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Abstract: Data-driven chatter detection techniques avoid complex physical modeling and provide 
the basis for industrial applications of cutting process monitoring. Among them, feature extraction 
is the key step of chatter detection, which can compensate for the accuracy disadvantage of machine 
learning algorithms to some extent if the extracted features are highly correlated with the milling 
condition. However, the classification accuracy of the current feature extraction methods is not sat-
isfactory, and a combination of multiple features is required to identify the chatter. This limits the 
development of unsupervised machine learning algorithms for chattering detection, which further 
affects the application in practical processing. In this paper, the fractal feature of the signal is ex-
tracted by structure function method (SFM) for the first time, which solves the problem that the 
features are easily affected by process parameters. Milling chatter is identified based on k-means 
algorithm, which avoids the complex process of training model, and the judgment method of mill-
ing chatter is also discussed. The proposed method can achieve 94.4% identification accuracy by 
using only one single signal feature, which is better than other feature extraction methods, and even 
better than some supervised machine learning algorithms. Moreover, experiments show that chatter 
will affect the distribution of cutting bending moment, and it is not reliable to monitor tool wear 
through the polar plot of the bending moment. This provides a theoretical basis for the application 
of unsupervised machine learning algorithms in chatter detection. 

Keywords: chatter detection; thin-walled parts; unsupervised machine learning; feature extraction; 
fractal theory 
 

1. Introduction 
In the cutting of thin-walled parts, chatter occurs easily due to the weak rigidity of 

the workpiece, which will greatly affect the machined surface quality, reduce production 
efficiency [1], accelerate tool wear [2], and even affect the fatigue life of the workpiece [3–
6]. Therefore, effective methods to predict, control, and monitor chatter have been a focus 
of research in the past 20 years. There has been a relatively solid research base in chatter 
prediction, the stability lobe diagram (SLD) can be calculated by various methods, such 
as zero-order analytical (ZOA) [7], semi-discretization method (SDM) [8], full-discretiza-
tion method (FDM) [9], differential quadrature method (DQM) [10], etc. Based on the re-
search results in chatter prediction, chatter suppression has also made some important 
progress, such as active control methods [11–13] and passive damping control [14–16]. 
However, the dynamic characteristics of the system are constantly changing and easily 
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disturbed [17]. As a result, the effectiveness of chatter suppression is easily affected by the 
accuracy of prediction methods. With the development of sensor technology and machine 
learning, the data-driven chatter monitoring method makes it possible to reproduce the 
machining process in real-time, which has become an intermediate to unify thin-walled 
parts cutting and chatter control. 

In recent years, multi-sensor fusion technology has proved to be an effective way to 
monitor the cutting process [18], which is mainly because multi-sensor fusion reflects a 
variety of physical phenomena of the cutting process, covers multiple frequency ranges, 
and shares complementary information from different perspectives. As to chatter detec-
tion, with the help of wavelet transform, Tran et al. [19] identified milling chatter by the 
fusion of microphone and accelerometer sensors. Kuntoğlu et al. [20] compared the effec-
tiveness of different sensors in the turning process and proved the high robustness of 
multi-sensor fusion method by acquiring cutting forces, vibration, acoustic emission, tem-
perature, and current measurements. Since the multi-sensor fusion provides the possibil-
ity for high redundancy monitoring, its application in tool condition monitoring is also 
increasing. For example, Zhou et al. [21] monitored the condition of the cutting tool 
through a multi-sensor global feature extraction method during milling. 

On the other hand, the development of machine learning technology makes the 
recognition of cutting conditions more convenient, which further promotes the practical 
application of the technology of milling process monitoring. Considering the advantage 
of identification accuracy, the supervised machine learning-based method is widely used 
in the monitoring of the cutting process. To avoid the influence of physical models, 
Denkena et al. [22] proposed a SLD calculation algorithm through support vector ma-
chines (SVM) and artificial neural network (ANN), and the highest classification accuracy 
of the proposed algorithm reaches 94%. Shi et al. [17] realized the early identification of 
chatter in high-speed milling by a kind of enhanced k-nearest neighbor method and a 
variety of extracted signal features. Wu et al. [23] proposed a tool wear identification 
method that does not require professional experience, which monitors the milling process 
based on the CNN model and the charge-coupled device (CCD) image sensor data. 
Thanks to the automatic detection algorithm, the mean absolute percentage error between 
the identified results and real tool wear value is only 4.76%. Sener et al. presented a chatter 
detection method based deep convolutional neural network (DCNN). It has been proven 
that the accuracy will be better if the process parameters are input to DCNN [24]. 

However, for cutting process monitoring, the supervised machine learning-based 
method has natural disadvantages, such as it must know the label of classification data in 
advance and need a complex process of training model. This limits the possibility of the 
practical application of condition identification, which is one of the main reasons why 
machine learning monitoring algorithms are difficult to be applied in commercial appli-
cations. Fortunately, some research on the application of unsupervised machine learning 
in cutting processes has emerged. Dun et al. [25] implemented the identification of milling 
chatter by autoencoder and hybrid clustering algorithm, and Peng et al. [26] implemented 
the monitoring of tool condition through extracting frequency-domain features of sound 
signals. However, the current methods mostly extract multiple features in the time do-
main, frequency domain, or time-frequency domain, and the recognition accuracy is still 
lower compared to supervised machine learning methods, which all lead to great incon-
venience in their application to online monitoring. Therefore, an unsupervised machine 
learning method with convenient signal feature extraction and high recognition accuracy 
would be beneficial for the promotion of online monitoring for cutting conditions. 

In fact, feature extraction is very important in pattern recognition. If the correlation 
between the extraction and the identification results is strong, even if the machine learning 
algorithm with low theoretical classification accuracy, such as unsupervised machine 
learning, can obtain better identification performance. The physical nature of the fractal 
feature, which describes the self-similar characteristics of signals, determines that the ex-
tracted feature is not easily influenced by the cutting process parameters, which provides 
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a unique accuracy advantage for monitoring the nonlinear and non-stationary properties 
of chatter during the milling process [27]. At present, the method of extracting the fractal 
dimension of the signal is mostly based on box counting, such as Diykh et al. [28], who 
extracted the feature of fractal dimension of electronephhallgraphy (EEG) signals by box 
counting method, and classified the extracted datasets by combining support vector ma-
chine (SVM). Zhuo et al. also calculated the fractal dimension of the signals in the time-
domain and frequency-domain separately by the box counting method for the identifica-
tion of chatter in flank milling [29].  

However, for the milling process of thin-walled parts, especially the thin-walled 
parts of hard-to-cut materials, due to the position dependence characteristics, tool wear 
coupling factors, and the time-varying dynamic characteristics of the milling system, the 
cutting signal has not only the characteristics of self-similarity but also self-affinity. The 
box counting method is also not suitable for solving the data with self-affinity [30]. On the 
other hand, the structure function method (SFM) has been widely used for the calculation 
of fractal dimension of rough surfaces because the self-affine characteristics of the surface 
profile can be considered in the process of constructing the function [31,32]. Therefore, it 
can be expected that the identification accuracy of cutting chatter can be improved by 
extracting features through the structure function method (SFM). 

Given the problems of complex feature extraction and low identification accuracy in 
the current unsupervised machine learning-based cutting monitoring method, this paper 
first extracts the fractal features of signals by SFM and provides a novel chatter detection 
method based on fractal dimension and k-means clustering algorithm. The main ad-
vantage of the proposed method is that it can achieve the desired recognition accuracy by 
extracting only one kind of time-domain feature, which avoids the complicated process of 
combining multiple features extracted by traditional methods and improves the recogni-
tion accuracy of unsupervised machine learning-based methods. This provides a new idea 
for the research related to unsupervised machine learning-based cutting process monitor-
ing. The rest of this paper is organized according to the following structure: Section 2 in-
troduces the chatter identification method based on fractal dimension and k-means clus-
tering algorithm. Section 3 describes the experimental design, feature extraction and ex-
perimental verification results in detail. Section 4 discusses the effective method of judg-
ing the chatter, and conclusion is drawn in Section 5. 

2. Methodology 
Commonly used time-domain features essentially describe the intensity and distri-

bution characteristics of the signals. However, these physical features of signals are not 
necessarily related to the cutting conditions, and even changes in process parameters may 
affect such features. Considering the correlation between milling chatter and signal fractal 
features, the proposed method in this paper first extracts the time-domain features of the 
signal based on fractal theory, and then identifies the milling condition by data clustering. 
At the same time, three common time-domain features (root mean square, kurtosis, and 
skewness) are also extracted as the comparison to judge the accuracy of the proposed 
method. 

2.1. Related Time-Domain Features 
Since the subtle changes of the process will affect the parameters of signal features, 

the commonly used time-domain features have obvious advantages in identifying station-
ary signals. However, for nonlinear and non-stationary signals including cutting chatter, 
it is generally difficult to identify the state by time domain features alone. 

Root mean square (RMS) is the most commonly used parameter in time-domain fea-
tures, which is actually related to the total energy and reflects the strength of the milling 
signal. It has proven effective on many occasions. It can be expressed as: 
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where N is the number of sampling points and represents the ith sampling point in the 
cutting signal ix . 

Kurtosis, on the other hand, expresses the characteristics of the numerical distribu-
tion of random variables, as shown in Equation (2), which is essentially a fourth-order 
normalized central moment of the data. It reflects the steepness of the distribution pattern 
of all samples. In terms of signal morphology, kurtosis represents the sharpness of the 
signal peak compared to the normal distribution, and the larger the kurtosis value, the 
greater the difference between the distribution of the data and the normal distribution. 
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where, x  represents the average value of the signal data and iσ  is the standard devia-
tion of signal data. 

The expression of skewness is shown in Equation (3), which is similar to kurtosis and 
also expresses the numerical distribution characteristics of random variables. However, 
differing to kurtosis, it is the third-order normalized central moment of the sampling data, 
which represents the symmetry of the distribution. The larger the absolute value of skew-
ness, the more it deviates from the normal distribution. 

3
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skew
i i

ix xx
N σ=

 −
=  

 
∑  (3) 

It is generally believed that when chatter occurs during milling, the amplitude of the 
signal increases and the data distribution changes, which in turn leads to changes in kur-
tosis and skewness. This is the basic principle of identifying chatter by the time-domain 
features of the signal. 

2.2. Fractal Dimension Based on SFM 
The structure function method (SFM) is usually used to calculate the fractal dimen-

sion of the profile of rough surfaces, which is actually a set of data Z(x) associated with a 
sampling position x that satisfies [32,33]. 

2 4 2( ) [ ( ) ( )] DS Z x Z x Cτ τ τ −= + − =  (4) 

where ( )S τ  is defined as the structure function of the time-domain data, τ  is the length 
of the random sampling point interval, and < > denotes the temporal average. Equation 
(4) elaborates the power-law relationship between the arithmetic average of the signal 
amplitude on different time scales and the fractal dimension. When 1 < D < 2, C is a con-
stant, which is also related to the fractal parameter [34], and can be expressed as 

( ) ( ) ( )2 12 3 sin 2 3 / 2
2

DD D
C G

D
π −Γ − −  =

−
 (5) 

where G is the characteristic scale constant, and Γ  represents the gamma function. 
As for the signals of sound, acceleration, and cutting bending moment, the signal 

amplitude is actually composed of multiple discrete points according to the time series, 
i.e., 
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( ) ( 0,1, 2, , )iZ x Z i N= = …  (6) 

As a result, a random sample point interval length τ  can be defined as 

  ( 1, 2,3...)n t nτ = ∆ =  (7) 

For a given signal, the number of discrete points is related to the sampling frequency 
sf  of the signal. Therefore, the distance between two discrete points satisfies =1/ st f∆ . 

Then Equation (4) can be converted to 
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  = ∆ = + −    

= − + <
− ∑

 (8) 

Taking the logarithm of both sides of Equation (8), it can be obtained that 

( ) ( )lg llg 4 2 gCS Dτ τ= + −  (9) 

Therefore, the distribution of the structure function of the cutting signal in the double 
logarithmic coordinate system can be obtained by substituting Equations (6) and (7). So 
that in the double logarithmic coordinates (log-log coordinates), if ( )lg S τ  and lgτ  is 
linear and the slope 0 < α  < 2, it can be determined that the signal data have fractal char-
acteristics. The fractal dimension of the cutting signal can then be calculated: 

2
2

D α
= −  (10) 

2.3. Methodology of Chatter Detection 
Once the signal features are extracted, the different milling conditions can be identi-

fied from the extracted features, which is also known as chatter detection. Here, to avoid 
the complicated process of model training, k-means clustering is used to achieve the iden-
tification of milling conditions. As a typical unsupervised machine learning method, it 
does not need to know the labels of the data in advance, but its clustering results are more 
sensitive to the number of divided classes. As for this paper, the extracted data can be 
classified into two classes, namely stable and chatter, which means the number of classi-
fications is clear. This is a basic prerequisite to be able to apply the k-means clustering 
algorithm. 

Assuming that the set of extracted original features is 1 2( , ,..., )nx x x , the number of 

classifications is k (k ≤ n), i.e., the original data is divided into k classes 1 2, ,{ }, kS S S S= … , 
and the classification can be achieved by minimizing the following expression: 

2

1
arg min

j ix

k

i
S

j
i S

x µ
= ∈

−∑ ∑  (11) 

where iµ  denotes the center vector (cluster center) of the classification Si. In order to 
solve this NP-hard problem, Equation (11) is mostly solved by multiple iterations. The 
derivation of Equation (11) yields that the objective function is minimized when iµ  is 
equal to the mean value of all the samples. That is 



Sensors 2021, 21, 5779 6 of 18 
 

 

1
=

in

j i
j

i x nµ
=
∑  (12) 

where, in  denotes the total number of samples in the ith cluster and jx  is the jth sample 
in the ith cluster. Therefore, the basic principle of the method is to assume that data of the 
same class are closer, and thus to recognize the milling condition by calculating the dis-
tance of the data in the feature space. 

As shown in Figure 1, the signals of acceleration, sound, and bending moment of the 
cutting process are acquired synchronously. The extracted multiple features are used as 
the three dimensions of the clustering data to fuse the multi-sensor information. Based on 
SFM, the fractal dimension of the multiple signals is then calculated. As a comparison, 
three kinds of commonly used time-domain features are also calculated. Further, the mill-
ing condition is identified by data clustering. In the process of pattern recognition, various 
signal features are clustered separately for accuracy comparison. Finally, the accuracy of 
the proposed method is verified by comparing the clustering output labels with the actual 
experimental milling condition, which is verified by various means such as workpiece 
inspection, FFT and cutting bending moment. 

 
Figure 1. Proposed method. 

3. Results 
3.1. Experimental Setup 

The experimental procedure is shown in Figure 2. The milling experiments are per-
formed on a VMC machine with a 4-tooth end mill of 10 mm diameter and a thin-walled 
titanium alloy part of 100 × 100 × 5 mm. The acceleration signals of the cutting process 
were collected by an accelerometer DYTRAN 3145A1 on the back of the workpiece to 
monitor the workpiece vibration. Acoustic signals are collected by a microphone (GRAS 
46BE) near the tool and workpiece. The bending moment of the cutting process is collected 
by the sensory toolholder (SPIKE). The acceleration and sound signals are collected by the 
acquisition module (NI PXIE-4464) and transmitted to the PC recording system. The bend-
ing moment signals are collected by a read receiver unit and transmitted wirelessly to the 
PC. The polar plot of the cutting moment can then be obtained by the scatter distribution 
of the bending moment in both x and y directions. 

Table 1 shows the design of the process parameters for the milling experiments. All 
experiments are performed with a cutting width of 0.2 mm, and each set of experiments 
is completed by observing the workpiece surface, performing FFT, and analysis of cutting 
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bending moment to ensure that the corresponding cutting state is achieved, which will be 
described in detail in Section 3.3. It should be noted that only cutting chatter can be iden-
tified in this paper, and tool wear is not in the scope of this study. However, since the 
workpiece is titanium alloy, which is typically difficult to machine material, tool wear will 
inevitably occur during the actual cutting process. When the tool is worn, the amplitude 
of cutting force will change significantly and the surface quality of the workpiece will 
deteriorate, which makes the characterization of chattering more obvious. In fact, in order 
to clearly distinguish between the two signals, the tool under chatter conditions will inev-
itably be worn. How to identify cutting chatter and tool wear simultaneously will be the 
focus of our next research. 

 
Figure 2. Experimental procedure. 

Table 1. Process parameters for stable milling condition. 

Millingn 
Condition 

No. Spindle Speed s 
(r/min) 

Cutting Speed 𝒗𝒗𝒄𝒄 
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Feed Rate 𝒗𝒗𝒇𝒇 
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Cutting Depth 
𝒂𝒂𝒑𝒑 (mm) 

Stable 

1 2150 67.51 100 3 
2 2150 67.51 110 4 
3 2150 67.51 120 5 
4 2250 70.65 100 5 
5 2250 70.65 110 3 
6 2250 70.65 120 4 
7 2350 73.79 100 4 
8 2350 73.79 110 5 
9 2350 73.79 120 3 

Chatter 

10 1250 39.25 200 3 
11 1250 39.25 225 4 
12 1250 39.25 250 5 
13 1520 47.73 200 5 
14 1520 47.73 225 3 
15 1520 47.73 250 4 
16 1950 61.23 200 4 
17 1950 61.23 225 5 
18 1950 61.23 250 3 
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3.2. Feature Extraction 
Figures 3 and 4 show the process of calculating the fractal dimension of multiple sen-

sor signals, respectively. Figure 3a shows the cutting signals of one of the experimental 
tests in the stable condition, and Figure 3b shows the process of calculating the fractal 
dimension of each signal by the structure function method (SFM). Particularly, to avoid 
the influence of process parameters on the extracted signal features, the signal is seg-
mented based on the spindle speed and sampling frequency [35]. Here, 20 revolution data 
are uniformly selected as the sampling signal. Since the spindle speed of each group of 
experiments is different, the time scale of each group of experiments is also inconsistent. 
The fractal dimension can be calculated by combining Equation (6) with the slope of the 
line obtained from the regression results. Figure 4 shows one of the cutting tests in the 
chatter condition. It can be seen through the time-domain data that the time-domain char-
acteristics of these three signals are obviously different due to the different acquisition 
methods. Through Figures 3 and 4, the acceleration, sound, and bending moment signals 
in both stable and chatter conditions have obvious scale-free intervals, indicating that each 
sensing signal of the milling process has fractal characteristics, and similar conclusions 
were obtained in references [27,29], which is the basis for applying fractal geometry to 
extract fractal features. 

  
(a) (b) 

Figure 3. Calculation of the fractal dimension of the stable milling condition. (a) aquired signals; (b) process of calculating 
fractal dimension. 

  

(a) (b) 

Figure 4. Calculation of the fractal dimension of the chatter condition. (a) aquired signals; (b) process of calculating fractal 
dimension. 
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Moreover, from top to bottom, for acceleration, bending moment and sound, regard-
less of the stable or chatter conditions, the distribution patterns of the three kinds of sig-
nals in double logarithmic coordinates are almost the same. The scatter distribution pat-
tern of each signal in the two different states is also similar. This is actually determined 
by the time-domain characteristics of the cutting signals. As shown in Figures 3a and 4a, 
the time-domain characteristics of acceleration, sound, and cutting bending moment are 
obviously different due to the acquisition methods and the characterized physical quan-
tities, but they all reflect the cutting process from different perspectives, which also shows 
the necessity of multi-sensor information fusion monitoring. Table 2 shows the final cal-
culated fractal dimensions. 

Table 2. Calculation results of fractal dimension. 

Milling State Sensing Type Slope of the Regression Fractal Dimension 
Stable Acceleration 1.0020 1.4990 
Stable Sound 0.9993 1.5004 
Stable Bending moment 1.0848 1.4576 

Chatter Acceleration 0.9953 1.5023 
Chatter Sound 0.9928 1.5036 
Chatter Bending moment 1.0557 1.4722 

In addition, as mentioned earlier, the amplitude and distribution of a given signal 
will change with the change of cutting parameters, which in turn leads to a change in the 
common time-domain characteristics. In other words, the common time-domain charac-
teristics are susceptible to the process parameters. In general, the change of cutting process 
parameters may not be necessarily related to the cutting conditions, and the time-domain 
features can be easily affected by the process parameters, which ultimately makes it diffi-
cult to detect the cutting condition by a single time-domain feature. Figure 5 shows the 
distribution of each signal feature under different process parameters. The horizontal axis 
in the figure indicates the experiment serial number, which represents 36 groups of ex-
periments, and it is obtained from 18 groups of experiments in Table 1, each group of 
which is taken as two segments. The variation of kurtosis, skewness, RMS, and fractal 
dimension of multi-sensor signals with the experimental sequence number are shown se-
quentially in Figure 5. And according to Table 1, different experimental serial numbers 
represent a variety of process parameters. As shown in Figure 5a–c, the conventional time-
domain characteristics of both acceleration, sound, and cutting bending moment change 
significantly with the change of process parameters. But according to Figure 5d, the fractal 
dimensions of the three signals, when the process parameters are changed, remain at a 
certain level. This is mainly because the fractal dimension characterizes the self-similarity 
of the signals, and the change of the process parameters cannot change the degree of sim-
ilarity of the signals. 
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Figure 5. Distribution of features for different process parameters. (a) kurtosis; (b) skewness; (c) RMS; (d) fractal dimension. 

3.3. Experimental Validation 
The purpose of extracting signal features is to further identify the milling condition. 

Traditional supervised machine learning methods need to know the labels of the data in 
advance to train the machine learning model, and then recognize the corresponding con-
ditions. However, the real milling condition cannot be known in advance during the ac-
tual machining process, so the identification of cutting chatter by supervised machine 
learning methods poses great difficulty to achieve online monitoring. As described in Sec-
tion 2.3, to solve this problem, the k-means clustering algorithm is used in this paper to 
identify different milling conditions. The clustering algorithm, as a typical unsupervised 
machine learning method, does not need to foreknow the labels of the data, but its clus-
tering results are more sensitive to the number of classified categories. In contrast, the 
milling condition monitoring involved in this paper mainly monitors milling chatter, that 
is, the extracted data can be classified into two states: stable and chatter. In other words, 
the number of clusters of the extracted data has been determined. This is the basic prereq-
uisite to be able to apply the k-means clustering algorithm. 
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In order to check the accuracy of different time-domain features for identifying mill-
ing chatter, all the extracted signal features are clustered separately in this section and the 
clustering results are examined according to the known labels. Moreover, the signal fea-
tures of acceleration, sound, and cutting bending moment are taken as three dimensions 
of the feature space respectively, so as to complete the fusion of multi-sensing infor-
mation. Note: In the process of applying the clustering algorithm, it is not necessary to 
know the data labels in advance, and the known data labels are introduced here to check 
the discrimination accuracy of different signal features. Figure 6 shows the clustering re-
sults for each signal feature. As shown in the figure, fractal dimension performs the best, 
achieving 94.44% classification accuracy after only four iterations, which is even better 
than some supervised machine learning methods. 

In contrast, kurtosis performs the worst, with a final classification accuracy of only 
13.89%, as shown in Figure 6e–h, mainly because there is no obvious distinction in its 
spatial distribution. Skewness and RMS have intermediate classification accuracies of 
61.11% and 88.89%, respectively. Therefore, for monitoring milling chatter by different 
signal features, fractal dimension is the best, with a discrimination accuracy of 94.44%, 
skewness and RMS are less accurate and can basically identify chatter, while kurtosis clus-
tering is the worst and cannot identify chatter from the extracted data. Furthermore, it is 
expected to obtain higher recognition accuracy if the fractal feature is combined with other 
time-domain features, frequency-domain features, and time-frequency-domain features. 
However, the purpose of this paper is to propose a time-domain feature that can be used 
alone, so as to improve the computational efficiency and apply it to on-line monitoring. 
Therefore, only a single time-domain feature is used for comparison in this paper. As for 
the combined effect of fractal features and other features, it is not only related to the fea-
ture extraction method, but is also affected by machine learning algorithm. The specific 
impact mechanism will be the content of our future research. 
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4. Discussion 
As mentioned earlier, the clustering algorithm, as an unsupervised learning method, 

does not require prior knowledge of the data labels in identifying milling chatter. How-
ever, in this paper, in order to compare the discrimination accuracy of different signal 
features, definite labels are designed for each group of experiments, as in Table 1, the first 
nine groups of experiments are for stable conditions and the last nine groups of experi-
ments are for chatter condition. However, whether the designed process parameters can 
indeed achieve the corresponding milling conditions still needs to be determined after the 
experiments. Indirect means are usually used to determine the occurrence of milling chat-
ter, such as checking whether there are chatter marks on the surface of the workpiece, but 
judging the machining stability by surface quality is prone to error because the surface 
quality is easily affected by a variety of factors [25], which brings great uncertainty in 
tracking chatter by surface marks. Moreover, chatter is also not necessarily present 
throughout a process, thus judging based on the location of the chatter mark is not accu-
rate. At the same time, it is difficult to detect the surface profile of the workpiece online. 
As a result, it is unrealistic to apply it in actual machining by stopping the machine after 
each cutting process to detect the surface quality. 

Therefore, in actual experiments, the collected signals are mostly subjected to FFT to 
analyze the frequency components. When the signal spectrum contains only the tooth 
passage frequency, spindle rotation frequency and its harmonic frequency, the milling 
process is considered stable. On the contrary, it can be considered that milling chatter 
occurs if there are frequency components in the spectrum other than the tooth passage 
frequency, spindle rotation frequency and its harmonic frequency, and the extra fre-
quency component is considered as the chatter frequency. Figure 7 shows the FFT of the 
acceleration and sound signals of one group of experiments in the stable milling condition, 
where the green vertical line represents the spindle rotation frequency and its multiplier 
frequency. The blue solid line represents the FFT result of the signal. In Figure 7, all of the 
signal spectra are the spindle rotation frequency and its multiplier frequency, which 
proves that the cutting process is in stable condition. As shown in Figure 8, the frequency 
components that are neither the spindle rotation frequency nor its multiplier frequency 
are the chatter frequencies, i.e., the part marked by red circles. It can be seen that the chat-
ter frequencies are mostly set in the low and medium frequency parts, mainly because, in 
the thin-walled parts milling process, the chatter frequencies are mostly related to the nat-
ural frequency of the workpiece, which is mostly in the low and medium frequency band. 

Moreover, it is generally accepted that the cutting bending moment distribution can 
demonstrate the tool morphology to some extent, and it is often used in industrial soft-
ware to monitor the tool condition. It was then found in this paper that the bending mo-
ment distribution does not necessarily correlate with tool condition alone, especially for 
thin-walled part milling, where milling chatter largely affects the tool morphology formed 
by the cutting bending moment distribution, which does not necessarily correlate with 
tool condition. Figure 9 shows the bending moment distribution for the stable cutting con-
dition, i.e., the bending moment polar plot. Figures 9a–i represent nine groups of experi-
ments for the stable milling condition, respectively. Benefiting from the stable contact be-
tween the tool and the workpiece, the bending moment distribution is more concentrated 
in the stable condition, and the tool morphology can be basically observed more obviously 
through the polar plot. In contrast, Figure 10 shows nine sets of experiments in the chatter 
condition, and it can be seen that the cutting bending moment distribution is relatively 
scattered due to the occurrence of chatter, and the tool morphology can hardly be deter-
mined. It is therefore not accurate to monitor the tool condition only by polar plots. 
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Figure 7. FFT for stable milling state experiments. 
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Figure 9. Polar plot of cutting bending moment for stable milling condition. (a) No. 1 experiment; (b) No. 2 experiment; 
(c) No. 3 experiment; (d) No. 4 experiment; (e) No. 5 experiment; (f) No. 6 experiment; (g) No. 7 experiment; (h) No. 8 
experiment; (i) No. 9 experiment. 
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Figure 10. Polar plot of cutting bending moment for chatter milling condition. (a) No. 10 experiment; (b) No. 11 experi-
ment; (c) No. 12 experiment; (d) No. 13 experiment; (e) No. 14 experiment; (f) No. 15 experiment; (g) No. 16 experiment; 
(h) No. 17 experiment; (i) No. 18 experiment. 
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5. Conclusions 
In order to improve the recognition accuracy of time-domain features for milling chatter, 

this paper applies the structure function method (SFM) for the first time to extract the fractal 
dimension of the signal as the time-domain feature, which avoids the influence of process pa-
rameters on identification accuracy. And by applying the k-mean clustering algorithm, it is 
not necessary to know the data labels in advance before identifying the milling condition, 
which eliminates the process of training models. The proposed method is more applicable to 
the actual cutting process monitoring. In this paper, multiple signal features are compared 
through the same learning algorithm, which verifies the accuracy of different signal features 
through experiments. However, the over fitting and generalization ability of the model are not 
only related to the extracted signal features, but also affected by the learning algorithm. The 
purpose of this paper is to provide a chatter detection method that is computationally efficient 
and conducive to improving the identification accuracy, so the research topic of this paper 
focuses on the influence of the extracted signal features. The following conclusions can be ob-
tained from the whole paper. 

1. Unlike traditional chatter monitoring methods that require extraction of multiple sig-
nal features, the proposed monitoring method uses only one kind of time-domain feature and 
requires basically no prior knowledge in either signal feature extraction or condition recogni-
tion, which improves computational efficiency and avoids the complex process of extracting 
multiple signal features. Due to improved computational efficiency, the proposed method can 
be a research basis for online monitoring of chatter during the milling of thin-walled parts. 

2. In this paper, multiple signal features are extracted and clustered separately, and the 
accuracy of identification for milling chatter is compared. The results show that the fractal 
dimensional clustering is the best, with 94.4% accuracy using only a single time-domain fea-
ture, which is even better than some supervised machine learning methods. If combined with 
other time-domain features, frequency-domain features, and time-frequency-domain fea-
tures, it is expected to obtain higher recognition accuracy, which can help promote the appli-
cation of unsupervised machine learning in milling chatter monitoring. 

3. For the monitoring of chatter by the clustering algorithm, it is difficult to achieve accu-
rate identification of milling conditions by using other time-domain features alone. According 
to the results of the experiments, the best recognition accuracy among the traditional time-
domain features is the root mean square, which reaches 88.89%, but it requires more iterations 
compared with other features, which means more computation. Although the number of iter-
ations of skewness and kurtosis is less, their recognition accuracy is only 61.11% and 13.89%, 
respectively. It is obvious that it is difficult to accurately recognize chatter by these two time-
domain features alone. 

4. It is generally believed that the cutting bending moment distribution can show the tool 
morphology to a certain extent, and some existing commercial products also monitor the tool 
wear process by the polar plot. However, according to the experimental results in this paper, 
milling chatter can greatly affect the bending moment distribution, which indicates that mon-
itoring the tool condition by polar plots is not reliable. 
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