

)
=
(

Bs − Bs
o f f set

)T(
Cs′

s

)T(
Cb

s′

)T(
Cb

s′

)(
Cs′

s

)(
Bs − Bs

o f f set

)
=
(

Bs − Bs
o f f set

)T(
Cs′

s

)T(
Cs′

s

)(
Bs − Bs

o f f set

) (16)

After simplification, it satisfies the quadratic standard equation:

(Bs)T
(
Cs

s′
)T(Cs

s′
)

‖Bb
G‖

2 Bs − 2(Bs)T

(
Cs′

s

)T(
Cs′

s

)
‖Bb

G‖
2 Bs

o f f set +
(

Bs
o f f set

)T

(
Cs′

s

)T(
Cs′

s

)
‖Bb

G‖
2

(
Bs

o f f set

)
= 1 (17)

Then, the measurement data satisfies a quadratic ellipsoid surface equation, and its
geometric meaning is: the three-dimensional coordinates determined by the measurement
data are on the three-dimensional ellipsoid surface, and the center of the ellipsoid is
equivalent zero-offset. The radius of each semi-axis of the ellipsoid is related to the product
of the equivalent sensitivity coefficient of the corresponding axis of the magnetic sensor and
the modulus of the geomagnetic field. The angle between each semi-axis of the ellipsoid
and the sensitive axis is the equivalent non-orthogonal angle between each axis of the
magnetic sensor.

Suppose the equation of the ellipsoid as the following equation:

F(ξ, z) = ξTz = ax2 + by2 + cz2 + 2dxy + 2exz + 2 f yz + 2px + 2qy + 2rz + g = 0 (18)

where ξ = [a, b, c, d, e, f , p, q, r, g]T are the coefficients that need to be calculated and
z = [x2

i , y2
i , z2

i , 2xiyi, 2xizi, 2yizi, 2xi, 2yi, 2zi, 1]T are the measured values of the tri-axial
measurement vector. Fitting measured data to obtain the optimal ellipsoid fitting coeffi-
cients [a, b, c, d, e, f , p, q, r, g]T , in the process of fitting the ellipsoid surface, the minimum
square sum of the algebraic distance between the measurement data and the ellipsoid
surface is determined as the criterion as:

min
ξ∈R6
‖F(ξ, mi)‖2 = min

ξ∈R6
ξT DT Dξ (19)
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where:

D =


x2

1 y2
1 z2

1 2x1y1 2x1z1 2y1z1 2x1 2y1 2z1 1
x2

2 y2
2 z2

2 2x2y2 2x2z2 2y2z2 2x2 2y2 2z2 1
...

...
...

...
...

...
...

...
...

...
x2

N y2
N z2

N 2xNyN 2xNzN 2yNzN 2xN 2yN 2zN 1


[xi, yi, zi]T (i = 1, 2, . . . . . . N) is the measurement data of the projectile in the i-th rotation
attitude. Calculating with vector (X − X0)T A (X − X0) = 1, then

XT AX− 2XT
0 AX + XT

0 X0 = 1 (20)

where A =

 a d e
d b f
e f c

 is the matrix related to the semi-axis of the ellipsoid and its

rotation angle and X0 = −A−1

 p
q
r

 is the center point coordinates of the ellipsoid.


(

Cs′
s

)T(
Cs′

s

)
‖Bb

G‖
2 = A

Bs
o f f set = X0

(21)

Determine that P =
(

Cs′
s

)T(
Cs′

s

)
= ‖Bb

G‖
2
A, P is a real symmetric positive definite

matrix. According to the Cholesky decomposition theorem: when P is a real symmetric
positive definite matrix of order n, then P has a unique LDU decomposition, shown as:

P = LDU (22)

where D is the diagonal matrix D = diag (d1, d2, . . . , dn) and di > 0 (i = 1, 2, . . . n); L is the
unit lower triangular matrix; U is the unit upper triangular matrix.

Determine D̃ = diag(
√

d1,
√

d2, · · · ,
√

dn), then

P = LD̃2U (23)

Due to PT = P, then
UT D̃2LT = LD̃2U (24)

According to the uniqueness of the matrix Cholesky decomposition, UT = L; LT = U.

P = LD̃2U = UT D̃2U

= UT D̃T D̃U =
(

D̃U
)T(

D̃U
) (25)

The matrix Cs′
s in corresponding model is:

Cs′
s = D̃U (26)

Then a complete mathematical model can be established:

Bs = KM,sensitivityCM,nonorthCs′
b Bb

e + Bs
0 (27)

The parameter can be obtained,
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Cs′
s =

(
Cs

s′
)−1

=
(

KM,sensitivityCM,nonorth

)−1
=

 1 sin δ′M,1 sin δM,2
′ cos δM,3

′
0 cos δM,1

′ sin δM,2
′ sin δ′M,3

0 0 cos δ′M,2


 1/k′M,x 0 0

0 1/k′M,y 0
0 0 1/k′M,z


=

 1/k′M,x sin δ′M,1/k′M,y sin δ′M,2 cos δ′M,3/k′M,z
0 cos δ′M,1/k′M,y sin δ′M,2 sin δ′M,3/k′M,z
0 0 cos δ′M,2/k′M,z

 (28)

Therefore, equivalent sensitivity and equivalent non-orthogonal angles are:

k′M,x = 1/Cs′
s (1, 1)

δ′M,1 = arctan
[
Cs′

s (1, 2)/Cs′
s (2, 2)

]
k′M,y = sin δ′M,1/Cs′

s (1, 2)

δ′M,3 = arctan
[
Cs′

s (2, 3)/Cs′
s (1, 3)

]
δ′M,2 = arctan Cs′

s (1,3)
cos δ′M,3Cs′

s (3,3)

k′M,z = sin δ′M,2 cos δ′M,3/Cs′
s (1, 3)

3.2. Second-Stage Calibration
3.2.1. Three-Position Method

Although the geomagnetic field is a global long-term changing magnetic field, it changes
slowly and is almost constant. Therefore, there is a constraint relationship of the measured
values when the measurement system is in different directions. According to this theory,
the projectile is placed on a non-magnetic platform, the X-axis, Y-axis and Z-axis of the
projectile coordinate system point to the north, up and east, respectively. Record the
measured value at the initial position as B1

s’, rotate 180◦ around the other two axes in the
projectile coordinate system and record the measured value as B2

s’ and B3
s’. There are six

rotation sequence schemes as shown in Table 1.

Table 1. Rotation sequence.

Position 1 Position 2 Position 3

Plan 1 Coincide with the calibration coordinate system Rotate 180◦ around Xb Rotate 180◦ around Yb

Plan 2 Coincide with the calibration coordinate system Rotate 180◦ around Yb Rotate 180◦ around Zb

Plan 3 Coincide with the calibration coordinate system Rotate 180◦ around Zb Rotate 180◦ around Xb

Plan 4 Coincide with the calibration coordinate system Rotate 180◦ around Xb Rotate 180◦ around Zb

Plan 5 Coincide with the calibration coordinate system Rotate 180◦ around Yb Rotate 180◦ around Xb

Plan 6 Coincide with the calibration coordinate system Rotate 180◦ around Zb Rotate 180◦ around Yb

Considering the ease of operation, without loss of generality, plan 3 is used in the
following description, the sequence of rotation is rotating 180◦ around the Z-axis after the
initial position, then rotating 180◦ around X-axis, illustrated by Figure 4.

Figure 4. Diagram of rotation sequence.

Therefore, according to the rotation sequence: the three-dimensional vector of the
geomagnetic information in the calibration coordinate system is Bc = [Bx

c, By
c, Bz

c]T;
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the three-dimensional projection vector of the geomagnetic information in the sensitive
orthogonal coordinate system (‘s′’ system) is Bs’ = [Bx

s’, By
s’, Bz

s’]T. There is:

Bs′
i = Cs′

b Bb
i ; (i = 1, 2, 3) (29)

where, B1
b = [Bx

c, By
c, Bz

c]T, B2
b = [−Bx

c, −By
c, Bz

c]T, B3
b = [−Bx

c, By
c, −Bz

c]T.

Determine Bs′
ij =

(
Bs′

i + Bs′
j

)
/2, i and j are the number 1, 2 and 3 of the positions.

Using the Newton–Raphson method, suppose the X = [αx, αy, αz, Bc
x, Bc

y, Bc
z], define

the initial value Xk, Taylor expands Xi(i = 1, 2, 3 . . .) at Xk, omit high-order terms with
small values.

∆Z = J · ∆X (30)

where:
∆X = X− Xk

∆Z =
[

Hc
k,ij − fk,ij(Xk)

]
fk,ij represents the constraint relationship of [αx, αy, αz, Bc

x, Bc
y, Bc

z] and Bb. J is the Jacobian
matrix of the nonlinear equations:

J9×6 = [∂ fk,12/∂X]|Xk =

 (J12,α,β,γ)3×3 (J12,Bc)3×3
(J23,α,β,γ)3×3 (J12,Bc)3×3
(J13,α,β,γ)3×3 (J12,Bc)3×3

 (31)

(J12,α,)3×3 = [∂ f /∂α]

=

 0 −Bc
z(cos αy cos αz) Bc

z(sin αy sin αz)
Bc

z(cos αx cos αy − sin αx sin αy sin αz) Bc
z(cos αx cos αy sin αz − sin αx sin αy) Bc

z(cos αx sin αy cos αz)
−Bc

z(sin αx cos αy + cos αx sin αy sin αz) −Bc
z(cos αx sin αy + sin αx cos αy sin αz) −Bc

z(sin αx sin αy cos αz)

 (32)

(J12,α)3×3 = [∂ f /∂Bc]

=

 0 0 − sin αy cos αz
0 0 sin αx cos αy + cos αx sin αy sin αz
0 0 cos αx cos αy − sin αx sin αy sin αz

 (33)

(J23,α)3×3 = [∂ f /∂α]

=

 0 Bc
x(sin αy cos αz) Bc

x(cos αy sin αz)
−Bc

x(cos αx sin αy + sin αx cos αy sin αz) −Bc
x(sin αx cos αy + cos αx sin αy sin αz) Bc

x(cos αx cos αy cos αz)
Bc

x(sin αx sin αy − cos αx cos αy sin αz) Bc
x(sin αx sin αy sin αz − cos αx cos αy) −Bc

x(sin αx cos αy cos αz)

 (34)

(J23,α)3×3 = [∂ f /∂Bc]

=

 − cos αy cos αz 0 0
cos αx sin αy sin αz − sin αx cos αy 0 0
−(cos αx sin αy + sin αx cos αy sin αz) 0 0

 (35)

(J13,α)3×3 = [∂ f /∂α] =

 0 0 Bc
y cos αz

−Bc
y(sin αx cos αz) 0 −Bc

y(cos αx sin αz)

−Bc
y(cos αx cos αz) 0 Bc

y(sin αx sin αz)

 (36)

(J13,α)3×3 = [∂ f /∂Bc]

=

 0 sin αz 0
0 cos αx cos αz 0
0 − sin αx cos αz 0

 (37)
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Using the least-squares method, ∆X= (NT N
)−1NT∆M can be obtained, and there is

an iterative calculation Xk+1 = Xk + ∆X until the required accuracy threshold. When using
the Newton–Raphson method, its convergence requires the initial value to be selected
appropriately. Define the initial value:

Bc
x ≈ Bb

x,23
Bc

y ≈ Bb
y,13

Bc
z ≈ Bb

z,12

αx =
Bc

zBb
y,12−Bc

yBb
z,13

(Bc
z)

2+(Bc
y)

2

αy =
Bc

x Bb
z,23−Bc

zBb
x,12

(Bc
z)

2+(Bc
x)

2

αz =
Bc

yBb
x,13−Bc

x Bb
x,23

(Bc
x)

2+(Bc
y)

2

(38)

3.2.2. Error Analysis

Suppose the measurement error conforms to the normal distribution, for which the
mean value is zero and the three-axis magnetic measurement values are independent of
each other, satisfies ∆Hi

s’ ~ N(0, σ2), as:

E
[
∆Bs′

i

]
= 0

E
[
(∆Bs′

i )
2]

= σ2
(39)

Then,
E
[
∆Bm

k,ij

]
= E

[(
∆Bm

k,i + ∆Bm
k,j

)
/2
]
= 0

i, j = 1, 2, 3; k = x, y, z

E
[(

∆Bm
k,ij

)2
]
= E

[(
∆Bm

k,i + ∆Bm
k,j

)2
/4
]
= σ2/2

(i, j = 1, 2, 3; k = x, y, z)

(40)

Then,
E[∆Z] = 09×1

E
[
∆Z · ∆ZT] = σ2

2 I9×9;
(41)

According to ∆X= (NT N
)−1NT∆M, the statistics of X satisfy the equation

E[∆X] = E
[
(NT N)

−1N · ∆M
]
= (NT N)

−1 A · E[∆M] = 06×1

E
[
∆X · ∆XT]

= E
[
(NT N)

−1NT · ∆M · ∆MT · N(NT N)
−1
]

= (NT N)
−1NT · E

[
∆M · ∆MT] · N(NT N)

−1

= σ2

2 (NT N)
−1NT N(NT N)

−1

= σ2

2 (NT N)
−1

(42)

When αx, αy, αz are small values, the quadratic term and other higher-order terms in
the Taylor expansion can be ignored, and the covariance matrix of ∆X can be simplified as:

E
[
∆X · ∆XT] = σ2

2 (NT N)
−1

= σ2

2

[
N11 03×3
03×3 I3×3

] (43)
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where N11 = diag
[

1
(Bc

y)
2+(Bc

z)
2 ; 1

(Bc
x)

2+(Bc
z)

2 ; 1
(Bc

x)
2+(Bc

y)
2

]
.

Therefore, it can be seen that the calibration accuracy of the misalignment angles of
the magnetic field information is related to the measurement accuracy of the three-axis
magnetic sensor, the magnetic field vector and the projection component of Hc in the
calibration coordinate system. In order to estimate αx, αy and αz with equal accuracy, it is
necessary to project the magnetic field vector Bc to the calibration coordinate system with
equal components. Determine the intensity of the geomagnetic field as ||B||; it needs to
meet the following equation:

‖Bc
x‖ = ‖Bc

y‖ = ‖Bc
z‖ = ‖B‖/

√
3 (44)

The angle between the magnetic field vector of the calibration site and each axis in the
calibration coordinate system is ±arc cos

(
1/
√

3
)
= ±54.73◦, as:

E
[
∆α2

i
]
= 3σ2

4‖B‖2 ;

E
[(

∆Bb
i

)2
]
= σ2

2

(45)

4. Simulation

In order to verify the feasibility of this scheme, suppose the intensity of geomagnetic
field is 60,000 nT, add necessary hard magnetism and soft magnetism; the simulation data
is shown in Table 2.

Table 2. Simulation data.

Hard Magnetism (nT) Soft Magnetism (nT)

[500, 300, −300] [30, 100, 100]

Fitting the data as an ellipsoid surface is shown in Figure 5.

Figure 5. Diagram of ellipsoid fitting.

According to the analysis above, the parameters are as shown in Table 3.

Table 3. Parameters.

Zero Offset (nT) Sensitivity Non-Orthogoanal Angle (◦)

[478, 325, −296] [1.0025, 0.9975, 1.0020] [1, 1, 2]

Compensate the measured value and the fitting diagram as shown in Figure 6.
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Figure 6. Diagram of data after compensation.

It can be seen from Figure 6 that the fitting graph of the measured value after compen-
sation is close to a sphere, which is a proper graph under ideal conditions, which proves
that this method can eliminate the influence of the deviation of parameters of sensor and
other magnetic fields.

Suppose the misalignment angles are [−1◦, 2◦, 3◦], the three-axis components in the
calibration coordinate system are [35,468, 35,468, 35,468] nT, as shown in Table 4, to verify
the feasibility of the TPC method.

Table 4. Simulation data.

Misaligment Angles (◦) Components (nT)

Data [−1◦, 2◦, 3◦] [35,468, 35,468, 35,468]

To obtain the optimal results, the available methods are the Las Vegas method and the
Monte Carlo method. Because of the limited number of points in the actual sampling, it does
not meet the applicated conditions of the Las Vegas method, therefore the distribution of
misalignment angles is judged by the Monte Carlo method 10,000 times. The results are
shown in Table 5 and Figure 7.

Table 5. Simulation results.

Misalignment Angle (◦) Components (nT)

Average Value Average Error Standard Deviation Average Value Average Error Standard Deviation

Data
−0.9949 0.0051 0.0828 35,468 0.7335 70.3835
2.0003 0.0003 0.0821 35,469 1.2859 70.4160
3.0016 0.0016 0.0825 35,470 2.4139 71.5294

Figure 7. Simulation results of misalignment angles.

It can be seen from Table 5, Figure 7, in the results of the calibration algorithm based
on the TPC method, that the errors of the misalignment angle and the magnetic field
component all meet the characteristics of normal distribution, their average values are zero
and the three misalignment angles are estimated with equal accuracy when the components
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are equal. The standard deviation of components is close to the theoretical value 70.7107 nT,
it is consistent with the analysis in Section 3 of this paper.

5. Experiment and Discussion

In order to verify the scheme described in the article, HMC1053 is the magnetometer
in this experiment. The magnetoresistive sensor (AMR) of Honeywell of the United States
represents the highest level in the industry; the miniature three-axis magnetoresistive sensor
HMC1053 has the characteristics of small size, low power consumption and fast dynamic
response. It is widely used in the navigation test of unmanned aerial vehicles, unmanned
vehicles and various small smart carriers; as well, it has been used in guided munitions of
France, and the “CORECT” combined measurement module for rocket ballistic correction
jointly developed by Switzerland and Germany. In this experiment, the sensor is installed
on the board by welding; it is important to install the measurement system on a piece
of equipment made of metal materials as shown in Figure 8, FVM400 fluxgate is used
to measure an appropriate area where the geomagnetic field is stable for calibration.
The accuracy of the device is 1 nT.

Figure 8. Magnetic measurement system.

Place the system at a certain position and rotate it around the X-axis, Y-axis and Z-axis
with multiple attitudes. Without loss of generality, the selected method is to rotate 360◦ on
the vertical plane when the system is moving 45◦ on the horizontal plane. Obtain measured
data of multiple postures, obtain the modulus as shown in Figure 9.

Figure 9. Diagram of modules before calibration.

Figure 9 shows that, before calibration, the peak-to-peak variation range of the magnetic
field modulus is about 44,090 nT. The ellipsoid fitting graph is as shown in Figure 10.



Sensors 2021, 21, 5799 15 of 19

Figure 10. Ellipsoid fitting graph of magnetometer.

Equivalent zero offset, equivalent sensitivity and equivalent non-orthogonal angles
are shown in Table 6.

Table 6. Results of ellipsoid fitting.

Zero Offset (V) Sensitivity (V/nT) Non-Orthogonal Angle (◦)

X 0.1318 0.00001342 −0.9777
Y 0.2660 0.00001334 −7.0315
Z 0.2041 0.00001351 −4.4631

The modulus of measured value after compensation in Figure 11.

Figure 11. Diagram of modules after compensation.

Figure 11 shows that after the first stage calibration, the peak-to-peak variation range
of the magnetic field modulus is about 2200 nT. Compared with the modulus before the
first stage, the error reduces by about 20 times.

Then, to calibrate misalignment angles with TPC method, a straight line in the plane of
a plastic plank is selected as the X-axis of the calibration coordinate system, the straight line
perpendicular to the X-axis in this plane is the Z-axis and the calibration coordinate system
is determined according to the right-hand rule. Using FVM400 to measure the magnetic
field components and place the plate in the proper position so that the components in
the calibration coordinate system are approximately equal, the components are 35,977 nT,
35,871 nT and 36,100 nT.

First, place the projectile on the calibration plane so that the projectile coordinate
system is consistent with the calibrated coordinate system, marked as position 1, as shown
in Figure 12.
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Figure 12. Position 1 in the TPC method.

Then, rotate 180◦ around the Z-axis of the projectile coordinate system, marked as
position 2 as shown in Figure 13.

Figure 13. Position 2 in the TPC method.

Then, rotate 180◦ around the X-axis of projectile coordinate system, marked as position
3 as shown in Figure 14. Record the measured value of the three positions in Table 6.

Figure 14. Position 3 in the TPC method.

It can be seen from Table 7 before compensating for misalignment errors, the error of
the single axis is thousands of nT and, due to the existence of the misalignment angles,
the measured values of the X-axis and the Z-axis have also changed when rotating around
the X-axis and Z-axis; in theory, they should not change. According to the calibration algo-
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rithm elaborated in Section 3, the misalignment angles are [−2.7903◦, −3.2721◦, 5.0245◦]
and the compensated values are obtained as shown in Table 8.

Table 7. Measured value before compensation.

Position 1 (nT) Position 2 (nT) Position 3 (nT)

Measured value [33,529, 30,722, 42,128] [−34,500, −39,265, 30,148] [−34,271, 39,764, −31,076]
Deviation [−2448, −5149, 6028] [1477, −3394, −5952] [1706, 3893, 5024]

Table 8. Compensated value.

Position 1 (nT) Position 2 (nT) Position 3 (nT)

Compensated value [35,901, 35,932, 36,057] [−35,892, −35,934, 36,175] [−35,937, 35,972, −36,244]
Deviation [−76, 61, −43] [85, −63, 75] [40, 101, −144]

The results show that the TPC method can calibrate misalignment angles, compensate
measured value according to analysis in Section 2, the error after calibration is within
150 nT and the maximal error is reduced from 6028 nT to 144 nT. The calibration improves
the accuracy of the measured value significantly, which indicates that the misalignment
error is eliminated effectively. The results of the experiment show that the proposed scheme
has high precision, and the complete process can be finished in a few minutes, which has
high operability and applicability, making it suitable for calibrating magnetic measurement
systems on guided munition on site.

6. Conclusions

In this paper, a TSC scheme without additional reference to calibrate tri-axial magnetic
measurement system on guide munition is presented. This scheme solves the problem that
the projectile coordinate system is not parallel to the coordinate system of the magnetic
measurement system, it is suitable for the calibration of the measurement system of various
types of projectiles on site without other devices or references.

The simulation and semi-physical experiment verified that the error of the sensor can
be eliminated effectively by the first stage and misalignment angles can be calibrated by
the second stage. After the complete scheme is applied, the deviation of the measured
value has reduced nearly two orders, accuracy of the magnetic measurement system meets
the requirements for estimation of the attitude of guided munitions.
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